DISCREPANCY OF COMPLEX SEQUENCES VIA
COMPRESSIBILITY

GEORGE DAVIE

Dedreated to a feliow swemmer Ernte Cockayne. Happy 60th birthday!

ABSTRACT. Wo nse the idoa of compressibility to oxamine the discrapancy ot

sel systems ool by counplox sequences.

l. INTRODUCTION:

Let ¢ be a universal prefix machine, fixed in what follows. Call an infinite binary
sequence a compler if there is a constant ¢ such that, for each initial segment a5
length n of & there is no program shorter than n.— ¢ which outputs .., see, for
example (7). Let ¢(a) be the least ¢ for which the above holds. We call c(a) the
compressibility of a.

In the papers [3.1.5] Fouché, Fouché et al examine propertics of complex se-
quences when viewed as coding for combinatorial confignrations.

This leads to interesting properties of such sequences which are not apparent
when they arc viewed mercly as binary sequences.

The paper (6] is a continuation of this theme and studies the discrepancy of
complex sequences when secn as coding for set systems. In this note we will usc a
technique introdueed in {1 to lift the effective content of the results in [6].

2. NOTATION

For the sake of clarity. we will use Lthe same notation as [6]. Let A be a family of
subsets of a finite set L and T a set of mappings rom A 1o the set {~1.1}. The
discrepancy of A with respect 1o 37 s

min max | Z A
IR ro X
For ¥ the entire <t of mappings rom A to {—1L 1} we will talk of the discrepancy
of A, We will somctimes talk of elements of 3 as particular colouwrings of the
clements of 1. Denote the discrepancy by g{A). Since we are going to view binary
sequences as codes for the entries of matrices, we et (i 3) =—< £, j > be a recursive
bijection from .V x NV onto N. For a binary sequence o then, we define the family
Ala) = (4,)i-1 of subsats of N by y € A = @y, = | where we now write if for
< i,j > Forn > 1, let 4, (a) bethe family of sets Aoninl e = L n. That is, we
can sce A, («r) as the set svstem given by the nx o matrix in the top lefthand corner
of the infinite matrix acnerated by . For brevity, when we are dealing directly with
the matrix. we will often talk of the diserepancy of n < n submatrices instead of
the discrepancy of the scl systamn queen by the submatrir. For a binary string @
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we will denote by x| the length of . We will often identify algorithms with their
binary representation and will write |¢] for the length of a binary representation of
an algorithm @. Also. togx will denote the base 2 logarithm of x.

The first results in [6] are for the case where the matrix is infinite and is generated
by a complex sequence a. For each  of the top left hand n x n submatrices, the
discrepancy of the set system represented by this submatrix is considered, this
leads to Theorem 1 of [6]. Secondly the case where the matrix is recursive and the
colouring complex, is examined. This leads to Theorem 3 in [6].

In this note we use the compressibility of a cotnplex sequence o to prove more
effective versions ol these results.

3. COMPLEX MATRICES.
Theorem 1 of [6] states:

Theorem 1. (Fouché) There exists a universal constant v > 0 such that, for each
complex string a, there exists a nalural number n, such that, for all n > n,, the
discrepancy of Ap(a) satisfies o(A, (o)) > /1.

The idea in using compressibility is to show that the compressibility of a sequence
must increase the longer the discrepancy stays low. Put differently, we show that for
given ¢, if the discrepancy A, () stays low for too large n. then the compressibility
of o must be larger than ¢. We prove the following:

Theorem 2. There exists a universal constanl 7 > 0 such that, for each complex
string o with ¢(a) = ¢ we can find a natural number n, such that, for all n > n.,
the discrepancy of An(a) satisfies (A (o)) > T/n.

In other words, the stage after which the discrepancy mmst be at least 7(/n is

recursive in ¢(a). We use the following lemma from [61.

Lemma 1. (Fouché) Let (W, = 1 < i j < n) be o random variables such
that cvery W, ; assumes cach of the values O or | wdh probabidity 172, For each
= (U, tn) € {11} st () = _;’=| v, W, Theno we can find num-
bers T..c0 < 1/2 — = and n such that

I"rob[a,.., . 1 Tica(H(e) < T\/'E)i < (2e9)".

Proof. Directly from Lemma 1 in [6). The eflectivity follows from the following
error terms for convergence to the normal distribution, see (21,

1 1,2 . . | - 1.2
Let o(r) = —=e¢ ¥ be the normal density Niuction. d(r) = — /"0( ¥ dy
\/27-’ V27777
the normal distribution function and let ay = be: + A2 2e. L) where b is the binomial
distribution. Following Feller. {2}, we sce that for b = 2\ we have (1) ag

.3 .
ha(kh) with error smaller than &5 . Hence we can, given = 0 choose n large enough

such that (1 = 2)[(z2) - ()] < Z ap o th =)k ) ~ )] 1

Lavack<ta o

Proof of theorem 2: Consider a complex string o with cga) =0 Let o0 N x NV o— N
be our recursive bijection. Now consider the sequence of v < 1 <ubmatrices in the
1op lefthand corner of the generated infinite matrix. It follows by the lemma that
for n as in the lemma the probability that the submatrix has discrepancy lower
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than 77 is less than (1/2 — 25)". We can therefore specify an A™ with discrep-
ancy lower than 7\/n by giving the lexicographic position of A™ amongst the n x n
matrices with discrepancy less than T/n.

We show that for given ¢, we can find an n large enough that this description will
lead to an algorithm of length less than #' — ¢ for an initial segment ap..- of o Let
o, be the shortest initial segment of a which gives each of the values of A", We
will show how to choose n in order to obtain a program for «,,+ of length less than
n —c

To be specific, to specify «,, we will need 7, and the position of A" amongst
those matrices B™ with this low discrepancy.

Now for given ¢ take n large cnough such that

(1/2 — 2¢)* < 2exp(—c —2logT —2loge — 2logc — || — 1)
We claim that there is a universal constant & (which we can find) such that any
complex a which has low discrepancy up to here must have c(apn) >c—k.
This follows from the fact that we can write a program ¢ outputting any of the
strings x length n’ which code for low discrepancy up to A® under ¢. Our program
takes as input a concatenation of the following:

1) A self delimiting code for ¢ (length less than 2logc),

2) self delimiting code for @ and the constants 7,¢ and

3) the lexicographic position s (of length at most n —c—2logT—2logz—2logc—|o|)
of oy, in the set of strings length n which, under ¢, code for matrices with A™
having this low discrepancy.

Our program reads ¢ and the codes for 7,¢ and finds the first n such that (1/2 -
2e)" < 2exp(—c — 2logT — 2logs — 2loge — || — 1). It now finds n’ and reads the
position length (0 — ¢ —2log 1 = 2logs — 2logc — o] — 1) and outputs .. Note
that ¢ has total input length less than

(2logc + 2logT + 2log 7 +|o]) + (n — ¢ = 2log7 - 2logs - 2loge — |o| - 1)
= n —c-L

Clearly il we take & = |7} our claim holds.
{. COMPLEX PARTITIONS

The case where our countable matrix is recursive and our partition (colunn
vector) complex is now considered.
Notation: For A an » x « matrix over {01} let A* be the n x »n submatrix in the
upper left corner of A, For X a countable column vector over {=1,1} write X(n)
for the first n entries of X. For an n x n matrix £ and column vector X as above
we write ||BX]| for sap{}£3,Xj ¢ = 1,....a}, where B, denotes the ith row of B.
The following theorent appears in {6

Theorem 3. (louché) Ll A be a recursive countable matriz over {0. 1} There s
a universal constand (* 3 O suck thal, for cvery compler o, there is some n,,. such
that, for alln > n,

A" )l € CVarlogn,
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We will prove the following:

Theorem 4. Let A be a recursive countable matrix over {0.1}. There is a uni-
versal constant C > O such that, for every complex «v, we can effectively find in
c(a) = ¢ an n,, such that, for alln > n,

4™ @(m)l| < C'v/alog .

We use the lollowing

Lemma 2. (Fouché) Let M be an n x n matriz and let X be a complex columnn
vector over {—1, 1} with each entry taking each of —1 and | with probability 1/2.
Then
. o A2
Prob[3z¢ ken| ME X (k)| > \/Dklogk] < 22 e
k>2

Proof of theorem 3: Choose D > 4. Let ¢ be an algorithw for 4. Given n, consider
those column vectors for which [Fxsn]M* X (k)| > VDK Togkl.

We claim that we can find a universal constant r such that any column vector X
for which 3y n-{A* X (k)| > /DElogk, where n* is such that

kz

2 Z PG < 2exp(—¢ = 2loge - |o])
k>n*

must have an initial segment X, compressibility by more than ¢ — r. This follows

from the fact that few column vectors will satisfy the condition.

Indeed, consider any such column vector Y. The following prograin » outputs an
initial segment of Y. ¢ operates on a coucatenation of inputs of the form:

1) Seif delimiting codes for ¢ (shorter than 2logc¢), ¢ and

2) I (to be specified) (shorter than 2log!)

3) The position s of the initial segment of ¥ amongst the column vectors for which

akzu-ll\/k){'(k” > /Dklog k.

The algorithm works as follows: = reads ¢ and then linds the first #° such that

;‘.'.'
2 <2expl—c = 2loge — o)
2 A-D"l\"'l' 2 log
kiont

Now p reads I where [ is that munber such that X appears between the first time
that

2 Z I < 2exp(—c = 2loge = o) = 1)
-

and the first time that

S ‘
2 L s < 2exp(--c = 2og e — jol =1 1)
kwn ‘

2 now enumerates all column vectors appearing hetween these two times and ex-
tends them all to the maximum vector length listed between these two times.
2 then reads the position s of ¥ in this set of measure Iess than 2exp(—¢ = 2loge —

lo] = 1) and outputs Y.
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Note that the length of the input for » is bounded by:

2loge+ |p| +2logl+(n—c=2loge— ol =) =n—-c—1+2logl<n-c
Clearly if we take r = [y] the claim holds. §

So even though we clearly can, given a complex vector o and fixed n, tailor make
the initial segment A" of A to make the discrepancy of the set system given by A"
very high, the complexity of o and the recursiveness of 4 rules out the discrepancy
being high for infinitely many .
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