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Abstract

We study the discrepancies of set systems whose incidence matri-
ces are encoded by binary strings which are complex in the sense of
Kolmogorov-Chaitin. We show that these systems display an optimal
degree of irregularity of distribution.

1 Introduction

Random sequences were introduced by Richard von Mises [20] under the
name of “collectives”, as a foundation of probability theory. The crucial
features characterising collectives are, on the one hand, the existence of
limiting frequencies within the sequence of outcomes (uniformity of distri-
bution of the values of the sequence) and, on the other hand, invariance
of the limiting frequencies for subsequences chosen by means of any gam-
bling strategy against the random sequence. (For the history and a further
development of these ideas, see [18]). In the 1960s there emerged two
approaches to random sequences by Solomonoff, Kolmogorov and Chaitin
(10, 3] and Martin-Lof [11], respectively, which are based on two rather dis-
tinct intuitions. The definition of Martin-Lof, in analogy with van Mises’
conception, is based on the idea that a random sequence should satisfy
all properties which hold with probability one. Strictly speaking, this is,
of course, quite impossible but Martin-Lof delineated a countable class of
such properties which should be satisfied by a random sequence. The def-
inition of Kolmogorov et al, on the other hand, is based on the intuition
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that a random sequence should be its own shortest description. The initial
definitions worked for finite sequences only but were refined in the 1970s
by many people. (See [19, 4, 18, 16] for a thorough discussion.) Thereafter,
it was found that the two approaches to randomness lead to the same class
of binary strings, the so-called Kolmogorov-Chaitin strings.

Irregularities of distribution are studied in such diverse areas as com-
binatorics, number theory and the theory of disordered media. In the
combinatorial context, one considers partitions of the elements of hyper-
graphs and measures the irregularity of distribution of the hyperedges with
respect to the partitions. For example, we consider the following classical
result of Roth [13]: Let Hy, be the hypergraph on [n] := {1,---,n} having
as hyperedges all the arithmetical progressions contained in [»]. Roth’s
theorem states that for each partition x : [n] = {—1,1}, one can always
find some hyperedge E of H, such that

| 2_ x(@)] > /1.

zel

In other words, there is a limit, of order n!/4, to the degree in which the
elements of all the hyperedges of H, can be uniformly partitioned into two
classes. On the other hand, Van der Waerden [17) has shown that for given
k one can always find some n such that for each partition x : [n] = {-1,1},
there is some hyperedge E of size k which is monochromatic with respect x;
that is, one can always find in one of the blocks of a partition an arithmetic
progression of length k. In both cases we have an irregularity of distribution
(a lack of statistical uniformity in at least one hyperedge of the hypergraph),
with respect to partitions, on the one hand, which is manifested as an
unavoidable regularity, or a prescribed organisation, on the other hand.
(For background on these topics see [9, 2, 12).)

Let us agree to call an infinite binary string a@ = ayas ... complezr when
it is random in the sense of Kolmogorov, Martin-Lof, Chaitin et al. In the
papers [5, 8], it was shown how complex partitions give rise to irregularities
of distribution, in the Ramsey-theoretic sense, of countable combinatorial
configurations. In this paper we show that complex strings, when viewed
as codes for hypergraphs, themselves display a certain optimal degree of
irregularity of distribution.

Let A be a family of subsets of some finite set A and let  be a family
of mappings x : A - {—1,1}. The discrepancy of A with respect to T is
given by

minyes maxxea |Zzex x(z)|-

If ¥ is the set consisting of all the mappings x : A = {-1,1}, we simply
speak of the discrepancy of A and denote it by §(A4). Roth’s theorem states
exactly that 6(H,) > nl/4.
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Let (4,§) —< 1,j > be a recursive bijection from N x N onto N. For a
complex string e, we define the family A(a) = (4;)i>1 of subsets of N by:

jEAi & oy =1

(Here we wrote ij instead of < ¢,j >.) For n > 1, let An(a) be the family
of sets A;N[n], i =1,---,n. In other words, the hypergraph An(a) has
[aij : 1 < 4,7 < n] as incidence matrix. We shall prove

Theorem 1 There exists a universal constant 7 > 0, such that, for each
complez string a, there ezists a natural number no such that, for alln 2 na,
the discrepancy of the set system An(a) satisfies

§(An(a)) 2 TV/n. 1)

Consequently, for n > ng, for each x : [n] = {-1,1}, there is some X €

Aqn(a) such that

1> X 2 v/

jex
The inequality (1) is essentially the best possible, for Spencer [15] has shown
that for any set system A consisting of n subsets of [n], it is the case that

8(A) < 6v/7.

The proof of Theorem 1 appears in Section 2. The proof essentially boils
down to a constructivisation of some of the arguments in {15]. In Section 3
we study the discrepancies of recursive hypergraphs with respect to complex
partitions.

2 Proof of Theorem 1

If A is a set, we write A* for the set of words over A. If s € A*, we
write |s| for the length of s. We denote the set {0, 1}V of infinite binary
sequences by /. We topologise this space (the Baire space) by the product
topology. If @ = a1z ... € N, we write @(n) for the word a3 . .. oty For
s € {0,1}*, we set [s] = {a € N : @(n) = s}, where n = |s|. We write A
for the unique measure on the Borel subsets of A with the property that
A([s]) = 271! for each of the respective sets [s] (the Lebesgue measure).
We shall need the following

Theorem 2 If (An)n>1 is a sequence of open subsets of N such that the
relation [s] C A, is recursively enumerable in s € {0,1}* and n € N and
if 3, M(An) < o0, then, if o is complex, & € An for at most finitely many
n.
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This theorem can be viewed as a constructive version of the second Borel-
Cantelli lemma. A proof of this result appears in [14].
For the proof of Theorem 1 we shall need the following

Lemma 1 Let (W;; : 1 < i,j < n) be n? independent random variables
such that every W; ; assumes each of the values 0 or 1 with probability 1/2.
For each v = (v1,---,v,) € {—1,1}", set

n
Li(l/) = Z I/jWi‘j.
=1

Then, for some real number cop < 1/2 and some positive rational number
T > 0, we have, for n sufficiently large, that

Prob [3,e(—1,1}» Vica(|Li(v)] < TV/R ) ] < (2c0)™.

We first show how Theorem 1 follows from this lemma:
Let A, be the subset of A defined by the following condition:

n
€A, & 3,,5(_1,1}'.‘9'55,, (I Zaijlljl < T\/ﬁ ),

i—1

where 7 is the rational number that appears in the formulation of Lemma 1.
It is clear that each A, is open and that the relation [s] C A,, is recursively
enumerable in s,n. Moreover, it follows from Lemma 1 that

D A(4n) < 0.

By Theorem 2, we have, for each complex «, that o & A, for all n suffi-
ciently large. This completes the proof of Theorem 1.

PROOF OF LEMMA 1: Since, for fixed v, the random variables L;(v) are
independent and there are 2" possible values for v, it suffices to show, for
n large, for each v € {—1,1}" and i < n that

Prob [|L;(v)| < 7v/n] < co,

for some 0 < ¢ < 1/2. Fix i € [n]) and v € {—1,1}. By symmetry, we may
assume that
[{j:v;==1} 2 {j:v; =1}

Denote the cardinalities of these sets by k + ! and k, respectively. Then
L;(v) has the same distribution as

Z=X1+...+Xe— (M1 +... 4+ Yey),
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where X;,-+, Xk, Y1, +, Yr41 are independent random variables each as-
suming the values 0 or 1 with probability 1/2. Set

1 1 1 1
N=2(X1'—5)+...+2(Xk—§)+2(—Y1+§)+...+2(—Yk+l+§).

Then N is a sum of n independent variables each of mean 0 and variance
1. It follows from the central limit theorem that for reals A < B:

N B —t*/2
Prob[A<\/_<B]—> ) 7«#
as n — 00. Choose 7 > 0 such that
57 -t’/2 1
L VER P T
Since N = 2Z + 1, the inequality |Z| < 74/n is equivalent to:
27+ —= \/_ \/_ <27+ %

We consider two cases.
CASE 1: | < 37y/n. If |Z| < T\/n, we have:

< b,

2<_]L
TSR

Therefore, by our choice of 7:
Prob [|Z] < 7v/n} < + o(1),

as required.
CASE 2: | > 37/n. One sees that N/v/n > 7 if |Z| < 7¢/n. But

oo _tz

Prob[\/_ >7]= T

which is < ¢o for come absolute ¢g < 1/2, for n sufficiently large. This
completes the proof of Lemma 1.

REMARK. In [6, 7] the author shows that each complex string can be rep-
resented as a “generic” Brownian motion on the unit interval. This opens
the possibility of displaying the irregularities of distribution of complex
strings in generic Brownian motion. This line of thought will be pursued
in a sequel to this paper.

dt + o(1),
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3 Complex partitions

If Ais an w x w-matrix over {0,1} (i.e. each entry of A is either 0 or 1),
we write A™ for the n x n-submatrix in the northwestern corner of A. If
X is a countable column vector over {—1,1}, we write X (n) for the first n
entries of X when n is at most the length of X. For an n x n-matrix M
over {0,1} and a column vector X of length n over {—1,1}, we write

|MX|| = sup{|M;X|:i=1,---,n},
where M; denotes the ith row of M.

Proposition 1 Suppose A is an w X w matriz over {0,1}. There is a
countable column vector X over {—1,1} and an absolute constant C > 0,
such that, for alln > 1:

|4*X (n)|] < Cy/nlogn.

PROOF. The proof is based on Kénig’s infinity lemma together with the
following basic probabilistic result: If X, -, X,, are independent random
variables assuming each of the values —1 or 1 with a probability 1/2, then,
writing

Sp=X1+...+ Xy,

we have, for a > 0:
Prob [|S,| > a] < 2e=*"/2n, (2)

This is known as Chernoff’s inequality. A proof can be found in [1].
The inequality (2) has the following implication:

Lemma 2 There ezxists a universal constant C > 0, such that, if M is any
n x n-matriz over {0, 1}, there is column vector X of length n over {-1,1}
such that, for all2 < k< n:

IM*X ()l < CV/klogk. 3)

We first deduce Proposition 1 from Lemma 2: Recall that a subset T of
{—1,1}* is a tree iff, whenever s € T and t is a left factor of s, then t € T'.
It follows from the Kénig infinity lemma that if a tree T is infinite, then T
contains an infinite branch. In terms of the matrix A as in the statement
of Proposition 1, we define a tree T as follows: We place all words of length
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<1inT. Ifn > 1 and s is of word of length n, then s € T, iff, when s is
viewed as a column vector over {—1,1}, we have, for 2< k < n:

1 4*3(k)I| < CV/klogk,

where C is given by Lemma 2. It follows from Lemma 2 that T has infinitely
many elements. Any infinite branch of T will define an infinite column
vector X over {—1,1} which will have the required property.

PROOF OF LEMMA 2: Let X be a random column vector such that its
components X1, -+, X, are independent random variables assuming each
of the values —1 or 1 with probability 1/2. Then, for 2 < k£ £ n and
1 < i < k the linear form M}FX (k) has the same distribution as Sj;) for
some (i) < k. It follows from (2) that, for D > 0 and I(3) > 0:

Prob [|[MFX (k)| > /Dklogk ] < 2exp(—Dklogk/21(i)).

Since I(i) < k, the probability is always bounded from above by k-D/2 We
conclude that

— k2
Prob[ Jack<n |M*¥X (k)| > /Dklogk] <2 57"
k>2

which is < 1 for D sufficiently large. This concludes the proof of Lemma
2.

It is an interesting open problem whether, for given A as in the formula-
tion of Proposition 1, the vector X is recursivein A. The tree T' constructed
in the proof of the proposition is recursive in A. This, however does not
necessarily imply that one can find an infinite branch which is recursive
in T. Another probably very difficult problem is whether the proposition
holds with an upper bound of the form < /n instead of < v/nlogn. For
this purpose it will suffice to refine Spencer’s theorem in [15] to prove a
version of Lemma 2 with (3) replaced by:

IM¥X (Rl < CVE,

forall2<k<n.

In the following theorem, we view any a € N as an infinite column
vector over {—1,1} where now A is the Baire space {—1,1}N. We call
an w X w matrix A = (a;;) over {0,1} recursive if the relation a;; =1 is
recursive in ¢, j.

Theorem 3 Let A be a recursive countable matriz over {0,1}. Thereis a
universal constant C > 0 such that, for every complez a, there is some ng,
such that, for alln > ngy:

14" @(n)ll £ Cv/nlogn. (4)
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PROQF. For n > 1 define the subset B, of N by
B € By <= 3mxn (|A™(B(m))|| > vVDmlogm),

where D > 4 is a fixed rational number. It is clear that B,, is an open set.
Moreover, if s € A and |s| > n then, writing m = |s|:

[s] C Bn < ||A™(s)|| > V/Dmlogm.

Since A is recursive, this is a recursively enumerable relation between n
and s. Therefore, there is a total recursive mapping (n,m) — spm from
N2 to N such that for all n:

By = Up[Snm)-

It follows from the proof of Lemma 2 that the Lebesgue measure A(B,) of
B,, satisfies:
m? n?
ABn) < > 578 < o7
m>n

We conclude that B := N, B, is a set of constructive measure 0. It is well-
known that a set of constructive measure 0 contains no complex strings.
(See, for example [4].) We can therefore conclude that B contains no com-
plex strings. This means exactly that if o is complex, then (4) holds for all
n sufficiently large.
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