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ABSTRACT. Corresponding to chessboards we introduce game boards
with triangles or hexagons as cells and chess-like pieces for these boards.
The independence number 8 is determined for many of these pieces.

Dedicated to Ernie Cockayne on his sixtieth birthday.
1. Introduction

As Euclidean boards B, we consider the classical square boards BY (chess-
boards) and in addition hexagon and triangle boards, BS and B2, which
are connected parts of the three Euclidean tessellations of the plane in such
a way that B, is one cell, B consists of all cells surrounding one vertex,
and B, for n > 3 consists of B, 3 together with all cells of the tessellation
having at least one point in common with B,,_» (see Figure 1).

Figure 1. Boards BY, BY, and B2 for 1 < n < 5.

For chess pieces on nxn-chessboards Bf several parameters are dis-
cussed frequently (see [6] for literature), for example, the independence
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number 3, which determines the maximum number of pairwise nonattack-

ing chess pieces of one type on BY.

Here we define chess-like pieces for hexagon and triangle

The possibilities of one move on Bf are represented in Figure 2 for
see Figures 3 and 4).

the pieces grid (GD), king (KG), knight (KT), rook (RK), bishop (BP),

and queen (QN).
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Figure 2. Moves on BY.
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Figure 3. Moves on BS.

A grid attacks all edge-to-edge neighboring cells. A king has four possi-
bilities for B2. In addition to the grid cells, KG; attacks the neighboring
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QN Figure 4. Moves on B%.

cells on the diagonals, KG, attacks all neighbors of the start cell, KGs
attacks the edge-to-edge neighbors of the grid cells, and KG4 attacks the
two translated neighboring cells in the diagonal directions. A knight moves
edge-to-edge two consecutive cells in one direction and attacks a left and a
right neighbor for KT, and KT; on B and for KT; on B2. For KT, and
KT; on BY and for KT, on B2 the moves are to edge-to-edge neighbors of
the neighboring cells on the diagonals. On B for KT4 we have the union
of the moves of KTy and KT;. On B2 the moves of KT3 go to the left
and right edge-to-edge neighbors of translated neighboring triangles on the
diagonals. All rooks, bishops, and queens move on straight lines of edge-
to-edge cells where for B2 two bishops and two queens are distinguished,
that are, for the complete diagonals and for the diagonals of translated cells

only.
In this paper we list known results of the independence number 8,

(mainly on BY), and we prove new results of 3, for many pieces of BS and
B2. For those values obtained by computer we have used the following
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method. We partition the cells of B,, into small parts of pairwise dependent
cells. The number v of parts is an upper bound for 8,. We try to find v
as small as possible using backtracking. If we do not obtain v = 3, then
we start another backtracking program. For one part after another we
check all possibilities either to place one chess piece on a cell of that part
observing the additional dependencies, or to leave that part free of a chess
piece. Then the maximum number of chess pieces in all these possibilities
determines 3.

2. Square boards

The values of 8, are collected in Table 1. See [6] for references.

[(Jnl1 234 5 6 7 8 9 10 11 12 13 14 15

GD |1 2 5 8 13 18 25 32 41 50 61 72 85 98 113
Bn = [7?/2]

KG (1 144 0 0 16 16 25 25 36 36 49 49 64
ﬂn=rn/2]2

KT [1 4 5 8 13 18 25 32 41 50 61 72 85 98 113
Bn=[n%/2] ifn#2

RK |1 2 34 5 6 7 8 9 10 11 12 13 14 15
Ba=n

BP |1 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Ba=2n-2 ifn#l

QN [1 124 5 6 7 8 9 10 11 12 13 14 15
Bn=n ifn#£23

Table 1. Independence numbers f, for chess pieces on square boards BY.

3. Hexagon boards

In case of hexagon boards we so far present terms of 3, for GD, KG, KTy,
KT,, and RK (see Table 2). For all remaining pieces of Figure 3 we have
determined by computer the first values of 3, as listed in Table 2.

3.1 Grid

To prove B, > [n?/4] we use the well-known unique 3-coloring of the
hexagons such that two hexagons with a common edge have different colors.
Any grid GD on a hexagon of one color attacks only hexagons of different
colors so that GDs on all hexagons of one color are pairwise independent.
Since c(n) = [3n2/4] is the number of all cells of the hexagon board By,
we obtain 3, > [c¢(n)/3] = [n?/4].

Inductive proofs of 8, < [n2/4] for even and odd n are indicated by
Figures 5 and 6, respectively. As upper bound of §, for B, we use the sum
of the values of 2 for all parts of a tessellation of B,,.
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On123456789101112131415
GD |1 1347 9 13 16 21 25 31 36 43 49 57
Bn = [n?/4]
KG |1 1237 7 10 12 19 19 24 27 37 37 44
[3n2/16] if n=0(2)
=4 (3n2+6n+7)/16 if n=1(4)
(3n* +2n —1)/16 if n = 3(4)

KT, (1 37 7 7 10 15 17 22 25 31 39 49 49 57

B, = [n2/4] ifn> 14

KT; |1 3 3 6 9 12 15 21 21 30 36 42 47 57 57
(3n2+4n+5)/12  if n= 1(6)

_ ) (3n?+6n+12)/12 if n = 2(6)

Bn=1 (3n2+9)/12 if n = 3(6)
[(n+1)%/4] otherwise

KTz |1 3 4 4 9 12 15 16 22 27 31 36 43 51 58

KT, 7 9 12 15 19 22 25 28 37 40 46

RK (11335 5 7 7 9 9 11 11 13 13 15

Bn =2[n/2] -1

BP |1 3367 9 9 15 15 15 19 21 21 24 27

QN |1 1133 4 7 7 7 9 9 11 12 13 15

W
w
1N

Table 2. Independence numbers 3, for chess pieces on hexagon boards BS.

For even n at first §, = 1 s trivial. For n = 4, the five parts of Figure 5
imply f; < 5. However, two GDs in the last row force two GDs in the
second row and then the upmost By cannot contain an independent GD
so that B4 < 4. Using the general tessellations of Figure 5 we obtain the
desired upper bounds by induction. To see that the tessellations of Figure 5
do exist we note that the number of hexagons of each side is increased by 3
if By, Bn_2, and By,_4 are enlarged to Bp46, Byy4, and By 42 respectively.
Then 3x2- and 3x4-parallelograms partitioned into 2 and 4 boards B, are
inserted at the arrows in Figure 5 to obtain a desired tessellation of Bpys.

For odd n the tessellations of Figure 6 are used to prove 8, < [n2/4]
by induction. The number of hexagons of each side is increased by 2 if B,
is enlarged to By 4. Now the insertion of 2x3-parallelograms consisting of
2 boards B, at the arrows in Figure 6 determine a desired tessellation of
Bn+4.

3.2 King
The independence number turns out to be one fourth of the number of cells
of B, for n even and by a linear term larger for n odd. If n = 1(mod 4) then

Bn = Bn41 for the asserted values (see Table 2). Thus it suffices to prove
the lower bound for n # 2(mod 4) and the upper bound for n % 1(mod 4)
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n=4(6) \ n=2(6)

n=3(4) W n=1(4) X

Figure 6. Upper bounds for A3(GD) for odd n.

since B, < Bn+1 in general.

The lower bounds follow by counting the kings of the three patterns
indicated in Figure 7. The numbers of parts of the three tessellations in
Figure 7 determine the upper bounds. The parts have four or three cells
such that only one independent KG is possible. The tessellations grow
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modulo 4 by two rings of hexagons which are tessellated by insertion of one
2x2-rhomb at each side.

Figure 7. Upper and lower bounds for fQ(KG).

3.3 Knight 1

One third rounded above of the number ¢(n) of hexagons of B, can be
occupied by knights KT; in a maximum independent set (n > 14). The
proofs are given in [4].

3.4 Knight 2

The sizes of the maximum independent sets differ modulo 6 by a linear
factor. The independence number is close to one third of the number e(n)
of hexagons of B,,.

For n = 2(mod 6) the asserted values (see Table 2) fulfill 8, = fh41 so
that it suffices to prove the lower bound for n # 3(mod 6) and the upper
bound for n # 2(mod 6) since 3, < Bn+1 In general.

The lower bounds for 8,(KT;) follow from the patterns in Figure 8
where the boards B, grow modulo 6 by three rings of hexagons.

For the upper bounds we use partitions of B, into triples and some pairs
or singles of pairwise dependent hexagons as indicated in Figure 9 where
the marked sixtuples denote two triples. The numbers of these tuples give
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0(6)

n=

BR(KTy).
0, 3, 4, and 5(mod 6) since every

For both, the general existence of the

we have to observe that in general the unique 3-

Figure 8. Lower bounds for
(see Table 2) for n
coloring mentioned in 3.1 has the property that KT attacks only hexagons

tuple contains at most one KTs.
1(mod 6)

remark that modulo 6 there are three additional rings of hexagons. These
For n

rings may be interpreted in such a way that at all six sides a block of nine
hexagons is inserted. These blocks consist of one of the sixtuples together

partitions of Figure 9 and the enumeration of the numbers of tuples, we
with one triple which uses the hexagon in the center of the sixtuple.

the upper bounds
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Figure 9. Upper bounds for fQ(K

within one color class. Thus we can discuss the independence for the 3 color

the one pair, and

all triples each are occupied by one KT, then at least one pair of KTss is

dependent and we can subtract one.

3.5 Knights 3 and 4

)

1(mod 6) the left case in Figure 9 occurs once
and the right case twice. The enumeration of the tuples in the right case

is by one tuple too large. However, if the one single

classes separately. For n

(1.

General results for KTz and KT4 will be discussed in
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3.6 Rook

To prove 3, = 2[n/2] —1 it suffices to prove 8, > n for n = 1{mod 2) and
Bn < n—1 for n = 0(mod 2) since B, < Bn41 in general.

For the lower bound it is possible to place the rooks in two parallel rows
as shown in Figure 10.

Figure 10. Rook independence A(RK).

For the upper bound we consider three classes of weighted parallel lines
of hexagons which give their weight to every hexagon of that line. To obtain
zero for the sum of all three weights for each hexagon we start with a weight
1 for each of those three lines which intersect two of the three hexagons
around the center vertex of B,. Then we continue in such a way that 14 3¢
for i with —n/2 < i < (n—2)/2 are the weights for the consecutive parallels
of the three classes. Assuming that n independent RKs are possible on B,
we note that on the one hand the sum of all weights of lines meeting an RK
vanishes and equals the sum of the weights of all lines on the other hand.
However, the sum S of 1+ 3¢ for —n/2< i< (n—2)/2is S = —n/2 and
thus 35 # 0. This contradiction proves f, < n —1.

3.7 Bishop

Results for BP will be discussed in [2]. The independence numbers vary
from 2n — 5 to 2n — 1.

3.8 Queen

From rooks we know 3,(QN) < (,(RK) = 2[n/2] — 1. We do not know
whether this bound is attained infinitely often.

4. Triangle boards

For triangle boards the independence numbers 3, will be presented for GD,
KG1, KGz, KTy, KTs, RK, and BP; (see Table 3). The other values for
n < 15 in Table 3 are determined by computer.
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An|1 23 4 5 6 7 8 9 1011 12 13 14 15
GD [1 3 7 12 19 27 37 48 61 75 91 108 127 147 169

Bn = [3n%/4]
KG; (1 3 7 12 19 27 37 48 61 75 91 108 127 147 169
ﬁn=|-3n2/4]

KGa|1 13 6 8 12 15 19 25 30 36 42 49 55
KG3 |1 2 4 6 10 15 19 24 31 39 46 54 64 175 85
_J [3n%/8]+1 ifn=2(4)andn#2

Pn = { [3n2/8] otherwise

KG4|1 35 9 14 18 26 34 41 52 64

KT (1 3 7 12 19 27 37 48 61 75 91 108 127 147 169

Bn = [3n?/4]

KT |1 2 6 8 13 18 25 32 41 50 61 72 85 98 113

KTz |1 6 7 12 19 27 37 48 61 75 91 108 127 147 169

B = [3n2/4] ifn#2

RK |1 23 4 5 6 7 8 9 10 11 12 13 14 15

Bn=n

BP, (1 35 6 9 9 13 15 17 18 21 21 25 26 29
{2n—1 if n = 1(2) or n = 2(6) and n # 14

Bn =

2n—-2 ifn=4(6)orn=14

n—3 if n=0(6)

BP, |1 6 6 12 16 18 18 30 30 30 40 42 45 48 54
QN 1 12 3 4 6 7 8 8 10 10 12 12 14 15
QN2 (1 2 2 4 4 6 7 8 8 10 10 12 12 14 15

Table 3. Independence numbers 3, for chess pieces on triangle boards B2,

4.1 Grid and king 1

The triangles of B,, are colorable by two colors such that triangles with a
common side are of different color. Each of the pieces GD, KG,, KT;, and
KT3 move to triangles of the other color only. Thus the largest number
of triangles of one color determines a lower bound of 3,. Since there are
c(n) = |3n?/2] triangles in B, we obtain 8, > [¢(n)/2] = [3n2/4] for all
four pieces.

Figure 11 suggests partitions of B, into 1x1-rhombs of two triangles
and an additional triangle for n odd. Since each of the [¢(n)/2] parts
contains at most one piece the upper bound is proved.

4.2 King 2

This piece KG2 will be discussed in [3]. Here 8, exceeds c(n)/6 by a linear
factor.
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Figure 11. Upper bounds for 85 (GD) and 82 (KG,).

4.3 King 3

We use that 4-coloring of the triangles for the lower bound where any

N\ NANNNNNIN/
\O\ANSANSALY
VANNNNNN
n=1,5(8)

Figure 12. King 3 independence.
triangle and its vertex-to-vertex opposite triangles are in one color class
(see Figure 12 for n = 0(mod 4)). This implies the lower bound 8, >
[e(n)/4] = [3n?/8]. For n = 2(mod 4) we use that coloring which does
not touch the center point. This coloring covers [3n2/8] — 2 triangles.
Then we move the KG3ss at every second side of B, by two triangles in
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one direction. It follows that we are able to place three additional KGgzs at
every second vertex point of B, (see Figure 12). Thus for n = 2(mod 4)
we obtain 8, > [3n2/8] -2+ 3.

The upper bounds follow from the numbers of parts in the partitions
of B, indicated in Figure 12. For n = O(mod 4) it is possible to use only
triangular sets of 4 triangles as parts. For n = 2(mod 4) we may start with
3 parts of 3 triangles around the center vertex of B,,. Then we fill up B,
with triangular sets of 4 triangles and only 3 parts of 3 triangles remain at
every second vertex point of B,,.

If n =1 or 3(mod 8) then there are three sides of B, having an odd
number of sides of triangles. In the middle of each of these sides we place
one part consisting of 3 triangles. Then B, can be filled up by triangular
parts consisting of 4 triangles (see inner B,s in Figure 12 with n = 3 and
n=29). If n = 5 or 7(mod 8) then partitions of two rings of triangles can
be added to the just mentioned cases as shown in Figure 12 with » = 7 and
n = 13. These partitions consist of 3 singles neighboring the triples of the
inner By,_4 and 3 triples (neighbors of the singles), and all remaining parts
are triangular parts of 4 triangles. Thus again there are only 3 parts with
3 triangles. The numbers of all parts in these partitions prove the asserted
values as upper bounds.

4.4 King 4
In [3] we will handle KGj,.
4.5 Knight 1

The lower bound was proved in 4.1.

For the upper bound we note that KT; on a ring of triangles attacks
the third next triangles in both directions. Thus six consecutive triangles
on a ring can be partitioned into three pairs of dependent triangles (see
Figure 13). Since the number of triangles on a ring of B, is a multiple

Figure 13. Upper bound for 82 (KT;).
of 6, the triangles of B, are partitioned into [¢(n)/2] parts of dependent
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pairs of triangles and one triangle for n odd. This proves the upper bound
[e(n)/2].

4.6 Knight 2

In [1] one third of ¢(n) rounded above will be determined as 3, for KTs.
4.7 Knight 3

In 4.1 the lower bound is proved. The numbers 8, and B, are trivial.
The upper bounds are obtained by induction modulo 6. The three outer
rings of B, are then partitioned into blocks of 6 triangles which then are
partitioned into 3 pairs of dependent triangles (see the first board in Figure
14). Besides B; the five boards in Figure 14 (the first board with n = 0)

AVAVAY,
\/\/\/\

Figure 14. Upper bounds for 85 (KTs).

serve as induction bases since partitions into dependent pairs of triangles
and one single triangle for n odd are possible as indicated in the Figure.

4.8 Rook and bishop 1

The terms of 3, for RK and BP; (see Table 3) are proved in [5].
4.9 Bishop 2

The independence of BP, will be discussed in [2].

4.10 Queens

For QN; and QN3 it holds 8,(QN;) < £, (QN2) < fa(RK) = n. We so far
only know the values for small n given in Table 3 and [5]. It remains open
whether 8, = n can be attained infinitely often.
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