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Abstract

For a graph G = (V, E), aset S C V is a k-packing if the distance
between every pair of distinct vertices in S is at least k+1, and px(G)
is the maximum cardinality of a k-packing. A set S C V is a distance-
k dominating set if for each vertex u € V —S, the distance d(u,v) < &
for some v € S. Call a vertex set S a k-independent dominating set if
it is both a k-packing and a distance-k dominating set, and let the k-
independent domination number ix(G) be the minimum cardinality
of a k-independent dominating set. We show that deciding if a graph
G is not k-equipackable (that is, ix(G) < pi(G)) is an NP-complete
problem, and we present a lower bound on ix(G). Our main result
shows that the sequence (i1(G),2(G),%3(G),...) is surprisingly not
monotone. In fact, the difference ir4+1(G) — ix(G) can be arbitrarily
large.
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1 Introduction

The closed k-neighborhood of a vertex v in a graph G = (V, E) is Ni[v] =
{w e V| d(v,w) < k}, where d(v,w) denotes the distance between v and
w in G. A vertex set S is said to be distance-k dominating, or just k-
dominating, if Ni[v] NS # O for every v € V, and y<x(G) is the minimum
cardinality of a k-dominating sct. These sets were first studied by Meir
and Moon under the term of k-coverings [17]. The even more general R-
dominating scts were introduced in Slater [20], and k-dominating sets arc
considered, for example, in {2, 10, 11, 14]. Note that y<1(G) is simply
the domination number 4(G). For a comprehensive study of domination
and distance domination, the reader is referred to (8, 9]. Clearly, every
k-dominating set is also (k + 1)-dominating, and we have the following.

¥(G) = 7<1(G) 2 1<2(G) = 1<3(G) = ... (1)

Mecir and Moon (17} call S a k-packing if d(u,v) 2 k + 1 for cach pair of
distinct vertices w and » in S. We let px(G) denote the k-packing numnber
of G, that is, the maximum cardinality of a k-packing. Notc that the in-
dependence number 3(G) = p1(G) and the packing number p(G) = p2(G),
and every (k + 1)-packing is a k-packing. Thus for any graph G, we have
the following.

B(G) = p1(G) 2 pa(G) = ps(G) > .. @)

The independent domination number i(G) is the minimum cardinality
of an independent dominating set. Note that for the star K; x of order
n =k + 1, we have (K1) = 1 and B(K; ) = k, but graphs G such as
cycles C4 and Cs, complete graphs K, and complete multipartite graphs
Ky ,...r have i(G) = B(G). The complementary property for independence
is covering, that is, a vertex set S is independent if and only if V — S is a
covering of E. Thus, i(G) = B(G) if and only if all minimal covers have the
same cardinality. Plummer [18] initiated the study of well-covered graphs
G, those with i(G) = (G). For a survey on well-covered graphs, see [19].

In general, a k-packing is maximal if and only if it is k-dominating. Call
a vertex set S a k-independent dominating set, asin (1, 4, 5, 6, 7, 12, 13, 16],
if it is both a k-packing and a k-dominating set, and let the k-independent
domination number ix(G) be the minimum cardinality of a k-independent
dominating set. In particular, i(G) = 4;(G). Thus, it(G) and pi(G) arc
the minimum and maximum cardinalitics, respectively, of any maximal k-
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packing. Clearly, ix(G) < pr(G). Also, any ir(G)-set is k-dominating, so
V<k(G) < ik(G).

Proposition 1 For any graph G and positive integer k,

1<k(G) < ix(G) < pi(G).

We next mention a well-known lower bound for the domination number
of a graph.

Proposition 2 (Walikar, Acharya, and Sampathkumar (22]) For any graph
G,
[n/(1+ AG)] £ (G).

A stronger result is given in [21].

Proposition 3 (Slater [21]) If G has degree sequence (dy,dy, ...,dy) with
d; > diy1, then v(G) > min{t |t + (d1 +da+--- +d;) > n}.

The open k-neighborhood of a vertex v € V, denoted Ni(v), is the set
Ni(v) = {u| u # v and d(u,v) < k}. Then the k-degree degi(v) = |Ni(v)],
and the mazimum k-degree Ax(G) = maz{degir(v) | v € V}. Note that
degr(v) equals the degree of v in the kth power G* of G. Assume that
V = {v1,v2, ...,un}, and let d¥ = deg(vi).

Fricke, Hedetnicmi, and Henning [5] extended Proposition 2 to the fol-
lowing bound for k-domination.

Proposition 4 For any graph G with Ax(G) > 2k > 2,

[ HayG) 1 A:G) — 1} <ik(G),

This result follows by simply observing that

ik(G) 2 1<k(G) 2

n > n
A(G)+1 ~ kiklAk(G) -1

for Ax(G) > 2k.

Further using Proposition 3 along with the facts that y<x(G) = v(G*)
and i(G) = i(G*), we have the following.
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Proposition 5 If G has k-degree sequence (d%,d}, ..., d¥) with d¥ > df,,,
then

. , d n
ik(G) 2 v<k(G) = minft | t + (df + d§ + ..df) > n} > AG)+1°

Writing (a1, ag,...) < (b1, bs,...) if every a; < b;, and using (1), (2), and
Proposition 1, we have the following.

Proposition 6 For any graph G,

(7<1(G), 7<2(G), 7<3(G), --.)
< (41(G),%2(G),3(G), -..)
< (pl(G)a p2(G)’ /)3(G), "')y

and the first and third sequences are nonincreasing.

Moreover, it is known that pox(G) < y<k for any graph G and any k£ > 1
(the proof given for trees in [17] is valid for any graph). This implics
iok < par < <k < ix for all k > 1. This could lead us to think that the
sequence 1 is nonincreasing as is the case for the sequences pr and y<i.
Surprisingly, as shown in Section 3, the sequence (i,(G),i2(G),13(G),...) is
not necessarily nonincreasing. That is, ix(G) = 4(G*), but adding cdges to
a graph can actually increase the value of the parameter 4, so it is possible to
have i(G*) < i(G**+1). In fact, we show that the difference ix41(G) —ix(G)
can be arbitrarily large. First, we present complexity results, in Section 2.

2 Complexity

In terms of computing ix(G), there is little hope of finding an cfficient
algorithm to determine 4 for arbitrary graphs. In fact, Irving [15] has
shown that approximating i;(G) within a factor of ¢ is NP-hard.

Theorem 7 (Irving [15]) Unless P = NP, there cannot exist a polynomial
time approzimation algorithm A satisfying A(G) < t-i(G) for an arbitrary
fized constant t > 1.

Based on somec additions to the construction presented by Irving for 1-
independent domination, McRae and Hedetniemi [16] extended this result
to k-independent domination.
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Theorem 8 (McRac and Hedetniemi [16]) Unless P = NP, there cannot
exist a polynomial approzimation algorithm A satisfying A(G) < t - ix(G)
for an arbitrary fized constant t > 1.

Hartnell and Whitehead [7] call a graph G k-equipackable if all maximal
k-packings of G have the same order, that is, ix(G) = px(G). The 1-
equipackable graphs are preciscly the well-covered graphs of Plummer [18].

Theorem 9 (Chvétal and Slater [3]) Deciding if a graph G is not well-
covered (that is, i(G) < B(G)) is an NP-complete problem.

We extend Theorem 9 to show that deciding if a graph G is not k-
equipackable (that is, ix(G) < pr(G)) is an NP-complete problem. We
demonstrate reductions from the known NP-complete problem 3-Satisfiability.

Problem: 3-Satisfiability (3SAT).

INSTANCE: Set U = {uy,u2, ..., un } of litcrals and collection C = {¢y,¢2,...,cpm}
of clauses where each c; is a 3-element subset of {uy, ua, ..., un, @1, T2, ..., Un }.

QUESTION: Does there exist a satisfying truth-assignment for C?

Clearly, we can assume no clause contains both a literal and its comple-
ment, because such a clause is satisfied by every truth assignment.

Problem: Not k-cquipackable (NKE).
INSTANCE: Graph G = (V, E).
QUESTION: Is i(G) < pr(G)?

Theorem 10 For each positive integer k, the problem NkE is NP-complete.

Proof. As noted, the not-well-covered problem (k = 1) is NP-complete
[3]. Clearly, NKE € NP because we can test two vertex sets Sy and Sz in
polynomial time to see if each is a maximal k-packing and |S;| # |S2|.

First, assume k is even, k = 2j > 2. Given an instance of 3SAT, construct
graph G as follows. For each u; with 1 <4 < N, construct a path P; =
ui,u?, 4, ..., u* % on k + 1 vertices. Construct a complete graph K on
L, = {¢1,c2, ..., epm}. Bach literal u; or @; is therefore identified with a
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uy Py oy ug Py ug u3 P3 Uz uq Py uq

Figure 1: Graph G with £ = 6, F = {{1,7},{4,7},{2,5},{3,8}}, and
C = {{u1,u2,uz}, {u1, %2, us}, {1, U3, ua}}.

vertex of G, as is each clause ¢;. For each clause ¢; connect vertex ¢; to
vertex u; (respectively, @;) by a path of length k if and only if u; € ¢;
(respectively, U; € ¢;). For 2 < h <k, let Ly consist of the vertices w on
a ¢j-to-u; or ¢;-to-%; path whose distance from the clause vertex is h — 1,
that is, d(w,c;) = h — 1. Note that for 2 < h < k we have |Ly| = 3M, cach
¢; € Ly is adjacent to three vertices in Lo, for 2 < h < k—1 there is a perfect
matching between Ly, and Lp1, and the number of vertices in Ly adjacent
to a u; or I; vertex is the number of clauses containing u; or u;, respectively.
We next define cach induced subgraph on Ly, (Ls) for 1 < h < k. Let (Lp)
be complete for 1 < A < j, and for j +2 < h £ k = 2j no two vertices
of Ly are adjacent (that is, (L) = Kap for j +2 < h < k). Finally, two
vertices v and w in L4, are adjacent unless one of them is at distance j
from some u; and the other is at distance j from %;. See Figure 1 for k = 6,
U= {ul)u‘Z) U3, 11»4}, and C = {{ulv U2,U3}, {ulaﬁ% "‘4}) {ﬁlaﬂ& ‘11,4}}.

Let Vj = LoULs...ULg. Any two vertices v and w in V) satisfy d(v, w) <
k, and d(v,w) = k if and only if cither vu; € E and wa; € E or clse wu; € E
and v7; € E for some i. Any two clause vertices are adjacent, and w € V)
implies d(c¢;,w) < k. Thus considering Vi U Ly, V(Py), V(P), ..., V(Pn),
we have px(G) < N +1. Also, v € V(P;) and w € V(P;) with i # j implics
d(v,w) > k + 1. Relabelling, if necessary, we can assume ¢; = {u, up, u3}.
Then {¢y, U1, Us, U3, Uq, Us, ..., uN } is a k-packing. Hence, pp(G) = N + 1.
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Assume there is a satisfying truth assignment ¢ : U — {true, false}.
Let S = {u; € V| t{w;) = true} U {@; € V | t(u;) = false}. Note that
each vertex ¢; is within distance k of at least onc vertex in S. Without
loss of gencrality, assume u; € S and up € S. If w € V; — N(@;), then
d(uy,w) < k, and if w € V4 N N(%,), then d(uz,w) = k. Hence, S is a
maximal k-packing, and it(G) < pr(G).

Assume there does not exist a satisfying truth assignment ¢ : U —
{true,false}, and let § C V(G) be a maximal k-packing. Let §; = SN(V U
L) and S, = § — S;. Note that |[S2 N V(P;)| < 1. Because there is no
satisfying truth assignment, at least one clause vertex ¢; has Ni[e;]JNS2 = 0.
It follows that S; # 0. Since any two vertices in Vj U L; are at distance
at most k, |S1| = 1. Let §) = {w}. It remains solcly to observe that each
V(P;) has at lcast onc vertex z € V(P;) with d(z,w) > k + 1. Hence,
IS| =N +1 = pp(G).

Thus, i(G) < pi(G) if and only if there is a satisfying truth assignment,
completing the proof when k is even.

For k = 25 + 1 > 3 we construct a similar graph G with paths P; of
length k connecting vertices u; and %;, 1 < i < N. Each clause vertex
¢; € Ly is again connected by a path of length k to cach of the three
vertices corresponding to literals in clause ¢;. For this casc where k is odd,
we make (L1} = Kpy, (Lp) = Kap for 2 < h < j+1, and (Lp) = —XSM
for j +2 < h < k. This time, therefore, every (L) is either complete
or the empty graph, but between L;.; and L;4 2 we have more than just
a matching. Speccifically, for each set of thrce paths connecting a clause
vertex to its literal vertices between Lji1 and Ljyo we add six more edges
to form a K3 3.

Again, i, (G) < pi(G) if and only if there is a satisfying truth assignment,
completing the proof. O

3 The Sequence (i1(G),12(G), i3(G), ...)

As stated in the introduction, (i;(G), i2(G), i3(G), ...) is not monotone for
all graphs G. Since iox(G) < ix(G) for any k, the inequality i2(G) < 41(G) is
always satisfied. However, the graph G in Figure 2 shows that the sequence
is not necessarily nonincreasing for k£ > 2 (here {u, v, w} is an i3(G)-set and
{z,y,z,w} is an i3(G)-set, that is, i2(G) = 3 < i3(G) = 4). Also, for the
graph in Figure 3, {u, v} is an i3(G)-set and {z,y, 2} is an i4(G)-set. Next
we show infinite familics where ixy1 > 2k for £ > 4, and such that, in fact,
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Figure 2: Graph G with i2(G) = 3 < 43(G) = 4.
the difference #4471 — 7% can be made arbitrarily large.

Theorem 11 For any integers k > 4, r > 2, and | arbitrarily large, there
ezist graphs G such that ix(G) = r and ix41(G) 2 L.

Proof. Consider the graph G(r,k,!) constructed as follows. For r > 3,
begin with a complete graph K, with vertex set X = {1, 23, ...,z }. Sub-
divide each edge z;z; with k vertices denoted, from z; to z;,

Ti5(1), 7i5(2), .., i (k/2), 25i(k/2), ..., 25i(2), 253 (1)
if k is even, and
243(1), 755(2)s o 553 (6=1)/2), mig ((k1)/2) = 235((6+1)/2), z5((6=1)/2),
v 25(2), 754(1)

if k is odd. Replace each of the 2() vertices 2;;(1) by an independent sct
Xij of | vertices, and attach  disjoint paths of length k — 1, respectively, at
the ! vertices of X;;. Replace the edge z;x;;(1) (respectively, z:;(2)z;;(1))
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Figure 3: Graph G with i3(G) =2 < 44(G) = 3.

by all the cdges between z; and X;; (respectively, between z;;(2) and Xi;).
For r = 2, the graph G(2,k,l) is obtained from G(3,k,!) by identifying
z, and z3 into onc vertex zo and deleting X23,793(2), ..., £32(2), X32 and
the 2 attached paths. For cxamples of this construction, see the graph
G(4,5,2) in Figure 4 and the graph G(2,5,2) in Figure 5.

Let

Bi; be the set of the (k — 1)I vertices of the I paths attached at the
vertices of X;j, minus Xi;;

A; ={x;}U UlSjaéiSr Xijfor1<i<r;

Cij = A;U{z:;(2),7:j(3)} with 4;(3) = x;i(2) in the case k = 4; and
Dij = Xi; U {z1,2:5(2)}-

Recall that (1) # =;i(1), Bij # Bji, and so on.

Claim 1 Every mazimal (k+ 1)-packing S such that SN B;; # 0 for some
B;; contains at least | vertices.
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Figure 4: Graph G(4, 5, 2).

Proof. If 2 € § N By;, then every vertex y of S — B;; is at distance at
least 4 from B;;. Thercfore, {z,y} cannot (k + 1)-dominate the leaves of
the paths of B;; not containing x. Hence, S has at least one vertex on cach
of these [ paths.

Remark. The same result holds for a inaximal k-packing, the only difference
is that y is at distance at least 3 from B;;. O

Let G = G(r, k, 1).

Claim 2 ix(G) =7 and X is the unique ip-set of G.
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X12(1) [ PP oo X21(1)

r1 g ¢ T2 =713

X13(1) WP o009 X31(1)

Figure 5: Graph G(2,5,2).

Proof. The vertices z; arc pairwise at distance k + 1, and hence they form
a k-packing of G. Moreover, they k-dominate G. Hence, X is a maximal
k-packing, and ix(G) < | X| =7

Conversely, consider an ix-set S. Then |S| < r < [ and by the re-
mark of Claim 1, SN B;; = 0 for all i # j. To k-dominate the leaves of
Bij, S contains at least one vertex in the set Dj; (and exactly one since
diameter((D;;)) = 2 < k). Since k > 4, Di; N Dy = 0 for every i # i.
Moreover, D;; N D;j = {=z;} for all j # j'. Hence, |S| > 7, and thus
ix(G) = r, and the only possibility to have |S| = r with |SN D;;| # 0 for
every D;jistolet §=X. O

Claim 3 ix4+1(G) > 1.

Proof. Suppose there exists a maximal (k + 1)-packing S with cardinality
less than I. By Claim 1, § N B;; = 0 for all B;;. To (k + 1)-dominate the
leaves of Bji;, S contains at least one vertex in cach set Cy; (exactly one
since diameter({(Ci;)) = 4). If, say SN Ciz = {x12(2)}, then SNCi3 =0
since 1(2) is at distance at most 5 < k + 1 from any vertex of Ci3. If,
say, SN Ciz = {r12(3)}, then SN Ciz = B if k£ > 5; and if k& = 4, then
S N Coz = 0 since then, z;3(3) is at distance at most 5 = k + 1 from any
vertex of Cps (when 7 = 2, consider C3) instead of Cs3). In both cases, we
get a contradiction with §N Cy; # 0 for all Cy;. Hence, SNCi; = SN A;
for all i # j and thus, |SN A;| =1 for all 2. If S contains a vertex y of, say,
X12, then SN Ay = 0 since y is at distance at most k + 1 from any vertex
of Ao, a contradiction. Hence, SN A; = {z;} for all 4, again a contradiction
since the s are pairwise at distance k + 1.

Therefore, every maximal (k + 1)-packing has at least [ elements. O
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