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Abstract

For 7 one of the upper domination parameters 8, I' or IR, we
investigate graphs for which = decreases (m-edge-critical graphs) and
graphs for 7 increases (n+-edge-critical graphs) whenever an edge
is added. We find characterisations of 8- and I'-edge-critical graphs
and show that a graph is I R-edge-critical if and only if it is I'-edge-
critical. We also exhibit a class of I't-edge-critical graphs.

We dedicate this paper to Ernie

To wish him the happiest journey
Through the rest of his life -

May the theorems be rife

And the beer flow as fast as the Smirny!!

1 Introduction

Unless stated otherwise we follow the notation and terminology of [11].
Specifically, Ng(v) = {u € Vg : uv € Eg} and Ng[v] = Ng(v) U {v}
denote the open and closed neighbourhoods, respectively, of a vertex v of a
graph G = (Vg, Eg). The closed neighbourhood of a set S C Vg, denoted
by N¢ [S5], is the set UsesNg[s]. If s € S, then the private neighbourhood
of s relative to S, denoted by png(s,S), is the set Ng[s] — Ng[S — {s}].
The vertices of png(s, S) are called the private neighbours of s relative to
S. We often refer to the vertices of png (s, S) — S as the ezternal private
neighbours of s relative to S. If png (s,S) C N [v], where v € V — S, we
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often say that v annihilates s (relative to S). If confusion is unlikely we
omit the subscript G from the above notation.

The lower and upper irredundant, domination and independence num-
bers of the graph G = (V, E) are denoted by ir (G), IR(G), v(G), T'(G),
i(G) and B(G) respectively, where in the case of the independence number
we shorten the B (G) used in [11] as confusion with the edge independence
number $; (G) is unlikely. The lower independence number is of course
more generally known as the independent domination number. In this pa-
per these six parameters are called the domination parameters; ir, v and i
are called the lower domination parameters, while 8, I and IR are referred
to as the upper domination parameters. By a m-set of G, where 7 is a dom-
ination parameter, we mean a vertex-set of G realising 7 (G), e.g. a (-set
of G is a maximal independent set X of G with |X| = 3(G).

For each of the six domination parameters 7, we define the graph G to
be

Cl m-critical if 7 (G — v) < 7 (G) for all v € Vg,

C2 w*-critical if # (G —v) > 7 (G) for all v € Vg,

C3  m-edge-critical if m (G +€) < 7 (G) for all e € Eg,
C4 nwt-edge-critical if 7 (G +¢€) > 7 (G) forall e € Eg,
C5 m-ER-critical if 7 (G — uv) > 7 (G) for all wv € Eg,
C6 n~-ER-critical if 7 (G — wv) < 7 (G) for all uv € Eg.

The existence of critical graphs of types C1 - C6 for each of the domi-
nation parameters is discussed in Section 2.

Graphs that are +y-critical were first studied by Brigham, Chinn and
Dutton in [2], where they showed that the only 2-y-critical graphs are nko,
n 2 1. They presented some properties of y-critical graphs and a method
of constructing them, and concluded their study with some open problems,
which were answered by Fulman, Hanson and MacGillivray in [7]. Graphs
that are i-critical were studied by Ao in [1], in which she obtained results
analogous to those in [2] and [7].

The study of y-edge-critical graphs was initiated by Sumner and Blitch
in [14], where they showed that G is 2-v-edge-critical if and only if G is the
disjoint union of non-trivial stars. They also obtained several properties of
3-v-edge-critical graphs. Hamiltonian properties of 3-y-edge-critical graphs
were studied in (5, 6, 16, 18, 19] and surveyed in [12] and k-y-edge-critical
graphs with & > 4 were studied in [4] and [13]. For a recent survey on
v-edge-critical graphs we refer the reader to [15].

Graphs that are i-edge-critical were studied by Ao in [1], where she
obtained results analogous to those in [14]. For example, G is 2-i-edge-
critical if and only if G is the disjoint union of non-trivial stars. Since
¥(G) = 2 implies ir (G) = 2, it is evident that the same characterisation
holds for ir-edge-critical graphs.
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Walikar and Acharya [17] and Ao (1] characterised graphs that are y-ER-
critical and i-ER-critical, respectively. These two classes of graphs coincide,
and consist of those graphs that are disjoint unions of stars. Clearly, disjoint
unions of stars are also ir-ER-critical.

Graphs that are m-critical and #+-critical, where 7 is an upper dom-
ination parameter, were studied in [9]. It was shown that K,, x K, is
I'*-critical if m,n > 5. Also, mER-critical (7 € {ér,8,T,IR}) and 7—-
ER-critical graphs were investigated in [10], where three classes of i—-ER-
critical graphs were exhibited.

In this paper we concentrate on 7-edge-critical and 7+-edge-critical
graphs, where 7 is an upper domination parameter. We find character-
isations of 3- and I'-edge-critical graphs and show that a graph is I R-edge-
critical if and only if it is I'-edge-critical. (Note that this characterisation of
IR-edge-critical graphs was also obtained by Dunbar, Monroe and White-
head (3], but with a completely different proof.) We show that K., x K,
is I'*-edge-critical for m,n > 5, but whether there exist I Rt-edge-critical
graphs remains an open problem. The work displayed here forms part of
the doctoral thesis [8].

2 Existence results

For any domination parameter , all edgeless graphs with more than one
vertex are both =-critical and 7-edge-critical. If 7 is an upper parameter,
then all complete graphs with more than one vertex are 7-ER-critical and
if m is a lower parameter, then all stars Kin (n 2 1) are m-ER-critical.
This establishes the existence of m-critical, m-edge-critical and 7-ER-critical
graphs for all domination parameters .

Since (G —v) < B(G) and IR(G —v) < IR(G) for all v € Vg (any
IR-set of G — v is irredundant in G), there do not exist any 8*- or IR*-
critical graphs. Similarly, since v (G +¢€) < v(G) and (G +¢) < B(G)
for all e € Eg, there are no y+- or B*-edge-critical graphs. Further, since
Y(G—e) 2 v(G) and B(G —e) > B(G) for all e € Eg, there are no y~-
or §~-ER-critical graphs.

The following proposition shows that there are no 7*-critical graphs if
w is a lower parameter.

Proposition 1 (8, 9] Let 7 be a lower domination parameter. For any
graph G with more than one vertez, m(G — v) < 7(G) for at least one
v e Vg.

The following proposition implies that there are no 7*-edge-critical
graphs if w € {ir,i}.
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Proposition 2 [8, 9] Let w € {ir,i}. For any graph G which is not com-
plete, m (G + e) < 7 (G) for at least one e € Erg.

There also are no 7—-ER-critical graphs for m € {I', IR}, as is stated
next.

Proposition 3 (8,9] Letw € {T',IR}. For any graph G with at least one
edge, 7 (G — €) > 7 (G) for at least one e € Eg.

We summarise the existence or non-existence of the six types of criti-
cality for the six domination parameters in Table 1.

T T+ [i [B [T |IR]
w-critical yes | yes | yes | yes | yes | yes
w¥-critical no | no | no | no | yes| no
w-edge-critical yes | yes | yes | yes | yes | yes
m+-edge-critical || no [ no | no [no |yes[?
m-ER-critical yes | yes | yes | yes | yes | yes
n—-ER-critical | ? no { yes [ no | no | no

Table 1. Existence of critical graphs

3 Upper parameter edge-critical graphs

In this section we find characterisations of 8- and I'-edge-critical graphs
and show that a graph is I R-critical if and only if it is I-edge-critical. We
need the following definition.

Consider a graph G with n vertices. A partition {S,T} of Vg is called a
one-to-one perfect matching, abbreviated to 1 —1 p.m., of Gif each s € S
is adjacent to exactly one t € T, and each ¢ € T is adjacent to exactly one
s€S. IfGhasal—1pm. {5 T}, then clearly G has an even number
of vertices. Furthermore, S is an irredundant dominating set of G (every
vertex of S has a unique private neighbour in T'); hence I'(G) > n/2. Note
that if G has a 1 — 1 p.m. {S, T}, where (S) = (T), then G = (5) x Ka.

For any graph G and integer g > 0, let G + g denote the graph obtained
by adding ¢ universal vertices to Vg, i.e., if ¢ > 1, then G+g¢=G+K,.

Lemma 4 Suppose m is an upper parameter and ¢ > 0. Then G is mw-edge-
critical if and only if G + q is w-edge-critical.

Proof. We make three observations.
01. Ea_'_—q = E‘a.
02. Ife€ Eg, then (G+e)+g=(G+q)+e.

242



03. m(G+q)=n(G).

O1 and O2 are obvious. We prove O3. Obviously, G and G+q are either
both complete or both non-complete. In the first case 7 (G) = (G+4q) =
L. In the second case, S is an independent (dominating, irredundant) set of
G if and only if § is an independent (dominating, irredundant) set of G+q.
It follows that if S is a 7-set of G, then 7 (G + ¢) < |S| = 7 (G) and if S is
a m-set of G + g, then 7 (G) < |S| < (G + q); hence 7 (G + q) = n(G).

It now follows from O1 and O3 that 7 (G +¢€) < 7 (G) for all e € Es
if and only if 7 ((G+e€)+q) <7 (G+q) foralle € Ezr;- Applying 02
completes the proof of the lemma. |

The characterisation of B-edge-critical graphs now is a simple matter.

Proposition 5 The graph G is B-edge-critical if and only if G =K, +gq,
where p > 2 and q¢ > 0.

Proof. Suppose G is (-edge-critical and consider a B-set S of G. Clearly
(S) = K, for some integer p > 2. Let ¢ = [V~ S|. Foreachu e Vg — §
and v € Vg —{u}, uv € Eg, for otherwise § is an independent set of G+ uv,
in which case 8(G) = |S| < B(G + wv). It follows that G = K, +gq.
Conversely, for p > 2, K, is clearly B-edge-critical. It now follows from
Lemma 4 that K, + g is S-edge-critical for any p > 2 and g=>0. |

We next give the characterisation of I'- and I R-edge-critical graphs.
(Also see [3].)

Theorem 6 The following statements are equivalent for any graph G:
(a) G is I'-edge-critical.

(b) G = H +q, where (i) H = K, withp > 2, or (ii) the non-isolated
vertices of H induce a graph M with at least siz vertices and a 1 — 1
perfect matching {S,T} such that (S) and (T) are complete graphs.

(c) G is IR-edge-critical.

Proof. (a) = (b): Consider a I'set X of G and let Z and S be the sets
of isolated and non-isolated vertices of X, respectively. Let T' be the set
of external private neighbours of vertices in X and let W be the set of
vertices of Vg — X that are adjacent to more than one vertex of X. Clearly,
X=2ZUS and {Z,5,T,W} is a partition of V.

If e € Ez and X is an irredundant set of G + e, then X is a mini-
mal dominating set of G + e. Therefore I'(G) = |X| < T (G + e), which
contradicts the I'-edge-criticality of G. Hence

for all e € B, X is not an irredundant set of G + e. 1

243



Furthermore, if 8 (G) = I'(G), then G is B-edge-critical and it follows from
Proposition 5 that G = H+-g, where H is a graph satisfying (i). Henceforth,
assume that

B(G)<T(G). (2)

Suppose £ € X and |pn(z,X)| > 1. Let u € X — {z} and v € pn(z, X).
Then X is an irredundant set of G + uv, which contradicts (1). Therefore
|pn (z, X)| = 1 for all z € X. It follows that Z is the set of isolated vertices
of H={(ZUSUT) and that {S,T}isal—1pm. of M =(SUT).

Suppose uwv € Bz and {u,v} C § or {u,v} C T. Then X is an irre-
dundant set of G + uv, which contradicts (1). Therefore (S) and (T') are
complete graphs.

Suppose |S] = 2 and let s € S, t € T with s and ¢ nonadjacent. Then
Z U {s,t} is an independent set of G. Therefore

T(G)=1X|=1Z20{st} <B(G).

which contradicts (2). Consequently |S| > 3 and so M has at least six
vertices.

Finally, suppose uv € Eg withu € W and v € Vg — {u}. Then X is an
irredundant set of G +uv, which contradicts (1). Therefore u is a universal
vertex of G. It thus follows that G = H + q with H satisfying (ii).

(b) = (c): In the case of (i) it is clear that H is I R-edge-critical. Hence
by Lemma 4, H + q is I R-edge-critical. Now consider condition (ii) and let
Z be the set of isolated vertices of H. Since SU Z and T'U Z are I R-sets
of H,

IR(G)=|S|+|2|=|T| +|Z].

Consider any e € B and let B be an IR-set of H +e.
Casel: BNS#0 and BNT #0. Let s € BNS and t € BNT. Since (S)
and (T') are complete graphs, BN S = {s} and BNT = {t}, for otherwise
B is not irredundant in H + e. Therefore B C {s,t} U Z and so

IR(H +¢€)=|B| <2+|2| <|S|+|2| = IR(H).

Case 22 BNS =0or BNT = (. Assume without loss of generality
that BNS = 0. Then B € T'U Z. Since (T) is complete, T U Z is not
irredundant in H + e. Therefore

IR(H +¢€) = |B| < |T| +|2| = IR(H).

This proves that H is I R-critical and by Lemma 4, H +q is ] R-edge-critical.

(c) = (a): Let Sbean IR-setof G and let s€ S. If r € Vg ~ Ng [S],
then st € Ez and S is irredundant in G + sr; hence IR(G) = |8] <
IR(G + sr), whlch contradicts the I R-edge-criticality of G. Therefore S
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1-1pm

Figure 1: A I'-edge-critical graph

is a dominating irredundant set of G and thus I'(G) = TR(G). It follows
that for all e € Eg,

T(G+e)<IR(G+e)<IR(G)=T(G). W

Figure 1 shows the I-edge-critical graph G = H + ¢ with |Z| = |§]| =
17| =[W|=3.

4 T'*- and IR*-edge-critical graphs

In this section we show that K,, x K, is I*-edge-critical if m,n > 5.
Whether there exist I R*-edge-critical graphs or not remains an open prob-
lem.

The product G; x G2 of two graphs G; and G, has vertex-set Ve, x Vg,
and two vertices {u;,us} and {v1, vz} are adjacent in G; x G, if and only
if u; = v, and upv; € Eg,, or us = v and uyv; € Eg,.

Let

V={v;:i=12,..,mand j=1,2,..,n}

and

E= {{v.-,-,vkz}:v,-j,vk, eV,i=kand j#l, orj=landi;élc}
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be the vertex and edge sets of the graph K, X Ky, respectively. Further-
more, let
Xi = {'Uik k= 1,2,...,n}

for each i =1,2,...,m and
Y; ={wj: k=1,2,..,m}

for each j = 1,2,...,n. Note that (X;) = K, for each i = 1,2,...,m and
(Y;) & K, for each j = 1,2,...,n. We first determine the domination
parameters of K, X K.

Theorem 7 Let G= K x K, forn>m 2> 2. Then

ir(G) =(G) = i(G) = B(G) =m,

I'Gy=n
and ; A
n if m<
IR(G) = {m+n—4 if m2>4.

Proof. Consider any maximal independent set S of G. Since S is indepen-
dent, |X; N S| £ 1 for all i = 1,2,...,m. Therefore

18 =>_|1X;n S| < m.

i=1

Since S is dominating, X; NS # @ for all i = 1,2,....,m or Y; NS # 0 for
all j = 1,2,...,n. Therefore

15]=>_1X:inS| 2 m.
i=1
or n
1S1=>"1¥;nS|2n>m
i=1

It follows that |S| = m for every maximal independent set S of G ; hence
i(G) = B(G) =m.

Consider any minimal dominating set S of G. Again, since S is domi-
nating, X;NS # 0 for all i or Y;NS # 0 for all j. If X;NS # @ for all %, then
choose z; € X; NS for each i. Since {z,%2,...,Tm } is a dominating subset
of the minimal dominating set S, it follows that S = {z1, %2, ..., Zm}; hence
|S| = m. Similarly, if Y; NS # 0 for all j, then |S| = n. It follows that
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|S| € {m,n} for every minimal dominating set S of G. Furthermore, Y; and
X1 are minimal dominating sets with cardinalities m and n, respectively;
hence

7(G)=m and I'(G)=n.

To complete the proof, we show that n < |§| < m +n — 4 for any
maximal irredundant set S of G that is not dominating, and that there
exists one with cardinality m+n—4 if m > 4. To be more precise, we show
that for each ¢ € {n,n +1,...,m 4+ n — 4} there exists a non-dominating
maximal irredundant set with cardinality c.

Consider any maximal irredundant set S of G that is not dominating.
Assume without loss of generality that X, NS =0 and Y, NS = 0, ie.,
the vertex vm, is not dominated by S.

If|XiNS| <1forallilete T =8U {vm1}. Since Y, NS = @ and
Um1 € Y, we see that v;, € pn(vij, T) for every vi; € T. Therefore
T is an irredundant superset of the maximal irredundant set S, which is
impossible. Hence assume, without loss of generality, that [Xm—1NS|>1
and, similarly, that |Y,,_; N S| > 1.

Let r be the number of sets X; for which |X; N S| = 1 and s the number
of sets Y for which |Y; N.S| = 1. It follows that r <m — 2 and s < n — 2.
Assume without loss of generality that

[X;inS| = 1 forall i=1,2,..,r
X;NS| # 1 forall i=r+1,..,m
[Y;NS] = 1 forall §=1,2,..,s

;NS # 1 forall j=s+1,..,n

Since S is irredundant, [X;NS| = 1 or [Y; N S| = 1 for every v; € S.
Therefore
m g
U xins)c Jw;ns).
i=r41 i=1

These unions are disjoint, so

S| —r = Z [X:in S| < Z[YjﬂS’I =3
i=r+1 Jj=1

Hence
IS|<r+s<(m-2)+(n—2)=m+n—-4.

Furthermore, suppose Yx NS = 0 for &£ # n. Then Uk is not dominated
by S and therefore Y(m—1)x annihilates some v;; € S. If |Y; N S| = 1, then
Umj € pn(vi;,S); thus vy,; is adjacent to Y(m-1)x and so j = k, which is
impossible since Yz NS = . Consequently, | X; NS| = 1 and it follows
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Figure 2: Irredundant sets (black vertices) of K, X Kn
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that v;, € pn(vi;,S). This implies that v;, is adjacent to Y(m—1)k; hence
i =m — 1, which is impossible since |X,,—; N S| > 1.
It now follows that |Y; NS| > 1forall j=s+1,..,n— 1 and therefore

n

IS| = Y Iv;ns]|

j=1
s n-1

= Y 508+ > ;08 +(|YanS
j=1 J=s+1

> s+2mn-s—-1)+0

= 2n—s5-2

> n since s<n-2.

For each k € {0,1,...,m — 4}, let

Sk = {v11,v22, e, Vkic} U {V(kt1)(k42) s V(i 1)(n—1) }
U{0(k+2)(k+1)s -+ Ym—1)(k+1) }-

See Figure 2 (but note that not all the edges are shown) for So and Sy,_4
and note that k is the number of isolated vertices of Si. (Black dots denote
the vertices of the set, grey dots the external private neighbours and white
squares the vertices not dominated by the set.) For each k € {0,1,...,m —
4}, Sk is a maximal irredundant set which is not dominating and |Sk| =
m +n — 4 — k. Therefore the non-dominating maximal irredundant sets
have cardinalities n,n +1,...,m +n — 4. ||

Proposition 8 For any m,n > 5, the graph K,, x K, is I't-edge-critical.

Proof. Let G = K,, x K,, where n > m > 5 and consider any uwv € Eg.
Since G is edge-transitive, assume without loss of generality that u = v,
and v = vp,. Now Sp in the proof of Theorem 7 (see Figure 2) is a
minimal dominating set of G + wv. Therefore '(G) =n<m+n—~4 =
[Sol<T (G+ uv). n

Although we have not found an JR*-edge-critical graph, we show that
for such a graph G, if it exists, the upper irredundance number increases
by exactly one whenever an edge is added to G.

Proposition 9 Suppose G is IRt -edge-critical. For every uwv € Ez and
every IR-set S of G+uv, (without loss of generality) u € S, pngyus (u, S)=
{v} and S — {u} is an IR-set of G.
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Proof. S is not an irredundant set of G, for otherwise IR (G +uv) = |§| <
IR(G). Thus we may assume without losing generality that u € S and
PNGyuy (4, S) = {v}. Furthermore, S — {u} is an irredundant set of G.
Therefore

IR(G+uv)—1=|S|-1<IR(G) < IR(G + ww)
and hence S — {u} is an IR-set of G. ]

Corollary 10 If G is IR* -edge-critical, then IR(G + wv) = IR(G) +1
for each uv € Eg.

5 Open Problems

We conclude with a brief list of unsolved problems.
1. Are there ir-critical graphs which are not «-critical, or y-critical graphs
which are not ir-critical?

2. Are there ir-edge-critical graphs which are not y-edge-critical, or ~-
edge-critical graphs which are not ir-edge-critical?

3. K, x K, with m,n > 5 are the only known I'*-critical graphs (see [9])
and also the only known I't-edge-critical graphs. Are these the only I'*-
critical or I"t-edge-critical graphs? (This would be very surprising.) Do
these two types of criticality coincide? Do they imply vertex-transitivity?
(This also seems unlikely.)

4. Determine properties of ['t-edge-critical graphs.

5. Are there any JR*-edge-critical or ir~-ER-critical graphs?
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