Upper Domination Parameters and Edge-Critical Graphs

P. J. P. Grobler and C. M. Mynhardt Department of Mathematics University of South Africa P. O. Box 392, UNISA 0003 SOUTH AFRICA mynhacm@alpha.unisa.ac.za

Abstract

For π one of the upper domination parameters β , Γ or IR, we investigate graphs for which π decreases (π -edge-critical graphs) and graphs for π increases (π^+ -edge-critical graphs) whenever an edge is added. We find characterisations of β - and Γ -edge-critical graphs and show that a graph is IR-edge-critical if and only if it is Γ -edge-critical. We also exhibit a class of Γ^+ -edge-critical graphs.

We dedicate this paper to Ernie
To wish him the happiest journey
Through the rest of his life –
May the theorems be rife
And the beer flow as fast as the Smirny¹!

1 Introduction

Unless stated otherwise we follow the notation and terminology of [11]. Specifically, $N_G(v) = \{u \in V_G : uv \in E_G\}$ and $N_G[v] = N_G(v) \cup \{v\}$ denote the open and closed neighbourhoods, respectively, of a vertex v of a graph $G = (V_G, E_G)$. The closed neighbourhood of a set $S \subseteq V_G$, denoted by $N_G[S]$, is the set $\bigcup_{s \in S} N_G[s]$. If $s \in S$, then the private neighbourhood of s relative to S, denoted by $pn_G(s, S)$, is the set $N_G[s] - N_G[S - \{s\}]$. The vertices of $pn_G(s, S)$ are called the private neighbours of s relative to S. We often refer to the vertices of $pn_G(s, S) - S$ as the external private neighbours of s relative to s. If $s \in S$, we prove that $s \in S$ and $s \in S$ is the external private neighbours of s relative to s. If $s \in S$ is $s \in S$, where $s \in S$ is $s \in S$, we prove that $s \in S$ is $s \in S$.

¹A river in Russia

often say that v annihilates s (relative to S). If confusion is unlikely we omit the subscript G from the above notation.

The lower and upper irredundant, domination and independence numbers of the graph G = (V, E) are denoted by ir(G), IR(G), $\gamma(G)$, $\Gamma(G)$, i(G) and $\beta(G)$ respectively, where in the case of the independence number we shorten the $\beta_0(G)$ used in [11] as confusion with the edge independence number $\beta_1(G)$ is unlikely. The lower independence number is of course more generally known as the independent domination number. In this paper these six parameters are called the domination parameters; ir, γ and i are called the lower domination parameters, while β , Γ and IR are referred to as the upper domination parameters. By a π -set of G, where π is a domination parameter, we mean a vertex-set of G realising $\pi(G)$, e.g. a β -set of G is a maximal independent set X of G with $|X| = \beta(G)$.

For each of the six domination parameters π , we define the graph G to be

```
C1 \pi-critical if \pi(G-v) < \pi(G) for all v \in V_G,

C2 \pi^+-critical if \pi(G-v) > \pi(G) for all v \in V_G,

C3 \pi-edge-critical if \pi(G+e) < \pi(G) for all e \in E_{\overline{G}},

C4 \pi^+-edge-critical if \pi(G+e) > \pi(G) for all e \in E_{\overline{G}},

C5 \pi-ER-critical if \pi(G-uv) > \pi(G) for all uv \in E_G,

C6 \pi^--ER-critical if \pi(G-uv) < \pi(G) for all uv \in E_G.
```

The existence of critical graphs of types C1 – C6 for each of the domination parameters is discussed in Section 2.

Graphs that are γ -critical were first studied by Brigham, Chinn and Dutton in [2], where they showed that the only 2- γ -critical graphs are $\overline{nK_2}$, $n \geq 1$. They presented some properties of γ -critical graphs and a method of constructing them, and concluded their study with some open problems, which were answered by Fulman, Hanson and MacGillivray in [7]. Graphs that are *i*-critical were studied by Ao in [1], in which she obtained results analogous to those in [2] and [7].

The study of γ -edge-critical graphs was initiated by Sumner and Blitch in [14], where they showed that G is $2-\gamma$ -edge-critical if and only if \overline{G} is the disjoint union of non-trivial stars. They also obtained several properties of $3-\gamma$ -edge-critical graphs. Hamiltonian properties of $3-\gamma$ -edge-critical graphs were studied in [5, 6, 16, 18, 19] and surveyed in [12] and $k-\gamma$ -edge-critical graphs with $k \geq 4$ were studied in [4] and [13]. For a recent survey on γ -edge-critical graphs we refer the reader to [15].

Graphs that are *i*-edge-critical were studied by Ao in [1], where she obtained results analogous to those in [14]. For example, G is 2-*i*-edge-critical if and only if \overline{G} is the disjoint union of non-trivial stars. Since $\gamma(G) = 2$ implies ir(G) = 2, it is evident that the same characterisation holds for ir-edge-critical graphs.

Walikar and Acharya [17] and Ao [1] characterised graphs that are γ -ER-critical and i-ER-critical, respectively. These two classes of graphs coincide, and consist of those graphs that are disjoint unions of stars. Clearly, disjoint unions of stars are also ir-ER-critical.

Graphs that are π -critical and π^+ -critical, where π is an upper domination parameter, were studied in [9]. It was shown that $K_m \times K_n$ is Γ^+ -critical if $m,n \geq 5$. Also, π -ER-critical ($\pi \in \{ir,\beta,\Gamma,IR\}$) and π^- -ER-critical graphs were investigated in [10], where three classes of i^- -ER-critical graphs were exhibited.

In this paper we concentrate on π -edge-critical and π^+ -edge-critical graphs, where π is an upper domination parameter. We find characterisations of β - and Γ -edge-critical graphs and show that a graph is IR-edge-critical if and only if it is Γ -edge-critical. (Note that this characterisation of IR-edge-critical graphs was also obtained by Dunbar, Monroe and Whitehead [3], but with a completely different proof.) We show that $K_m \times K_n$ is Γ^+ -edge-critical for $m, n \geq 5$, but whether there exist IR^+ -edge-critical graphs remains an open problem. The work displayed here forms part of the doctoral thesis [8].

2 Existence results

For any domination parameter π , all edgeless graphs with more than one vertex are both π -critical and π -edge-critical. If π is an upper parameter, then all complete graphs with more than one vertex are π -ER-critical and if π is a lower parameter, then all stars $K_{1,n}$ ($n \geq 1$) are π -ER-critical. This establishes the existence of π -critical, π -edge-critical and π -ER-critical graphs for all domination parameters π .

Since $\beta(G-v) \leq \beta(G)$ and $IR(G-v) \leq IR(G)$ for all $v \in V_G$ (any IR-set of G-v is irredundant in G), there do not exist any β^+ - or IR^+ -critical graphs. Similarly, since $\gamma(G+e) \leq \gamma(G)$ and $\beta(G+e) \leq \beta(G)$ for all $e \in E_G$, there are no γ^+ - or β^+ -edge-critical graphs. Further, since $\gamma(G-e) \geq \gamma(G)$ and $\beta(G-e) \geq \beta(G)$ for all $e \in E_G$, there are no γ^- -or β^- -ER-critical graphs.

The following proposition shows that there are no π^+ -critical graphs if π is a lower parameter.

Proposition 1 [8, 9] Let π be a lower domination parameter. For any graph G with more than one vertex, $\pi(G - v) \leq \pi(G)$ for at least one $v \in V_G$.

The following proposition implies that there are no π^+ -edge-critical graphs if $\pi \in \{ir, i\}$.

Proposition 2 [8, 9] Let $\pi \in \{ir, i\}$. For any graph G which is not complete, $\pi(G + e) \leq \pi(G)$ for at least one $e \in E_{\overline{G}}$.

There also are no π^- -ER-critical graphs for $\pi \in \{\Gamma, IR\}$, as is stated next.

Proposition 3 [8, 9] Let $\pi \in \{\Gamma, IR\}$. For any graph G with at least one edge, $\pi(G - e) \ge \pi(G)$ for at least one $e \in E_G$.

We summarise the existence or non-existence of the six types of criticality for the six domination parameters in Table 1.

	ir	γ	i	β	Γ	IR
π -critical	yes	yes	yes	yes	yes	yes
π^+ -critical	no	no	no	no	yes	no
π -edge-critical	yes	yes	yes	yes	yes	yes
π^+ -edge-critical	no	no	no	no	yes	?
π -ER-critical	yes	yes	yes	yes	yes	yes
π^- -ER-critical	?	no	yes	no	no	no

Table 1. Existence of critical graphs

3 Upper parameter edge-critical graphs

In this section we find characterisations of β - and Γ -edge-critical graphs and show that a graph is IR-critical if and only if it is Γ -edge-critical. We need the following definition.

Consider a graph G with n vertices. A partition $\{S,T\}$ of V_G is called a one-to-one perfect matching, abbreviated to 1-1 p.m., of G if each $s \in S$ is adjacent to exactly one $t \in T$, and each $t \in T$ is adjacent to exactly one $s \in S$. If G has a 1-1 p.m. $\{S,T\}$, then clearly G has an even number of vertices. Furthermore, S is an irredundant dominating set of G (every vertex of S has a unique private neighbour in T); hence $\Gamma(G) \geq n/2$. Note that if G has a 1-1 p.m. $\{S,T\}$, where $\langle S \rangle \cong \langle T \rangle$, then $G = \langle S \rangle \times K_2$.

For any graph G and integer $q \geq 0$, let G+q denote the graph obtained by adding q universal vertices to V_G , i.e., if $q \geq 1$, then $G+q \cong G+K_q$.

Lemma 4 Suppose π is an upper parameter and $q \ge 0$. Then G is π -edge-critical if and only if G + q is π -edge-critical.

Proof. We make three observations.

O1. $E_{\overline{G+q}} = E_{\overline{G}}$.

O2. If $e \in E_{\overline{G}}$, then (G + e) + q = (G + q) + e.

O3. $\pi(G+q) = \pi(G)$.

O1 and O2 are obvious. We prove O3. Obviously, G and G+q are either both complete or both non-complete. In the first case $\pi(G) = \pi(G+q) = 1$. In the second case, S is an independent (dominating, irredundant) set of G if and only if S is an independent (dominating, irredundant) set of G+q. It follows that if S is a π -set of G, then $\pi(G+q) \leq |S| = \pi(G)$ and if S is a π -set of G+q, then $\pi(G) \leq |S| \leq \pi(G+q)$; hence $\pi(G+q) = \pi(G)$.

It now follows from O1 and O3 that $\pi(G+e) < \pi(G)$ for all $e \in E_{\overline{G}}$ if and only if $\pi((G+e)+q) < \pi(G+q)$ for all $e \in E_{\overline{G+q}}$. Applying O2 completes the proof of the lemma.

The characterisation of β -edge-critical graphs now is a simple matter.

Proposition 5 The graph G is β -edge-critical if and only if $G = \overline{K_p} + q$, where $p \geq 2$ and $q \geq 0$.

Proof. Suppose G is β -edge-critical and consider a β -set S of G. Clearly $\langle S \rangle = \overline{K_p}$ for some integer $p \geq 2$. Let $q = |V_G - S|$. For each $u \in V_G - S$ and $v \in V_G - \{u\}$, $uv \in E_G$, for otherwise S is an independent set of G + uv, in which case $\beta(G) = |S| \leq \beta(G + uv)$. It follows that $G = \overline{K_p} + q$.

Conversely, for $p \ge 2$, $\overline{K_p}$ is clearly β -edge-critical. It now follows from Lemma 4 that $\overline{K_p} + q$ is β -edge-critical for any $p \ge 2$ and $q \ge 0$.

We next give the characterisation of Γ - and IR-edge-critical graphs. (Also see [3].)

Theorem 6 The following statements are equivalent for any graph G:

- (a) G is Γ -edge-critical.
- (b) G = H + q, where (i) $H \cong \overline{K_p}$ with $p \geq 2$, or (ii) the non-isolated vertices of H induce a graph M with at least six vertices and a 1-1 perfect matching $\{S,T\}$ such that $\langle S \rangle$ and $\langle T \rangle$ are complete graphs.
- (c) G is IR-edge-critical.

Proof. (a) \Rightarrow (b): Consider a Γ -set X of G and let Z and S be the sets of isolated and non-isolated vertices of X, respectively. Let T be the set of external private neighbours of vertices in X and let W be the set of vertices of $V_G - X$ that are adjacent to more than one vertex of X. Clearly, $X = Z \cup S$ and $\{Z, S, T, W\}$ is a partition of V_G .

If $e \in E_{\overline{G}}$ and X is an irredundant set of G + e, then X is a minimal dominating set of G + e. Therefore $\Gamma(G) = |X| \leq \Gamma(G + e)$, which contradicts the Γ -edge-criticality of G. Hence

for all $e \in E_{\overline{G}}$, X is not an irredundant set of G + e. (1)

Furthermore, if $\beta(G) = \Gamma(G)$, then G is β -edge-critical and it follows from Proposition 5 that G = H + q, where H is a graph satisfying (i). Henceforth, assume that

$$\beta(G) < \Gamma(G). \tag{2}$$

Suppose $x \in X$ and |pn(x, X)| > 1. Let $u \in X - \{x\}$ and $v \in pn(x, X)$. Then X is an irredundant set of G + uv, which contradicts (1). Therefore |pn(x, X)| = 1 for all $x \in X$. It follows that Z is the set of isolated vertices of $H = \langle Z \cup S \cup T \rangle$ and that $\{S, T\}$ is a 1 - 1 p.m. of $M = \langle S \cup T \rangle$.

Suppose $uv \in E_{\overline{G}}$ and $\{u,v\} \subseteq S$ or $\{u,v\} \subseteq T$. Then X is an irredundant set of G + uv, which contradicts (1). Therefore $\langle S \rangle$ and $\langle T \rangle$ are complete graphs.

Suppose |S| = 2 and let $s \in S$, $t \in T$ with s and t nonadjacent. Then $Z \cup \{s, t\}$ is an independent set of G. Therefore

$$\Gamma(G) = |X| = |Z \cup \{s, t\}| \le \beta(G),$$

which contradicts (2). Consequently $|S| \ge 3$ and so M has at least six vertices.

Finally, suppose $uv \in E_{\overline{G}}$ with $u \in W$ and $v \in V_G - \{u\}$. Then X is an irredundant set of G + uv, which contradicts (1). Therefore u is a universal vertex of G. It thus follows that G = H + q with H satisfying (ii).

(b) \Rightarrow (c): In the case of (i) it is clear that H is IR-edge-critical. Hence by Lemma 4, H+q is IR-edge-critical. Now consider condition (ii) and let Z be the set of isolated vertices of H. Since $S \cup Z$ and $T \cup Z$ are IR-sets of H,

$$IR(G) = |S| + |Z| = |T| + |Z|$$
.

Consider any $e \in E_{\overline{H}}$ and let B be an IR-set of H + e.

Case 1: $B \cap S \neq \emptyset$ and $B \cap T \neq \emptyset$. Let $s \in B \cap S$ and $t \in B \cap T$. Since $\langle S \rangle$ and $\langle T \rangle$ are complete graphs, $B \cap S = \{s\}$ and $B \cap T = \{t\}$, for otherwise B is not irredundant in H + e. Therefore $B \subseteq \{s, t\} \cup Z$ and so

$$IR(H+e) = |B| \le 2 + |Z| < |S| + |Z| = IR(H)$$
.

Case 2: $B \cap S = \emptyset$ or $B \cap T = \emptyset$. Assume without loss of generality that $B \cap S = \emptyset$. Then $B \subseteq T \cup Z$. Since $\langle T \rangle$ is complete, $T \cup Z$ is not irredundant in H + e. Therefore

$$IR(H + e) = |B| < |T| + |Z| = IR(H)$$
.

This proves that H is IR-critical and by Lemma 4, H+q is IR-edge-critical. (c) \Rightarrow (a): Let S be an IR-set of G and let $s \in S$. If $r \in V_G - N_G[S]$, then $sr \in E_{\overline{G}}$ and S is irredundant in G + sr; hence $IR(G) = |S| \leq IR(G+sr)$, which contradicts the IR-edge-criticality of G. Therefore S

Figure 1: A Γ-edge-critical graph

is a dominating irredundant set of G and thus $\Gamma(G) = IR(G)$. It follows that for all $e \in E_{\overline{G}}$,

$$\Gamma(G+e) \leq IR(G+e) < IR(G) = \Gamma(G)$$
.

Figure 1 shows the Γ -edge-critical graph G=H+q with |Z|=|S|=|T|=|W|=3.

4 Γ^+ - and IR^+ -edge-critical graphs

In this section we show that $K_m \times K_n$ is Γ^+ -edge-critical if $m, n \geq 5$. Whether there exist IR^+ -edge-critical graphs or not remains an open problem.

The product $G_1 \times G_2$ of two graphs G_1 and G_2 has vertex-set $V_{G_1} \times V_{G_2}$ and two vertices $\{u_1, u_2\}$ and $\{v_1, v_2\}$ are adjacent in $G_1 \times G_2$ if and only if $u_1 = v_1$ and $u_2v_2 \in E_{G_2}$, or $u_2 = v_2$ and $u_1v_1 \in E_{G_1}$.

Let

$$V = \{v_{ij} : i = 1, 2, ..., m \text{ and } j = 1, 2, ..., n\}$$

and

$$E = \{\{v_{ij}, v_{kl}\} : v_{ij}, v_{kl} \in V, i = k \text{ and } j \neq l, \text{ or } j = l \text{ and } i \neq k\}$$

be the vertex and edge sets of the graph $K_m \times K_n$, respectively. Furthermore, let

$$X_i = \{v_{ik} : k = 1, 2, ..., n\}$$

for each i = 1, 2, ..., m and

$$Y_j = \{v_{kj} : k = 1, 2, ..., m\}$$

for each j = 1, 2, ..., n. Note that $\langle X_i \rangle \cong K_n$ for each i = 1, 2, ..., m and $\langle Y_j \rangle \cong K_m$ for each j = 1, 2, ..., n. We first determine the domination parameters of $K_m \times K_n$.

Theorem 7 Let $G = K_m \times K_n$ for $n \ge m \ge 2$. Then

$$ir(G) = \gamma(G) = i(G) = \beta(G) = m,$$

$$\Gamma(G) = n$$

and

$$IR(G) = \begin{cases} n & \text{if } m \leq 4 \\ m+n-4 & \text{if } m \geq 4. \end{cases}$$

Proof. Consider any maximal independent set S of G. Since S is independent, $|X_i \cap S| \leq 1$ for all i = 1, 2, ..., m. Therefore

$$|S| = \sum_{i=1}^{m} |X_i \cap S| \le m.$$

Since S is dominating, $X_i \cap S \neq \emptyset$ for all i = 1, 2, ..., m or $Y_j \cap S \neq \emptyset$ for all j = 1, 2, ..., n. Therefore

$$|S| = \sum_{i=1}^{m} |X_i \cap S| \ge m.$$

or

$$|S| = \sum_{j=1}^{n} |Y_j \cap S| \ge n \ge m.$$

It follows that |S| = m for every maximal independent set S of G; hence

$$i(G) = \beta(G) = m.$$

Consider any minimal dominating set S of G. Again, since S is dominating, $X_i \cap S \neq \emptyset$ for all i or $Y_j \cap S \neq \emptyset$ for all j. If $X_i \cap S \neq \emptyset$ for all i, then choose $x_i \in X_i \cap S$ for each i. Since $\{x_1, x_2, ..., x_m\}$ is a dominating subset of the minimal dominating set S, it follows that $S = \{x_1, x_2, ..., x_m\}$; hence |S| = m. Similarly, if $Y_j \cap S \neq \emptyset$ for all j, then |S| = n. It follows that

 $|S| \in \{m, n\}$ for every minimal dominating set S of G. Furthermore, Y_1 and X_1 are minimal dominating sets with cardinalities m and n, respectively; hence

$$\gamma(G) = m$$
 and $\Gamma(G) = n$.

To complete the proof, we show that $n \leq |S| \leq m+n-4$ for any maximal irredundant set S of G that is not dominating, and that there exists one with cardinality m+n-4 if $m \geq 4$. To be more precise, we show that for each $c \in \{n, n+1, ..., m+n-4\}$ there exists a non-dominating maximal irredundant set with cardinality c.

Consider any maximal irredundant set S of G that is not dominating. Assume without loss of generality that $X_m \cap S = \emptyset$ and $Y_n \cap S = \emptyset$, *i.e.*, the vertex v_{mn} is not dominated by S.

If $|X_i \cap S| \leq 1$ for all i, let $T = S \cup \{v_{m1}\}$. Since $Y_n \cap S = \emptyset$ and $v_{m1} \notin Y_n$, we see that $v_{in} \in pn(v_{ij},T)$ for every $v_{ij} \in T$. Therefore T is an irredundant superset of the maximal irredundant set S, which is impossible. Hence assume, without loss of generality, that $|X_{m-1} \cap S| > 1$ and, similarly, that $|Y_{n-1} \cap S| > 1$.

Let r be the number of sets X_i for which $|X_i \cap S| = 1$ and s the number of sets Y_j for which $|Y_j \cap S| = 1$. It follows that $r \leq m-2$ and $s \leq n-2$. Assume without loss of generality that

$$|X_i \cap S| = 1$$
 for all $i = 1, 2, ..., r$
 $|X_i \cap S| \neq 1$ for all $i = r + 1, ..., m$
 $|Y_j \cap S| = 1$ for all $j = 1, 2, ..., s$
 $|Y_j \cap S| \neq 1$ for all $j = s + 1, ..., n$

Since S is irredundant, $|X_i \cap S| = 1$ or $|Y_j \cap S| = 1$ for every $v_{ij} \in S$. Therefore

$$\bigcup_{i=r+1}^{m} (X_i \cap S) \subseteq \bigcup_{j=1}^{s} (Y_j \cap S).$$

These unions are disjoint, so

$$|S| - r = \sum_{i=r+1}^{m} |X_i \cap S| \le \sum_{i=1}^{s} |Y_i \cap S| = s.$$

Hence

$$|S| \le r + s \le (m-2) + (n-2) = m + n - 4.$$

Furthermore, suppose $Y_k \cap S = \emptyset$ for $k \neq n$. Then v_{mk} is not dominated by S and therefore $v_{(m-1)k}$ annihilates some $v_{ij} \in S$. If $|Y_j \cap S| = 1$, then $v_{mj} \in pn(v_{ij}, S)$; thus v_{mj} is adjacent to $v_{(m-1)k}$ and so j = k, which is impossible since $Y_k \cap S = \emptyset$. Consequently, $|X_i \cap S| = 1$ and it follows

Figure 2: Irredundant sets (black vertices) of $K_m \times K_n$

that $v_{in} \in pn(v_{ij}, S)$. This implies that v_{in} is adjacent to $v_{(m-1)k}$; hence i = m - 1, which is impossible since $|X_{m-1} \cap S| > 1$.

It now follows that $|Y_j \cap S| > 1$ for all j = s + 1, ..., n - 1 and therefore

$$|S| = \sum_{j=1}^{n} |Y_j \cap S|$$

$$= \sum_{j=1}^{s} |Y_j \cap S| + \sum_{j=s+1}^{n-1} |Y_j \cap S| + |Y_n \cap S|$$

$$\geq s + 2(n-s-1) + 0$$

$$= 2n - s - 2$$

$$\geq n \text{ since } s \leq n - 2.$$

For each $k \in \{0, 1, ..., m-4\}$, let

$$S_k = \{v_{11}, v_{22}, ..., v_{kk}\} \cup \{v_{(k+1)(k+2)}, ..., v_{(k+1)(n-1)}\} \cup \{v_{(k+2)(k+1)}, ..., v_{(m-1)(k+1)}\}.$$

See Figure 2 (but note that not all the edges are shown) for S_0 and S_{m-4} and note that k is the number of isolated vertices of S_k . (Black dots denote the vertices of the set, grey dots the external private neighbours and white squares the vertices not dominated by the set.) For each $k \in \{0, 1, ..., m-4\}$, S_k is a maximal irredundant set which is not dominating and $|S_k| = m + n - 4 - k$. Therefore the non-dominating maximal irredundant sets have cardinalities n, n + 1, ..., m + n - 4.

Proposition 8 For any $m, n \geq 5$, the graph $K_m \times K_n$ is Γ^+ -edge-critical.

Proof. Let $G = K_m \times K_n$ where $n \ge m \ge 5$ and consider any $uv \in E_{\overline{G}}$. Since \overline{G} is edge-transitive, assume without loss of generality that $u = v_{12}$ and $v = v_{mn}$. Now S_0 in the proof of Theorem 7 (see Figure 2) is a minimal dominating set of G + uv. Therefore $\Gamma(G) = n < m + n - 4 = |S_0| \le \Gamma(G + uv)$.

Although we have not found an IR^+ -edge-critical graph, we show that for such a graph G, if it exists, the upper irredundance number increases by exactly one whenever an edge is added to G.

Proposition 9 Suppose G is IR^+ -edge-critical. For every $uv \in E_{\overline{G}}$ and every IR-set S of G+uv, (without loss of generality) $u \in S$, $pn_{G+uv}(u,S) = \{v\}$ and $S - \{u\}$ is an IR-set of G.

Proof. S is not an irredundant set of G, for otherwise $IR(G + uv) = |S| \le IR(G)$. Thus we may assume without losing generality that $u \in S$ and $pn_{G+uv}(u,S) = \{v\}$. Furthermore, $S - \{u\}$ is an irredundant set of G. Therefore

$$IR(G + uv) - 1 = |S| - 1 \le IR(G) < IR(G + uv)$$

and hence $S - \{u\}$ is an IR-set of G.

Corollary 10 If G is IR^+ -edge-critical, then IR(G + uv) = IR(G) + 1 for each $uv \in E_{\overline{G}}$.

5 Open Problems

We conclude with a brief list of unsolved problems.

- 1. Are there ir-critical graphs which are not γ -critical, or γ -critical graphs which are not ir-critical?
- 2. Are there ir-edge-critical graphs which are not γ -edge-critical, or γ -edge-critical graphs which are not ir-edge-critical?
- 3. $K_m \times K_n$ with $m, n \ge 5$ are the only known Γ^+ -critical graphs (see [9]) and also the only known Γ^+ -edge-critical graphs. Are these the only Γ^+ -critical or Γ^+ -edge-critical graphs? (This would be very surprising.) Do these two types of criticality coincide? Do they imply vertex-transitivity? (This also seems unlikely.)
- 4. Determine properties of Γ^+ -edge-critical graphs.
- 5. Are there any IR^+ -edge-critical or ir^- -ER-critical graphs?

References

- [1] S. Ao, Independent Domination Critical Graphs, Master's Dissertation, University of Victoria, 1994.
- [2] R. C. Brigham, P. Z. Chinn and R. D. Dutton, Vertex dominationcritical graphs, Networks 18(1988), 173-179.
- [3] J. E. Dunbar, T. R. Monroe and C. A. Whitehead, Sensitivity of the upper irredundance number to edge addition, *J. Combin. Math. Combin. Comput.*, this volume.
- [4] O. Favaron, D. P. Sumner and E. Wojcicka, The diameter of domination k-critical graphs, J. Graph Theory 18(1994), 723-734.

- [5] O. Favaron, F. Tian and L. Zhang, Independence and Hamiltonicity in 3-domination-critical graphs, J. Graph Theory 25(3)(1997), 173-184.
- [6] E. Flandrin, F. Tian, B. Wei and L. Zhang, Some properties of 3-domination-critical graphs, *Discrete Math.* 205(1999), 65-76.
- [7] J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs, Networks 25(1995), 41-43.
- [8] P. J. P. Grobler, Critical Concepts in Domination, Independence and Irredundance of Graphs, Ph.D. Thesis, University of South Africa, 1998.
- [9] P. J. P. Grobler and C. M. Mynhardt, Critical concepts for upper domination parameters in graphs, submitted.
- [10] P. J. P. Grobler and C. M. Mynhardt, Domination parameters and edge-removal-critical graphs, submitted.
- [11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [12] L. Moodley, Two Conjectures on 3-Domination Critical graphs, Master's Dissertation, University of South Africa, 1999.
- [13] M. Paris, D. P. Sumner and E. Wojcicka, Edge-domination critical graphs with cut-vertices, preprint.
- [14] D. P. Sumner and P. Blitch, Domination critical graphs, J. Combin. Theory B 34(1983), 65-76.
- [15] D. P. Sumner and E. Wojcicka, Graphs critical with respect to the domination number, in T. W. Haynes, S. T. Hedetniemi and P. J. Slater (Eds.), *Domination in Graphs: Advanced Topics*. Marcel Dekker, New York, 1998, 439-469.
- [16] F. Tian, B. Wei and L. Zhang, Hamiltonicity in 3-domination-critical graphs with $\alpha = \delta + 2$, Discrete Appl. Math., to appear.
- [17] H. B. Walikar and B. D. Acharya, Domination critical graphs, Nat. Acad. Sci. Lett. 2(1979), 70-72.
- [18] E. Wojcicka, Hamiltonian properties of domination-critical graphs, J. Graph Theory 14(1990), 205-215.
- [19] Y. F. Xue and Z. Q. Chen, Hamiltonian cycles in domination-critical graphs, J. Nanjing University (Natural Science Edition), Special issue on Graph Theory 27(1991), 58-62.