A Note on the Proof of Shannon Inequality
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Abstract. This paper revises Park’s proof of Shannon inequality and also
gives a new simple proof. Keywords. entropy, Shannon inequality Let

A(n, D)

I

l
goj(’;),

B(n,l) = 2"H&®),

where H(z) = —zlogy(l — z) ~ (1 — z)log, z. The following is called Shannon
inequality.
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The function H(z) is called the binary entropy function and is a measure of un-
certainty of a random variable. More importantly, H(z) is the correct asymptotic
exponent in the number of binary sequences of length n that have no more than
l ones. The inequality (1) gives a combinatorial bound on the sum of binomial
coefficients and plays a key role in information and communication theory. The
original proof of this inequality was very long. Park [2] gave an induction proof
of the inequality. However, there is a problem with his proof. In this note, I show
why and give a refined proof.Let
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Park [2] based his proof of (1) by assuming the following inequality was true:
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The inequality (2) is generally not true. In fact, for n =7 and ! = 2, we have
a7(2) +ar(4) = 0.931 > (e™* +¢7%)° = 0.791.

Now we correct Park’s proof by induction. Obviously, A(n,0) = B(n,0) =
When n = 21, A(2L,1) < A(2,2l) = 2% = B(2,1). The inequality (1) is satisfied
in this case. It remains that (1) holds for (n + 1,{ + 1) if it is satisfied for (n,!)
and (n,l+1),/4+1 < 3. In other words, we must prove

A(n,l) £ B(n,l),A(n,l + 1) £ B(n,l +1).
Noting that
A(n+1,l+1) = A(n,l +1) + A(n, 1),
we have
An+1,1+1) < B(n, )+ B(n,l+1)=B(n+1,l+1)(an(l) +an(n -1 —1)).
Based on the following inequality:
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we have a,(l) + an(n — 1 ~ 1) < 1. This completes the proof.(3) is a typical

inequality and can be found in [3]. Also, we can directly show (3). The function
f(z) =z+zIn(l1+ %) — (1+2z)In(1+z) is increasing for 0 < = < 1 and we have

f= )——+ ln(1+")—(1+ )ln(1+ )>f(0)
which yields
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A similar argument shows
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Now we give an additional proof of (1). The function g(z) = —£ log2 -~ —-(1-

Z)log,(1 - i) is increasing in the interval 0 < z < ! where 2/ < n and hence

27PHG) = 27 < g7 = Ly - Dy <),

Multiplying by ( ) and summing gives

"‘"‘)Z( )<Z( )L) - "‘<Z( M - =1

=0 =0
which shows (1).
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