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Abstract

We introduce a new class of colorings of graphs and define and
study two new graph coloring parameters. A coloring of a graph
G = (V,B) is a partition II = {h,V3,...,Vi} of the vertices of G
into independent sets V;, or color classes. A vertex v € V; is called
colorful if it is adjacent to at least one vertex in every color class Vj,
i # j. A fall coloring is a coloring in which every vertex is colorful.
If a graph G has a fall coloring, we define the fall chromatic number
(fall achromatic number) of G, denoted xs(G), (¥5(G)) to equal the
minimum (maximum) order of a fall coloring of G, respectively. In
this paper we relate fall colorings to other colorings of graphs and to
independent dominating sets in graphs.

Dedicated to Ernie Cockayne: 60 and going strong
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1 Introduction
Unless stated otherwise, we follow the notation and terminology in [9]. A

k-coloring of a graph G = (V, E) with vertex set V and edge set E, is a
partition Il = {V}, V,,...,Vi} of the vertex set V(G) into independent sets
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V;, each of which is called a color class. The minimum integer k for which a
graph G has a k-coloring is called the chromatic number of G and is denoted
x(G).

A coloring is called complete if for every 1 < i < j <k, there is a vertex
u € V; and a vertex v € V; such that u is adjacent to v. The maximum order
of a complete coloring of a graph G is called the achromatic number and is
denoted 9(G). First defined and studied by Harary and Hedetniemi [5] in
1970, the achromatic number provides an upper bound for the chromatic
number of a graph, i.e. for any graph G, x(G) < ¢(G). Notice that every
coloring of a graph G with x(G) colors must be a complete coloring.

A Grundy k-coloring of a graph G is a k-coloring I1 = {3, V5, ..., Vi}
such that for each color class V;, 1 < i < k, every vertex v € V; is adjacent
to at least one vertex in color class V; for every j < i. The Grundy number
I'(G) is the maximum integer k for which G has a Grundy k-coloring. First
introduced by Christen and Selkow [1] in 1979, and later in [6], the Grundy
number can be seen to satisfy the following inequality for every graph G:
x(G) < I(G) < ¥(G). Notice further that every Grundy coloring of a
graph G is a complete coloring. One can also observe that the minimum
integer k for which a graph G has a Grundy k-coloring is always equal to the
chromatic number, x(G), but there exist graphs G for which I'(G) < ¥(G).

Let IT = {V,V2,...,Vi} be a coloring of a graph G and let v € V;.
We say that vertex v is a Grundy vertex if it is adjacent to at least one
vertex in every set V;, 1 < j < 4. A coloring II is called a partial Grundy
coloring if every color class V; contains at least one Grundy vertex, for every
2 < i < k. The partial Grundy number of a graph G, denoted 6I'(G), is the
maximum order of a partial Grundy coloring of G. Note that since every
Grundy coloring of a graph is also a partial Grundy coloring, it follows that:
[(G) < 9T(G).

The next type of coloring which we will consider was introduced in
1997 by Irving and Manlove [7]. We define this type of coloring using
terminology that is newly defined here. We say that a vertex v € V; in
a coloring II = {V},Va,..., Vi } is colorful if it is adjacent to at least one
vertex in each color class Vj, ¢ # j. A color class V; is called colorful if it
contains at least one colorful vertex, and a coloring Il is called colorful if
every color class is colorful. The maximum order of a colorful coloring of a
graph G is called the b-chromatic number, and is denoted ¢(G). It is easy to
see from the definition, that every colorful coloring is a complete coloring.
Therefore, for every graph G, x(G) < ¢(G) < ¥(G). One can observe that
the minimum order of a colorful coloring of a graph G is always equal to
the chromatic number x(G). It is also worth noting, as observed in (7], that
no inequality relation holds between ¢(G) and I'(G).

A set S C V is called a dominating set if for every vertex v € V' —.S there
exists a vertex u € S such that u is adjacent to v. The minimum cardinality
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of a dominating set in a graph G is called the domination number of G, and
is denoted v(G). A set S C V is called independent if no two vertices in S
are adjacent. The minimum cardinality of an independent dominating set
in a graph is called the independent domination number of G and is denoted

i(G).

2 Fall Colorings of Graphs

We say that a colorful k-coloring II = {V4,V5,...,Vi} is a fall coloring
if every vertex v € V is colorful. The minimum integer & for which a
graph G has a fall k-coloring is called the fall chromatic number and is
denoted xs(G@). The maximum integer k for which a graph G has a fall k-
coloring is called the fall achromatic number, ¥;(G). Notice that it follows
immediately from the definition of ¥;(G) that for any graph G, ¥;(G) <
8(G) + 1, where §(G) equals the minimum degree of a vertex in G.

It is easy to see that every bipartite graph without isolated vertices has
a fall 2-coloring. In fact, every 2-coloring of a bipartite graph G without
isolated vertices is a fall 2-coloring, since every vertex colored 1 is adjacent
to at least one vertex colored 2, and every vertex colored 2 is adjacent to at
least one vertex colored 1. Notice in this case that each color class is both
an independent set and a dominating set.

Theorem 1 The cycle C,, has a fall 3-coloring if and only if m = 0 mod 3.

Proof. It is trivial to see that the cycle Cs,, has a fall 3-coloring; sim-
ply color the vertices, in consecutive order, 1,2,3,1,2,3,1,2,3,.... Assume
therefore that m = 3k + 1 or 3k + 2. If C,,, has a fall 3-coloring, then each
color class must be an independent dominating set. But it is well-known
that v(Cm) = i(Cn) = [m/3], and since m = 3k + 1 or 3k + 2, then
3[m/3] > m. Thus, at least one color class cannot be a dominating set,
i.e. neither C3441 nor Csi42 has fall 3-coloring. O

Not every graph has a fall k-coloring, for any k. For example, the
5—cycle Cs has chromatic number 3 but does not have a fall k-coloring for
any k. If a graph G does not have a fall k-coloring, for any k, we say that
Xs(G) = 0. Later in this paper, we will consider the algorithmic complexity
of answering the following question:

FALL COLORING

INSTANCE: Graph G = (V, E).

QUESTION: Does G have a fall k-coloring for any positive in-
teger k7

We must first point out that there is a very close connection between fall
colorings of a graph G and the existence of disjoint independent dominating
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sets in G. The domatic number d(G) is the maximum order of a partition
of V(G) into dominating sets. The domatic number was introduced in 1977
by Cockayne and Hedetniemi [3], who observed from a well-known theorem
of Ore [8], that since the complement V' — S of every minimal dominating
set S in a graph G without isolated vertices is a dominating set, it must be
the case that for graphs without isolated vertices, d(G) > 2.

A partition of the vertex set V(G) into independent dominating sets is
called an idomatic partition of G, also introduced in [3]. The maximum
order of an idomatic partition of G is called the idomatic number id(G). If
a graph G has no idomatic partition, then we say that i{d(G) = 0. Notice
that any 2-coloring of a connected bipartite graph into color classes V; and
V, is, in fact, a partition of G into two disjoint independent dominating
sets. Therefore, every connected bipartite graph G has id(G) > 2.

Proposition 1 For every graph G, ¥;(G) = id(G).

Proof. Let II = {V;,V2,...,Vi} be a fall coloring of a graph G = (V, E)
with k = 9¢(G) colors. Assume that k > 0. Since II is a coloring, we know
that every color class V; is an independent set. We must show that V; is
also a dominating set, i.e. for every vertex v € V — V; there exists a vertex
u € V; such that u is adjacent to v. But since every vertex in a fall coloring
is colorful, v must be adjacent to at least one vertex in each color class, and
in particular v must be adjacent to at least one vertex in V;. Therefore, V;
is a dominating set, II is an idomatic partition, and ¥;(G) < id(G).

Conversely, let II = {V;,Va,...,Vi} be a partition of V(G) into k =
id(G) independent dominating sets. We must show that II is a fall k-
coloring, i.e. we must show that every vertex v € V(G) is colorful. Let
v € V; and let Vj, j # 1, be an arbitrary set of II. Since Vj is an independent
dominating set of G, there must be at least one vertex in V; which is
adjacent to v. Therefore, v is colorful and II is a fall k-coloring. Therefore,
id(G) < $4(C). 0

In 1976 Cockayne and Hedetniemi [2] first studied disjoint independent
dominating sets in graphs. They defined a parameter b(G) to equal the
maximum number of disjoint independent dominating sets which can be
found in a graph G. Further, they called a graph G indominable if the
vertex set V(@) can be partitioned (completely) into disjoint independent
dominating sets. In the terminology of the current paper, we would say
that a graph has a fall coloring if and only if it is indominable.

In [2] the following classes of graphs are shown to have fall colorings:

1. complete graphs i, have {only) fall n-colorings;

2. connected bipartite graphs, including all m x n grid graphs,
trees, and n-cubes, have fall 2-colorings;
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3. complete k-partite graphs have (only) fall k-colorings;

4. cycles of the form C,, have fall 2-colorings and cycles of
the form Cs,, have fall 3-colorings;

5. uniquely k-colorable graphs, including maximal outerpla-
nar graphs, have fall k-colorings;

6. k-trees have fall (k + 1)-colorings;

7. graphs of the form K, »— 1l-factor have (only) fall 2- and
m-colorings;

8. domatic-critical graphs, i.e. graphs for which d(G) = k,
but for which d(G — €) < k for every edge e € E, have fall
k-colorings;

9. regular graphs for which d(G) = k& = §(G) + 1 have fall
k-colorings;

10. the complements of graphs G of order n, which have no
triangles and have a 1-factor, have fall n/2-colorings;

11. the complement of the Petersen graph has a fall 5-coloring,
although the Petersen graph has no fall k-coloring for any k;

12. the join G + H of two graphs, each of which has a fall
coloring, say of orders k and I, has a fall (k + {)-coloring.

The Fall Chromatic and Achromatic Num-

bers

In this section we assume that every graph considered has a fall coloring,
and therefore x;(G) and ¥;(G) are well-defined. The inequality chain
below follows immediately from the definitions of these types of colorings,

and the next five observations:

1. every fall coloring is a colorful coloring;

2. every fall coloring is a Grundy coloring;
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3. every colorful coloring is a complete coloring;;
4. every Grundy coloring is a partial Grundy coloring;

5. every partial Grundy coloring is a complete coloring.

Proposition 2 If a graph G has a fall coloring, then

x(@) <x,(6) <9, < { %9 1 <ore) < wie)

Given this new inequality chain, it is appropriate to consider, for each
consecutive pair of parameters, whether there exist classes of graphs for
which these parameters are different, or for which the difference in value
between these two parameters can be arbitrarily large.

For arbitrary graphs G and H, we define the Cartesian product of G
and H to be the graph GOH with vertices {(u,v)lu € G,v € H}. Two
vertices (u),v1) and (u2,v;) are adjacent in GOH if and only if one of the
following is true: u; = us and v is adjacent to vy in H; or v; = v9 and u
is adjacent to us in G.

1. x(G) £ x¢(G). The graph G = C40Cs is a graph for which x(G) = 3,
yet xs(G) = 4. Furthermore, x(C50Cs) = 3, while x;(C50C5) = 5.
To date, we have not been able to construct a graph G for which
xs(G) — x(G) > 3.

2. x7(G) £ ¥4(G). It can be inferred from an observation in [2] that the
difference between x;(G) and ¥;(G) can be arbitrarily large. Con-
sider only the graph H = K, ;, — 1-factor. For this graph x;(H) = 2
while ¥y (H) = n.

3. ¥;(G) < I'(G). Note that for any graph G, ¢;(G) < §(G) + 1, since
every vertex must be colorful. Therefore, for any tree T', 94(T) = 2.
However, it is well-known that for any positive integer k, there exists a
tree T'(k) for which ['(T'(k)) = k. Such a tree T'(k) can be constructed
as follows: (i) let T'(1) be the tree on a single vertex, (ii) let T'(k) be
the tree constructed from T'(k — 1) by adding a pendant vertex to
every vertex of T'(k —1). The tree T(k) is known as the binomial tree
By; it has 2% vertices and satisfies: I['(T'(k)) = .

4. ¥5(G) < ¢(G). Let P, be a path with vertices labeled v;,vs,...,v,.
To each vertex v;, 1 < 7 < n, add n — 2 pendant vertices. It can
be seen that the graph H so constructed satisfies: 1;(H) = 2, while
$(H) = n.
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5. I['(G) < 8T(G). Let P, be a path with vertices labeled vy, vz, ..., n.
To each vertex v;, 3 < i < n, add 7 — 2 pendant vertices. It can
be seen that the graph H so constructed satisfies: I'(H) = 4, while
OI(H) =n.

6. ¢(G) < OT(G). It is easy to see that if a graph G has ¢(G) =k + 1,
then it must have at least k + 1 vertices of degree at least k. The tree
H in item 5 above can be seen to satisfy

4=+

whereas OT'(G) = n. Thus, the difference between ¢(G) and 0I'(G)
can be arbitrarily large.

7. OT(G) < ¥(G). It is easy to see that for any graph G, OI'(G) <
A(G) + 1, where A(G) denotes the maximum degree of a vertex in
G. Therefore, for a path P,, 8T'(P,) < 3. However, it is well-known
that for any positive integer k, ¥/(P,) > k, for n sufficiently large. In
particular, if & is odd and n = k(k —1)/2, then 9(P,) = k. Thus, the
difference between 8T'(G) and ¥(G) can be arbitrarily large.

4 Fall Colorings of Cartesian Products

In this section we study fall colorings of the families of Cartesian products:
P,0P,, Cn0OP, and C,,OC,. Since these graphs G satisfy: 2 < §(G) < 4
and A(G) < 4, they can only have fall colorings of orders 2, 3, 4 and 5.

Theorem 2 For any positive integers m and n, the Cartesian product
P,,0OP, has a fall 2-coloring, but does not have a fall k-coloring for any
integer k > 3.

Proof. Let G be the Cartesian product for P, 0P, and label the vertices
of G as a1,1,Q1,2,-..,01,n, 32,1,82,2,-++3;802,n9- -+, Cm,1, %25 - - - y Am,my where
aij = (vi,vj).-

Since P,0OP,, is bipartite, it clearly has a fall 2-coloring. Further, since
8(G) = 2, it has no fall k-coloring for £ > 3. Suppose a fall 3-coloring
exists. Without loss of generality, we assume that the vertices a;,1,a1,2,
and ap,; are assigned colors 1, 2, and 3, respectively. Then az 2 must have
color 1 in order to have a proper coloring. Next, ag, must have color 2,
in order for az; to be a colorful vertex. Again a3z must be colored 3 to
retain a proper coloring, and then a4,; must be colored 1 in order for a3
to be a colorful vertex. Continuing in this way, a;,—1,2 # @m, and so am 2
must be assigned the same color as a,,—1,1 to maintain a proper coloring.
But this means that a,,, cannot be a colorful vertex. O
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Proposition 3 The greph C,,OP, has a fall 2-coloring if and only if m > 4
is even.

Proof. Clearly no odd cycle can be 2-colored. Thus, if C,,,0F, has a fall
2-coloring, then m must be even. But every graph C,,0F,, for m even, is
a connected, bipartite graph, and hence has a (unique) fall 2-coloring. 0O

Proposition 4 The graph C3, 0P, has a fall 3-coloring for alln > 1.

Proof. By Theorem 1 we know that C3,, has a fall 3-coloring. Figure 1
shows that a fall 3-coloring of Cs,, can easily be extended to a fall 3-coloring

of C3,,OPF,. a
1 2 3 1
2 3 1 2
31 2 3
1 2 3 1
2 3 1 2
3 1 2 3

Figure 1: Fall 3-coloring of C3,,0F,

Proposition 5 The graphs Cs;4+10P, and C3+20P, do not have a fall
3-coloring for any value of k > 1.

Proof. Let us assume that the graph Cs;41 0P, consists of n columns of
3k + 1 vertices, each column defining a cycle C3g41. In every 3-coloring of
the cycle C3p41 there must exist two vertices which are colored the same
and have a common neighbor (i.e. are distance two apart). This gives rise
to the situation in Figure 2.

— D
NN
e LM oW
— DD =

Figure 2: No fall 3-coloring of C3+1 0P,

Without loss of generality, we can assume that vertices in the first col-
umn labeled v, and v;3 are colored the same, say color 1. We can further
assume that vertex v, is colored 2. But this implies that vertex vss must
be colored 3, else vertex v;» is not colorful.
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Now in the second column, it must be the case that vertices vs; and
vog are both colored 2. This means that vertex ves is not (yet) colorful,
since it is not adjacent with a vertex colored 1. If there is a third column,
then vertex vs» must be colored 1, else vertex vy is not colorful. But this
implies that vertices v3; and vss must both be colored 3, and this means
that vertex vsg is not (yet) colorful, since it is not adjacent with a vertex
colored 2.

This in turn means that if there were a fourth column, then vertex vso
would have to be colored 2 so that vertex vzs can be colorful. It follows from
this argument that by continuing to color C3j41 0P, in this way, vertex vns
will not be colorful. Therefore, Caj+1 0P, does not have a fall 3-coloring.

The same argument applies to the graphs Csr420P,, since every 3-
coloring of the cycle Csy2 must result in two vertices having the same color
which are distance two apart. This means that any attempt to produce a
fall 3-coloring will be forced to consider the same cases as above. O

Proposition 6 The graph C, OCy has a fall 2-coloring if and only if both
m >4 and n > 4 are even.

Proof. Clearly C,,0C, has a fall 2-coloring if and only if it is bipartite,
and C,,,0OC, is bipartite if and only if both m and n are even, for m,n > 4.
(m]

Theorem 3 The graph C,OCy, has a fall 3-coloring if and only if either
m = 0 mod 3 or n =0 mod 3.

Proof. We first show that the graph C3,DOC), has a fall 3-coloring for all
n > 1. This result can be proved by a simple additions to Figure 1 which
is used to show that Cs,, 0P, has a fall 3-coloring, for all n > 1. We need
to point out that in the graph C3»,0C, there are edges connecting each
vertex v;,; in the first column to the vertex v; » in the last column.

In order to show that Cs,, OC, has fall 3-colorings for every value of
n > 1, we will consider three cases: » = 0mod 3, n = 1mod 3 and n =
2 mod 3.

If n = 0 mod 3, i.e. n = 3k for some positive integer k, we repeat the
first three columns of Figure 1 k times.

If n = 1mod 3, i.e. n = 3k + 1 for some positive integer k, we repeat
the first three columns of Figure 1 k times and then add a copy of column
2.

Finally, if n = 2 mod 3, we repeat the first three columns of Figure 1 k
times and then add a copy of column 2 and column 3.

We next show that the graphs Csm+10C, and C3m4+20C, have a fall
3-coloring if and only if n = 0 mod 3. Figure 3 illustrates a fall 3-coloring
of C;0Cs.
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1 2 3 1 2 3
2 31 2 3 1
1 2 3 1 2 3
2 3 1 2 3 1
1 2 3 1 2 3
2 31 2 3 1
31 2 3 1 2

Figure 3: Fall 3-coloring of C7;0Cs

Clearly this pattern generalizes to C3p,4+10C3,. Let the first row of
Figure 3 be called A, the second row called B, and the last row called C. A
fall 3-coloring of C3,,4.10C3, is obtained by an alternating sequence of A’s
and B’s of length 3m followed by one C.

A fall 3-coloring of C5,,4+20C3, is obtained by an alternating sequence
of A’s and B’s of length 3m + 1 followed by one C.

The fact that these graphs do not have fall 3-colorings if n # 0 mod 3
is a consequence of the observation that in the first column there will have
to be two vertices at distance two apart which have the same color. For
example, the first and third vertex in the first column in Figure 3. In any
possible fall 3-coloring of such a graph the colors in the first three rows are
uniquely forced (up to isomorphism). Therefore, terminating the coloring
at any column other than those which are multiples of three will fail to
produce a fall 3-coloring. (]

Proposition 7 The graphs C4;,0P;, and C4,,0C2, have a fall 4-coloring
forallm>1andn > 2.

Proof. Figure 4 shows that a fall 4-coloring of C40Ps or C40OCj can easily

be extended to a fall 4-coloring of Cy;,, OPs, or Cyp, OCs,. O
1 3 1 3 1 3
2 4 2 4 2 4
31 3 1 3 1
4 2 4 2 4 2

Figure 4: Fall 4-coloring of Cy4,,0C>,

Proposition 8 The graph C,,OC,, has a fall 5-coloring if and only if m =
0 mod 5 and n = 0 mod 5.
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Proof. Figure 5 shows that a fall 5-coloring of CsCs can easily be ex-
tended to a fall 5-coloring of Cs,,0Cs, by repeating this 5 x § pattern in
each direction.

[S S TR
N = OV W
BN O
-G R LN
W N = O A

Figure 5: Fall 5-coloring of C5,0C5,

Suppose, conversely, that a graph G = C,,0C, has a fall 5-coloring.
Since G is a 4-regular graph (i.e. every vertex is adjacent to exactly four
vertices), in any fall 5-coloring of G, every vertex must be adjacent to
exactly one vertex of each color, other than its own color. Equivalently, no
vertex can be adjacent to two vertices having the same color.

But since each of the five color classes is an independent dominating set,
each color class is an efficient dominating set, i.e. for any two vertices of the
same color, say u,v € Vi, N[u]JnN[v] = 0, and furthermore, |J,,.cy, N[vi] =
V. This implies that |[V| = mn = 0 mod 5, since |N{v;}| = 5, for every
vertex v; € V(G). It follows that mn = Omod 5 if and only if either
m = 0mod 5 or n = 0 mod 5. In fact, we can show that if G has a fall
5-coloring, then both m = O mod 5 and n = 0 mod 5. The proof of this
involves a case analysis very similar to that used in the proof of Theorem
3 and is omitted. a

We conclude this section with the following result about fall colorings
of Cartesian products.

Theorem 4 If a graph G has a fall s-coloring and a graph H has a fall
r-coloring, for s > v, then the Cartesian product GOH has a fall s-coloring.

Proof. Let {Vi,Va,...,V;} be a fall s-coloring of G and let {Uy,U>, ..., Ur}
be a fall r-coloring of H. Consider subscripts (on the first coordinate)
modulo s and define the subsets Wi, Wa, ..., W, of the vertex set of graph
GOH as follows:

Wj = Uimy (Vis-n X U3) -

The partition {Wy, Wa, ..., W,} is a fall s-coloring of the graph GOH.
]
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5 Fall Colorings of Categorical Products

For arbitrary graphs G and H, we define the categorical product of G and
H to be the graph G x H with vertices {(u,v)|u € G,v € H}. Two vertices
(u1,v1) and (uz,v2) are adjacent in G x H if and only if u; is adjacent to
ug in G and v; is adjacent to vy in H. In this section we show that the
categorical product can be used to specify graphs having fall k-colorings
for every integer k in an arbitrarily specified set S = {ny,na,...,nn} of
positive integers.

Theorem 5 If r > 2 and s > 2 are distinct positive integers, then the
categorical product K. x K, has a fall r-coloring and a fall s-coloring. Fur-
thermore, if n is a positive integer different from both r and s, then K, x K
does not have a fall n-coloring.

Proof. Let V(K,) = {aj,a,...,a,} and let V(K,) = {b1,bo,...,bs}.
Note that the vertices x = (ap,b,) and y = (am,b,) are adjacent if and
onlyif p#mand g #n. For 1 <i <, let A; = {(a;,b;)|1 <j < s}, and
for1<j<s,let B; = {(a,-,b,-)|1 <i< 'l'}.

Assume M is an independent dominating set of K, x K,. If [MNA;| > 2
for some ¢, then since A; is independent it follows that M = A;. Similarly,
if |[M N Bj| > 2 for some j, then M = B;. But if (ap,b,) and (am,bn)
belong to M, then since M is independent, it follows that p = m or ¢ = n.
Therefore, either M = A; for some ¢ or M = B; for some j. That is,
K, x K has a fall r-coloring and a fall s-coloring and no others. a

It is interesting to note that Theorem 5 does not generalize to categorical
products of three or more complete graphs. For example, the categorical
product K> x K3 x K4 has fall 2—, 3— and 4-colorings, but also has a fall
6-coloring, as follows. Label the vertices of K x K3 x K4 lexicographically:
1=(1,1,1),2=(1,1,2),3 =(1,1,3),4 = (1,1,4),5 = (1,2,1), etc. A fall
6-coloring is given by the following partition: {1,6, 14,17}, {5,10,18, 21},
{2,9,13,22}, {3,8,16,19}, {7,12,20,23}, {4,11,15,24}.

Therefore, given an arbitrary set S of positive integers, an analogous
proof shows that the categorical product of complete graphs K, for every
integer a € S, has fall a-colorings, for every integer a € S. However, this
categorical product may have other (perhaps unwanted) fall k-colorings.

Notice also that such categorical products have rather large order. For
example, if you seek a graph having fall k-colorings for every positive integer
k, 2 < k < m, then the categorical product G = K x K3 x ... x K, will
have fall colorings for all of these values of k. However, this graph will have
m! vertices, and will be regular of degree (m — 1)!

There is a another method of constructing graphs having fall k-colorings
for consecutive values of k, which does not require an exponential number of
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vertices. Consider the following example. Let G = K3 33,3,3,3, the complete
6-partite graph, each component of which has three vertices. We assume
that the vertices of G are partitioned naturally into six independent sets,
Vi, Vo, Vs, Vi, Vs, Vi, each of size three. The subgraph induced by any two
of these sets defines a complete bipartite graph K3 3.

Now from the subgraph K33 defined by the pair V;, V> remove a max-
imum matching, i.e. three independent edges. Do the same for the sub-
graphs defined by V3 and V; and by Vs and V5. Let H3 333,33 = Hgz) be
the resulting graph.

Proposition 9 The graph Hgs) has fall 6—, 7—, 8— and 9-colorings. Fur-
thermore, Hg(s) has no fall k-colorings for any other values of k.

Proof. It is easy to see that the natural partition {V1,Va, Vs, V4, Vs, Vs}
defines a fall 6-coloring. Let the vertices of V; = {v11,v12,v13}, and Vo =
{v21,v22,v23}. We assume that edges (v11,v21), (v12,v22) and (v13,v23) have
been removed between V; and V5.

A fall 7-coloring is defined by the partition:

{{v11,v21}, {v12,v22}, {13, v23}, V3, Vi, V5, Vs }-

Similarly, a fall 8-coloring is defined by the partition:

{{v11,v21}, {vi2,v22}, {v13, v2s}, {vs1,va1}, {vs2, vaz}, {vas, vas}, V5, V6 }.

A fall 9-coloring can be obtained from the fall 8-coloring above by split-
ting sets Vs and Vg into sets {vs1,ve1}, {vs2,ve2}, and {vs3,ve3}.

It is easy to see that the graph Hg(s) does not have any fall k-colorings
for any other values of k. This follows immediately from the observation
that the only independent dominating sets in Hgs) are of the form V; or
{U(Zi—l)ja U(‘Zi)j}' D

If, for example, we want five consecutive values of fall colorings, then we
start with the graph Kg(3). We then pairwise remove matchings between
all consecutive sets of vertices Va;_; and Va;. The resulting graph Hg(s) has
fall k-colorings for k = 8,9,10,11,12.

In this way, if we seek a graph having fall k-colorings for m consecutive
values of k, we construct the graph H(z.;,_2)(3) having 2m — 2 vertex sets
of size three. In this case, the number of vertices grows linearly with the
value of m, rather than exponentially using categorical products.

6 Complexity Results

In this section we address the complexity issues connected with fall color-
ings. First we define three distinct, but related, decision problems.

K-FALL-COLORING (KFC)
INSTANCE: A graph G = (V,E)
QUESTION: Does G have a fall K-coloring?
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FALL COLORING (FC)
INSTANCE: A graph G = (V, E)
QUESTION: Does G have a fall coloring?

FALL K-COLORING (FKC)
INSTANCE: A graph G = (V, E), an integer K
QUESTION: Does G have a fall K-coloring?

Before addressing these three problems we will prove the following lemma.

Lemma 1 If KFC is NP-complete for some integer K, then (K + 1)FC is
NP-complete.

Proof. For a graph G, let G* denote the graph obtained from G by adding
one new vertex, and adjoining it to all other vertices. It is easy to see that
G has a fall K-coloring if and only if G* has a fall (K + 1)-coloring. Thus
the map G — G* is a transformation from KFC to (K + 1)FC. m]

Theorem 6 Problem KFC is NP-complete for each K > 3.

Proof. By Lemma 1 it is sufficient to show 3FC is NP-complete. To see
that 3FC € NP, let f: V — {1,2,3} be any 3-coloring of the vertices of
a graph. It can be verified in polynomial time whether f defines a fall 3-
coloring. To show that 3FC is an NP-complete problem, we will establish
a polynomial transformation from the NP-complete problem NOT-ALL-
EQUAL-3SAT [4]. An instance I of NOT-ALL-EQUAL-3SAT consists of
aset X = {X1,Xs,..., Xy} of variables and a set C = {C},C,,...,C;} of
clauses, each of which has three literals from the set X. A solution to an
instance I of NOT-ALL-EQUAL-3SAT consists of an assignment of truth
values to the variables in X such that each clause in C has at least one true
literal and at least one false literal.

We transform each instance I of NOT-ALL-EQUAL-3SAT to an in-
stance G of KFC as shown in Figure 6.

Initialize Gy with k disjoint copies of the graph K3 and label the vertices
of the ith copy as {y:, z;, Z;}. Label the vertices of another copy of K3 with
{a,b,c}, and add edges by; and cy; for i = 1,2,...,k. Corresponding to
each clause C; € C add a single vertex ¢; to the graph G;. Finally, join
each vertex c¢; to the three vertices in clause C;. Clearly the construction
can be accomplished in polynomial time. All that remains is to show that
I has a satisfying truth assignment if and only if G has a fall 3-coloring.
Assume first that I has a satisfying truth assignment f : X — {T,F}.
Color the vertices {a, b, ¢} in Gy with the colors {1, 2, 3}, respectively. Next
color every vertex y; and every vertex c¢; with the color 1. Finally, for
i=12,...,k,if f(X;) =T, color the associated vertex z; with the color
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Figure 6: The graph G obtained from NOT-ALL-EQUAL-3SAT instance

2. Otherwise color Z7 with the color 2. Color all remaining vertices 3.
Clearly this coloring is a proper coloring, and every vertex in a triangle is a
colorful vertex. The only vertices to check are the vertices ¢;. But since f is
a satisfying truth assignment, every clause C; has at least one true literal,
and its literals are not all equal, so it has at least one false literal. Thus
every vertex ¢; is colorful. Assume next that Gy has a fall 3-coloring. Then
without loss of generality, we may assume the vertex a is colored 1. Since
a is colorful, b and ¢ must have the colors 2 and 3. This forces each y; to
have the color 1. Since each color class is an independent set, this means
the vertices z; and T; must have colors 2 or 3. Thus each ¢; must have color
1. We define a function f : X — {T, F} by saying f(X;) = T iff ; has
color 2, and otherwise f(X;) = F. Since the coloring is a fall 3-coloring,
each vertex c; is adjacent to at least one vertex with color 2 and at least
one vertex with color 3. Thus the function f defined here is a satisfying
truth assignment for NOT-ALL-EQUAL-3SAT. o

Theorem 7 Problems FC and FKC are NP-complete.

Proof. In the mapping I — G used in Theorem 6, G; has a vertex
of degree 2. Thus G, has a fall coloring if and only if it has a fall 3-
coloring. Hence this mapping is also a transformation from NOT-ALL-
EQUAL-3SAT to FC, and so FC is NP-complete. Finally, problem FKC
is NP-complete since the mapping I — (Gr,3) is a transformation from
NOT-ALL-EQUAL-3-SAT into FKC. o

7 Summary and Open Problems
As the following list of open problems suggests, we have only scratched

the surface of the subject of fall colorings of graphs. In addition to the
questions below, it can be seen that fall colorings of graphs can be found in
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the study of latin squares, colorings of Queens graphs and Rooks graphs,
and the study of block designs.

1.
2.

Can the difference between x(G) and xs(G) be arbitrarily large?

Does there exist a graph G for which the following strict inequality
chain holds:

X(G) < x¢(G) < ¥5(G) < ¢(G) < I(G) < Y(G)?

What is the smallest graph with § = k which does not have a fall
coloring? For § = 1 the smallest graph with no fall coloring is the
graph K3 with a pendant vertex. For § = 2 the smallest graph with no
fall coloring is Cs. For § = 3 the smallest graphs with no fall colorings
are the wheel of order 6 and the graph which is the complement of
the graph K3 U P;. Finally, it can be shown that the complement of
the cycle C7 is the unique smallest graph with § = 4 having no fall
coloring.

Do colorful colorings interpolate? i.e. if a graph G has colorful col-
orings of orders ¢ and k, does it also have colorful colorings of every
order j, i < 7 < k? Recall that we have shown that fall colorings do
not interpolate.

What fall colorings do the n-cubes have? We note that the 3-cube
@3 has a fall 2-coloring and a fall 4-coloring, but does not have a fall
3-coloring.

Settle the NP-completeness of the decision problem associated with
the parameter ¥7,(G).

Is %1:(G) < ¢(G)?

Under what conditions does the categorical product of a set of com-
plete graphs K., for every integer r in some specified set S, have a
fall k-coloring for some integer &£ not in S?
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