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Abstract. A vertex set S C V(G) is a perfect code or efficient dominating set for a graph
G if each vertex of G is dominated by S exactly once. Not every graph has an efficient
dominating set, and the efficient domination number F(G) is the maximum number of
vertices one can dominate given that no vertex is dominated more than once. That
is, F(G) is the maximum influence of a packing § C V(G). In this paper we begin
the study of LF(G), the lower efficient domination number of G, which is the minimum
number of vertices dominated by a maximal packing. We show that the decision problem
associated with deciding if LF(G) < K is an NP-complete problem. The principle result
is a characterization of trees T where LF(T) = F(T).

1 Introduction

For a graph G = (V,E), a vertex v € V(G) is considered to dominate
itself and each vertex in its open neighborhood, N(v) = {w € V(G) :
vw € E(G)}. That is, v dominates each vertex in its closed neighborhood,
N[v] = {v} UN(v). For § C V(G), we have N[S] = U,esN[s], and S
is a dominating set if N[S] = V(G). The domination number v(G) is the
minimum cardinality of a dominating set, and the upper domination number
I'(G) (see Cockayne and Hedetniemi [4] and Slater [13]) is the maximum
number of vertices in a minimal dominating set. Similarly, the independence
number B(G) is the maximum number of vertices in an independent set in
V(G), and the lower independence number i(G) is the minimum number of
vertices in a maximal independent set. These and many other such pairs of
parameters are considered in Haynes, Hedetniemi, and Slater (10, 11]. In
particular, Cockayne, Hedetniemi, and Miller [5] consider irredundance and
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upper irredundance numbers ir(G) and IR(G), and we have the following
famous inequality chain.

Theorem 1 (Cockayne, et al. [5]) For any graph G,
ir(G) < ¥(G) <i(G) < B(G) < T(G) < IR(G).

As described in [10], Plummer {12] introduced the now well-studied class
of well-covered graphs, graphs G with i(G) = 8(G). Finbow, Hartnell, and
Nowakowski [6] began the study of graphs with v(G) = I(G).

We can consider how many times a vertex w is dominated by a set
S, that is, |N[w] N S|. Note that a vertex v of degree deg(v) dominates
1 + deg(v) = |N[v]| vertices. As in Grinstead and Slater [8], the influence
of vertex set S is I(S) = Y ,es(1 + deg(s)) = Lyev(c) INw] N S|, which
is the amount of domination done by S. For example, the redundance of G
is R(G) = min{I(S) : N[S] = V(G)}, the minimum amount of domination
done by a dominating set. If we require that |N[w]NS| < 1forallw € V(G),
then for any two vertices u and v in S, we must have the distance d(u, v) >
3, that is, S is a packing. The maximum order of a packing is denoted
p(G). Note that S is a packing if and only if I(S) = [N [S]|. As in Biggs
3], a packing S with N[S] = V(G) (equivalently, with I(S) = [V(G)]) is a
perfect code, a set that dominates every vertex exactly once. As in Bange,
Barkauskas, and Slater [1, 2], not every graph has a perfect code, so the
efficient domination number of G is F(G) = max{I(S) : S is a packing},
the maximum number of vertices one can dominate given that no vertex is
dominated more than once. When F(G) = |V(G)|, a perfect code is also
called an efficient dominating set. In a manner similar to defining I and ¢,
in [14] several “upper” and “lower” parameters were defined. In particular,
the lower efficient domination number LF(G) = min{I(S) : S is a maximal
packing } is the minimum number of vertices dominated by a maximal
packing, that is, the minimum influence of a maximal packing. For the tree
T in Figure 1, F(T) = I({v1,v4}) = I({vs}) = 4and LF(T) = I{{ve}) = 3.

Thus, LF(G) and F(G) are the minimum and maximum influence of
maximal packings, and R(G) and UR(G) are the minimum and maximum
influence of minimal dominating sets. One of the parameters considered in
Grinstead and Slater [9] is RI(G), where RI(G) and URI(G) are the min-
imum and maximum influence of independent dominating sets. A referee
of this paper has observed that the influence of maximal irredundant sets
might also be of interest. We let I;.(G) and I} (G) denote the minimum
and maximum influence, respectively, of maximal irredundant sets. Us-
ing similar notation, one could write Iy, (G) = R(G), I} (G) = UR(G),
I 4(G) = RI(G), and I} ,(G) = URI(G), and we have the following propo-
sition.
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Proposition 2 For any graph G,
I;70(G) £ I3om(G) S I y(G) S I 4(G) < I, (G) < IE,(G)

As noted in Grinstead and Slater (8], |V(G)| < R(G) = I,,.(G), but it
can be easily verified that [V(G)| and I;,.(G) are incomparable.

T U4

Us

Figure 1: LF(T) = 3 and F(T) = 4.

In this paper we begin the study of the parameter LF. In the next
section we present some examples and show that deciding, for an arbitrary
graph G and positive integer K, if LF(G) < K is an NP-complete problem.
In Section 3, trees T with LF(T) = F(T') are characterized.

2 Examples and Complexity

Note that for the star K ,_; we have LF(K) ,—1) =2 and F(K; n—1) = n.
In general, if the packing number p(G) = 1, and §(G) and A(G) denote
the minimum and maximum vertex degrees, then LF(G) = 1 + §(G) and
F(G) = 1+ A(G). More generally, we have the following observation, where
Lp(G) is the minimum cardinality of a maximal packing.

Proposition 3 For any graph G, (1+ 6(G)) - Lp(G) < LF(G) < F(G) <
(1+A(G) - p(G). If G is regular of degree v, then LF(G) = (1 +7) - Lp(G)
and F(G) = (1 +7r) - p(G).

Proposition 4 If a connected graph G with |V(G)| > 3 has §(G) = 1, then
LF(G) < |[V(Q)|.

Proof. Assume deg(v) = 1, and let w be a vertex with d(v,w) = 2.
Simply note that any maximal packing S with w € S has v ¢ N[S] and
I(S) < [V(G)| - 1. O

Corollary 5 Any tree T with |V(T)| > 3 has LF(T) < |V(T)|.
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Figure 2: Tree T,, on n = 2k® + k + 1 vertices.

For the tree T, on n = 2k% + k + 1 vertices in Figure 2, if § =
{V1,U2,15 vy U ks UB, 1, -oey U,k vy Uk, 1, -y Uk k }, then § is a maximal packing
with I(S) = 2k®—k+2. It can, in fact, be seen that LF (T2 4p41) = 2k* -
k + 2. Note that llmh_)oo LF(T2k2+k-|—1)/IV(T2k2+k+l)| = llmk_)oo(2k2 -
k+2)/(2k2+k+1) =1

As a final example, if M is a perfect matching in K, then LF (K, —
M) = F(I{g,g - M) =2t = |V(Kt,t)l

In order to show that the problem of deciding whether an arbitrary
graph has a maximal packing with influence no greater that some positive
integer K is an NP-complete problem, we present a transformation from
the following restricted 3S AT problem which is known to be NP-complete

[7]-

3-SATISFIABILITY(3SAT)
INSTANCE: Set U = {u;,us,...,un} of variables and collection C
of clauses such that each clause ¢ € C has |¢| = 3, and for each
u; € U at most five clauses in C contain u; or u;.
QUESTION: Is there a satisfying truth assignment for C?

LOWER EFFICIENT DOMINATION NUMBER(LED)
INSTANCE: Graph G = (V, E) and positive integer H < |V|.
QUESTION: Does G have a maximal packing S with I(S) < H?
(That is, is LF(G) < H?)

Theorem 6 Problem LED is NP-complete.

Proof. Since one can easily verify whether a vertex set S C V(G) is a
maximal packing and whether I(S) < K|, it is clear that LED € NP. To
see that LED is NP-complete, we reduce 3SAT to it.

Given an instance of 3SAT, with N variables and M clauses, construct
the graph G illustrated in Figure 3 in which each clause vertex c; is con-
nected by paths of length two to the three vertices corresponding to the
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literals contained in c;. Because at most five clauses contain u; or %;, for
1<i< N, we have M < 5N/3, and there are 3M < 5N vertices of degree
two on the paths of length two. We let H = 2 + 8N. Each N(v;) con-
tains u;, 47, and H vertices that form a complete subgraph Ky, and each
¢; has degree 3 + H. (For example, in Figure 3 we have ¢; = {u1,%z,u3},
¢z = {u1,Uz,U3},...) Graph G has 8N?+ 13N +4+4M < 8N? 4 59N/3 +4
vertices, and it can be constructed in polynomial time.

Note that if S is a maximal packing, then each SN N[v;] # 0 and
S0 N[w] # §. Consequently, if S is a maximal packing either with = ¢ S
or SN {u;, 4} = 0 for at least one value of i with 1 < i < N, then the
influence I(S) > H. On the other hand, if |S| = N + 1 with z € S and
SN{u;, %} #0for 1 <i< N, then I(S) <2+3N+ M <2+8N =H.
Hence, there is a maximal packing S with I(S) < H if and only if there is a
maximal packing S with |S| = N + 1 which contains one element from each
{u:, @} and vertex z. It follows that the instance of 3SAT has a satisfying
truth assignment if and only if the corresponding graph G has a maximal
packing S with I(S) < H. O

Ky

Figure 3: Graph G.
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3 Characterization of Trees T where LF(T) =
F(T)

We shall make use of the following notation. Any vertex adjacent to an
endvertex v is called the support vertex of v or just a support vertex. For any
subset S C V(G), recall that I(S) = 3, s(1+deg(s)) denotes the influence
of S, that is, the total amount of domination done by S. Therefore given
a graph G, LF(G) = F(G) if and only if for all S C V(G) and S'CV(G)
such that S and S’ are maximal packings we have I(S) = I(S").

In order to characterize the trees in which LF(T) = F(T), we define
the family 7 where a tree T € 7 if and only if the following two properties
hold:

(1) If z € V(T) such that z is a support vertex and j is the number of
vertices adjacent to z that are also support vertices, then deg(z) =
25 + 1.

(2) If z € V(T) such that z is not a support vertex and j is the number of
vertices adjacent to z that are support vertices, then deg(z) = 2j — 1.

See Figure 4 for an example of a tree in 7. Note, for example, that u is
a support vertex adjacent to three other support vertices and deg(u) =
92.3+1 =7 and v is a non-support vertex adjacent to two support vertices
and deg(v) =2-2-1=3.

v

2R EANN
AN

Figure 4: Tree T € 7.

We will prove that T € 7 if and only if LF(T) = F(T).
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Lemma 7 Suppose that T is a tree where LF(T) = F(T) and diam(T) >
4. If z is a support vertez and is adjacent to j other support vertices, then
deg(z) =25 + 1.

Proof. Let T be rooted at z. Let w be an endvertex adjacent to z. For
1< <¢, let u; € N(z) where deg(u;) > 2 and u; is not a support vertex.
Let u;,r, be the children of u; where 1 < 7; < deg(u;) — 1 and let u] .. be
a child of u;,,. For 1 < h < j, let v;, € N(z) where deg(vy) > 2 and v,
is a support vertex to some endvertex s;. If v, has any grandchildren, let
Un,g, be the children of v, such that deg(vh,q,) > 2 and let Vh 4, De a child
of vp,q,. Let LF(T) = F(T) = K.

Case 1. Let ¢t > 1 and § = 0, that is, suppose that no child of z is a support
vertex. Choose any maximal packing P such that z € P and such that for
all u;,r, P contains a child of u; ,, namely u; ... In other words, choose P so
that P contains z and is as tight around z as possible. Define P’ = P—{z}.
Since P is a maximal packing, the influence I(P) = I(z) + I(P') = K.
However P—{z}U{w} must also be a maximal packing, thus I(w)+I(P') =
K. This implies that I(z) = I(w) = 2 and so deg(z) = 1, a contradiction.
Thus there must exist at least one vertex adjacent to z that is a support
vertex.

j - vj)‘)i

/ ] i '
Upg Uye U, Uy Up,, o Ul Y1 Vi

Figure 5: Tree T rooted at z where z is a support vertex.

Case 2. Let j > 1. Choose P to be a maximal packing that contains z
and, for all u;s,, P contains a child of u;r,, namely uf ... Also for all vy
such that v has a grandchild, then for all v, g, , P contains a child of vy, 4, ,
namely v;wh‘ Again, this is a maximal packing chosen in such a way that P
contains z and is as tight around z as possible. Define P’ = P — {z}. Since
P is a maximal packing, I(z)+1(P') = K. However P'U{w}U{sy, s2, ..., 5;}
is also a maximal packing. Thus K = I(P') + I(w) + I(s1) + ... + I(s;).
Hence I(z) = I(w) +I(s1) + ...+ I(s;) = 2+2j. Therefore deg(z) = 2j + 1.
0

For ease of notation, define V,,, to be the set of all vertices in the tree
that are closer to u than to v.
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Lemma 8 Suppose that T is a tree where LF(T) = F(T) and diam(T) 2
4. If z is not a support vertex and is adjacent to j support vertices, then
deg(z) =25 —- 1.

Proof. Let T be rooted at z. Observe that if z is an endvertex, then z
is adjacent to one support vertex and deg(z) = 2j — 1 holds. Therefore,
assume that deg(z) > 2.

For 1 <i<t,let u; € N(z) where deg(u;) > 2 and u; is not a support
vertex. Let u;,., be the children of u; where 1 < 7; < deg(u;) — 1, and let
uj .. be a child of uj,,. For1<h <7, let v, € N(z) where deg(v,) > 2 and
vy, is a support vertex to some endvertex s,. If v, has any grandchildren,
let vp 4, be the children of vy such that deg(vn,q,) > 2, and let Vpn DE B
child of vy g, Thus deg(z) =t +j =k > 2. Let LFT)=FT) =K.
Case 1. Let t = k and j = 0, that is, assume that all children of z are not

support vertices. There exists a maximal packing P such that z € P and for
t

all u; ,, we have v}, € P. Let P,y = PNV, ;. Hence P = {z}u U Py,

i=1
t

and, since P is a maximal packing, I(r) + ZI (Py) = K. However,

=1
there exists a maximal packing P’ of T such that for each u; exactly one
child of u; is in P’, namely u;,;, and for each other child w;,;, i # 1,

t
of u;, we have u}, € P'. Let Py, = PN Vy,z. Thus P = U P,, and

i=1

t

ZI (Ps;) = K. Finally, for any i, P' — Py, U P, is maximal. Therefore

i=1

I(Py) + > I(Py) = K. Hence, for all 1 <i < k, I(Py) = I(Py;) and so
I#1

t
Z I(P,) = K, a contradiction.
=
( ase 2. Let t = 0 and j = k, that is, assume that all children of z are

support vertices. Let P be a maximal packing such that z € P. Consider
J

P—{z}, I(P) = I(P - {z}) + I(z) = K. But P— {z}U (J{sn} is 2
h=1

j
maximal packing. Therefore I(P — {z}) + ZI(S;.) = K and so I{z) =
h=1

J
Z I(sp) = 2k. However since deg(z) = k, I(z) = k+1. Whencek =7 =1
h=1

and z is an endvertex adjacent to one support vertex. Thus deg(z) = 2j -1
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Figure 6: Tree T rooted at  where z is not a support vertex.

holds.

Case 3. Let ¢ > 1 and j > 1. Choose P to be a maximal packing that
contains z and, for all u;,,, P contains a child of u;r,, namely ug,,‘,, and,
for all vy such that v, has a grandchild, then for all vy ,,, P contains a
child of vy g, , namely v}l, qn- Again, we have selected P to contain z and be

as tight around z as possible. Let Py = PNV, z, and let P"i. = PNV, 2

t b
noting that P,; could be empty for some h. So P = {z}U U Py u U Py,
i=1 h=1

¢ .
thus I(z)+ZI(Pu:)+zJ:I(Pv;‘)=K

i=1 h=1

i J
Consider the maximal packing P* = P—{z}U U {sr}. Thus Z I(sp)+
h=1 h=1

t J J
ZI(Pu:,) + 2 I(Py; ) = K. Moreover, I(z) = ZI(sh) = 2j. Therefore
i=1 h=1 h=1
deg(z)=2j-1. 0

Theorem 9 For a tree T, LF(T)=F(T) ifand only if T€ T.

Proof. Suppose that the diam(T) = 1. Then T = K, LF(T) =
F(T)=2and T € T. Suppose that the diam(T) = 2. Consider a longest
path in T, call it D, labeling an endvertex of the path z and the support
vertex of z as y. Hence, deg(z) = 1 and deg(y) > 2. Notice that {z}
is a maximal packing in T and {y} is a maximal packing in 7. Thus if
LF(T) = F(T) then deg(x) = deg(y), which is a contradiction. Therefore,
there does not exist a tree of diameter two such that LF(T) = F(T), nor
does there exist a tree of diameter two such that T € 7. Assume that
diam(T) = 3. Consider (a longest path) D in T, and label the vertices
of this longest path, z,y, z,u, where z and u are endvertices and y and z
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are their support vertices, respectively. Notice that {x,u}, {y} and {z} are
all maximal packings in 7. Therefore, if LF(T) = F(T) then deg(y) =
deg(z) = 3. Hence, T is the double star Sz 5. It can be easily verified that
83,2 € T and that there does not exist another tree T' of diameter three
such that T' € 7. Therefore, if diam(T) < 3, LF(T) = F(T) if and only if
TeT.

Let diam(T) > 4, then by Lemma 7 and Lemma 8, LF(T) = F(T)
implies that T € T. We will proceed to show that if T € 7 then LF(T) =
F(T) by induction on the order of T. We know that the double star S22
is an element of 7 and that LF(S32) = F(S2,2) = 4. Indeed, K> and
S, 2 are easily seen to be the only trees of order at most six that are in
T. Let T € T and assume that for all trees T* € 7 where |T*| < [T|
then LF(T*) = F(T*). Take a longest path D and root T at one of the
endvertices of D. Consider the opposite endvertex of D. This vertex must
have a support vertex in D adjacent to it, call this support vertex z. Let
y be the parent of z and z be the parent of y. Since z is a support vertex
and deg(z) > 2, = must be adjacent to at least one other support vertex. If
this support vertex is a child of z, then the endpoint adjacent to z would
not be on a longest path, a contradiction. Thus, y must also be a support
vertex, and deg(z) = 3 where z has two children, z’ and =, both of which
are endvertices.

Now, deg(y) = 2j+1 where j is the number of support vertices adjacent
to y, and each child of y is either an endvertex or is a support vertex u; that
is similar to z. Each u; has two children that are endvertices, u; and u.
Because deg(y) = 27 + 1, we can associate with each such u; an endvertex
of T' adjacent to y, call it y;, and associate with = an endvertex adjacent to
y, call it y;.

Case 1. Suppose there exists a support vertex u; # = that is a child of y.
Then consider T' = T — {u;, u}, u},y:}. Note that T € T since y is adjacent
to j— 1 support vertices in ' and degr+(y) = 2(j —1)+1 = 2j—1. Consider
any maximal packing P in T. Define P’ = PNT'. By the induction
hypothesis, all maximal packings of T have the same influence, call it K.
Subcase a. Suppose that y € P. Theny € P’ and P’ is a maximal packing
in 7'. Thus I(P') = K. But then P = P' is a maximal packing in T' and
I(P) = K + 2, since degr(y) = degr (y) + 2.

Subcase b. Suppose that P contains a neighbor of y.

i) Suppose that u; ¢ P and y; ¢ P. Then P’ is maximal in T'. Thus
I(P") = K and P = P'U{u}} or P = P'U {u}}. Hence I(P) = I(P') +
Iu) =I(P)+I(u))=K+2.

ii) Suppose that y; € P. Then P* = P' — {y;} U {y5} is a maximal
packing in 7/, and I(P*) = I(P'U{y;}) =K. InT, P = P' U {y:} U {uj}
or P=P'U {y:} U {uf}. Thus I(P)=K +2.

iii) Suppose that u; € P. Then P’ is not maximal in T', but P' U {y;}
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is maximal in 7'. Thus I(P') =K —2. InT, P = P' U {w;} and I(P) =
IPY+I(w)=(K-2)+4=K +2.

Hence, for all maximal packings P of T, I{P) = K +2, and so LF(T) =
F(T).

We can assume that y has exactly one child that is a support vertex,
namely z. We consider two cases, based on whether or not the parent z of
y is a support vertex.

Case 2. Let z be a support vertex, and call one of its endvertices z,. Since
y is adjacent to two support vertices, deg(y) = 5 and y is adjacent to three
endvertices, call them {y;,y:1,y2} where y, is associated with z as stated
above. Let T/ = T' — {z,z', 2",y }. By an argument parallel to Case 1, for
all maximal packings P of T when z is a support vertex, I(P) is a constant
and LF(T) = F(T).

Case 3. Suppose that z is not a support vertex. Then deg(y) = 3 and
y has only one child that is an endvertex, namely y,. If deg(z) = 1 then
T = S35 and LF(T) = F(T) = 4, so let deg(z) > 3. By the argument
that z,y and z are on a longest path and that z is not a support vertex,
all the children of z must be support vertices that are similar to y. Thus, z
can be adjacent to only one non-support vertex, which must be the parent
of z, call it w. Hence deg(w) > 2 and deg(z) = 3. Let the children of 2
be y and y*, and let their respective descendants be labeled similarly to
previous cases (see Figure 7). Consider the children of w. Since w is not
a support vertex and is the parent of the non-support vertex z, w must be
adjacent to at least two support vertices. Note that if the parent of w is
not a support vertex, then deg(w) > 5. Therefore, at least one child of w is
a support vertex, call it v. We know by the longest path assumption that
no non-endvertex child of v can be a non-support vertex, and we know by
our previous arguments, that if support vertex v is on a longest path then
T has a form similar to Case 1 or Case 2, and so we are done. Therefore, v
must have a form similar to y. Let T be the endvertex adjacent to v, and let
s be the support vertex adjacent to v. Finally, label the endvertices of s by
s'and 8". Let T' =T — {2,y,¥ys,2,2', 2", y*, 95, 2%, 2", 2" ,v,7,s,8',s"}.
Notice that w lost both a support vertex v and a non-support vertex z, that
is, w is adjacent to j — 1 support vertices and deg(w) = 2(j —1)—-1=2j-3.
Also, note that if the parent of w is not a support vertex then deg{w) > 5,
and the parent of w did not become a support vertex. Hence, TV € 7.
Again let P be a maximal packing in T and define P = PNT'. Let
LF(T)=F{T)=K

Subcase a. Suppose that w € P. Then P’ is a maximal packing in
T'. Therefore I(P') = K in T'. In T, I(P') = K + 2, since degr(w) =
degp: (w) + 2. Let T. be the tree containing z and all the descendants of z.
Let T}, be the tree containing v and all the descendants of v. It can easily
be verified that any maximal packing in T, that does not contain z or
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Figure 7: Tree T where z is not a support vertex.

the children of z, must have an influence of eight. Similarly, any maximal
packing of T, that does not contain v or the children of v, must have an
influence of 2. Thus, for any P that contains w, I(P) = (K +2)+8+2 =
K +12.

Subcase b. Suppose that P contains a neighbor of w.

i) Suppose that z ¢ P and v ¢ P. Then P' s maximal in T'. Hence,
I(P') = K inT and I(P') = K in T. Any maximal packing of T; that does
not contain z must have an influence of eight, and any maximal packing
of T, that does not contain v must have an influence of four. Thus, for all
maximal packings Pin T, I(P) = K +8+4 =K +12.

ii) Suppose that z € P and consider P'. Since T € T, w must be
adjacent to a support vertex different from v, call it w. Let W' be an
endvertex adjacent to W. Also, W must be adjacent to at least one other
support vertex. Now, P’ must contain a vertex in N (@) —w or else PU {w'}
is a packing, contradicting the maximality of P. Therefore d(w,q) = 2 for
some q € P'. By a similar argument, any non-support vertex adjacent to
w must also be at most distance two from some element in P’. Therefore,
P' is a maximal packing in 7”, and so I(P') = K in T’ and I(P') = K in
T. Any maximal packing of T that contains z must have an influence of
eight in 7', and any maximal packing of T, that does not contain v must
have an influence of four in 7. Thus, I(P) = K +8+4 = K +12.

iii) Suppose that v € P. By the same argument as above, P’ is maximal
in T'. Thus, I(P') = K in T" and I(P') = K in T. Any maximal packing
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of T, that does not contain z must have an influence of eight in 7', and the
maximal packing {v} of T}, has an influence of four in 7. Thus, I(P) =
K+8+4=K+12.
Subcase c. Suppose that P does not contain any neighbors of w. Then
P' must be maximal in 7/ and I(P') = K in T’ and in T. Also, for any
maximal packing of T that does not contain z, the influence must be eight,
and for any maximal packing of T, that does not contain v, the influence
must be four. Thus, I(P) = K + 12.

Therefore, for all maximal packings P of T, I(P) = K + 12, and so
LF(T) = F(T). Hence, we have proven that for a tree T, LF(T) = F(T)
ifandonlyif T € 7. O

4 Concluding Remarks

As noted, this paper begins the study of the parameter LF. The duals of F
and R are the parameters W and P, closed neighborhood order domination
and closed neighborhood order packing, respectively. The parameters UW,
LP, and UR defined in [14] have yet to be studied.

Complexity questions concerning the parameter LF are of interest. For
example, for which classes of graphs G (1) can LF(G) be computed in
polynomial/linear time, or (2) is the decision problem associated with de-
termining LF(G) NP-complete?

Characterizing other classes of graphs G with LF(G) = F(G) would be
interesting. Note that, from Proposition 3, if G is regular then LF(G) =
F(G) if and only if Lp(G) = p(G).
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