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Abstract

Let G be a graph. The weak domination number of G, 7.,(G),
is the minimum cardinality of a set D of vertices where every vertex
u & D is adjacent to a vertex v € D, where deg(v) < deg(u). The
strong domination number of G, 7,(G), is the minimum cardinality of
a set D of vertices where every vertex u € D is adjacent to a vertex
v € D, where deg(v) > deg(u). Similarly, the independent weak
domination number, 1,,(G), and the independent strong domination
number, #,;(G), are defined with the additional requirement that the
set [ is independent. We find upper bounds on the number of edges
of a graph in terms of the number of vertices and for each of these
four domination parameters. We also characterize all graphs where
equality is achieved in each of the four bounds.

Dedicated to Ernie Cockayne on the occasion of his 60th birthday.

1 Introduction

Let G = (V, E) be a graph. For any vertex v € V, the open neighborhood of
v, denoted N (v), is the set of all vertices adjacent to v. The closed neigh-
borhood of v, denoted N[v], is N(v)U{v}. The degree of a vertex v, denoted
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deg(v), is |N(v)|.- The mazimum degree (minimum degree, respectively) of
G is denoted by A(G) (8(G), respectively).

A set D C V is a dominaling set if every vertex not in D is adjacent to
at least one vertex in D. The domination number, denoted y(G), is the
minimum cardinality amongst all dominating sets of G.

A set D C V is independent if no two vertices of D are adjacent. An inde-
pendent dominating set is a dominating set that is also independent. The
independent domination number, denoted i(G), is the minimum cardinal-
ity amongst all independent dominating sets of (;. Since any independent
dominating set is a dominating set, it follows that ¥(G) < i(G) for any
graph G. Since any maximal independent set of a graph of order p con-
taining a vertex of degree A(G) contains at most p — A(G) vertices and
every maximal independent set is also dominating, i(G) < p—A(G). Thus,
1(G) £ i(G) < p— A(G).

Graphs G of order p for which equality holds in the bounds u(G) < p—A(G)
where u € {7,1} were studied in [1, 3].

A set D C V is a weak dominating set if every vertex u not in D is adjacent
to a vertex v in D where deg(v) < deg(u). The weak domination number,
denoted 7, (G), is the minimum cardinality amongst all weak dominating
sets of G.

A set D C V is a strong dominating set if every vertex u not in D is
adjacent to a vertex v in D where deg(v) > deg(u). The strong domination
number, denoted by 7,:(G), is the minimum cardinality amongst all strong
dominating sets of G.

The independent weak domination number, denoted i, (G), is the minimum
cardinality amongst all weak dominating sets which are also independent.
The independent strong domination number, denoted i,,(G), is defined sim-
ilarly.

We will call a weak dominating set S (similarly a strong dominating set, an
independent weak dominating set and an independent strong dominating
set) a 7y -set (similarly a 7,;-set, an iy -set and an i,-se?) if |S| = 7. (G)

(similarly |S| = 75¢(G), |S| = 1w (G) and |S| = ist(G)).

Let S be a weak dominating set with 2 € S. A vertex y € N[z] is a
weak private neighbor of x with respect to S if deg(y) > deg(z) and for all
: € S —{z},if y € N(z), then deg(y) < deg(z2).

The concepts of weak and strong domination were introduced by Sam-
pathkumar and Pushpa Latha in [7] and further studied in [4, 5, 6].

Since any independent weak (independent strong, respectively) dominat-
ing set must be a weak (strong, respectively) dominating set, we have the
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following result.
Proposition 1 For any graph G, 7, (G) < i, (G) and y4(G) < i4(G).

Vizing [9] showed the following bound on the size of a graph with given
domination number.

Theorem 2 If G is a graph with p vertices, ¢ edges, and domination num-
ber v(G) > 2, then

< 2=1OVp=O) +2)

Sanchis [8] improved this bound for certain values of the domination num-
ber.

Theorem 3 If GG is a graph with p verlices. ¢ edges, domination number
3 < ¥(G) < p/2, and no isolated veriices, then

. < (p— 7(0))(112— 1G)+1)

In this paper we will give similar bounds on the number of edges in terms
of these other domination parameters. In Section 2, we prove an upper
bound on the number of edges in terms of the number of vertices and the
weak domination number as well as another upper bound involving the
independent weak domination number. In Section 3, the upper bounds on
the number of edges proved are in terms of the number of vertices and the
strong domination number or the independent strong domination number.
In both sections we characterize all graphs whose number of edges achieve
these upper bounds.

2 Weak domination

We begin this section by exhibiting a bound on the size of the graph in
terms of the weak domination number. We need the following definitions
in order to characterize all graphs which achieve this bound. A split graph
is a graph whose vertex set can be partitioned into two sets I and X where
I is an independent set and K induces a complete graph. A complete split
graph is a split graph where all possible edges appear between the sets [
and K.
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Theorem 4 If G s a graph with p vertices and q edges, then
g < P=20(@)P+7(G) - 1)
— 2 .

Furthermore, equalily is achieved if and only in G is a complete split graph.

Proof. Let G be a (p, ¢)—graph. Also let D be a 7,,-set of G.

Claim. Any vertex in D has degree at most p — 7, (G).

Proof of claim. Let 2 € D have the largest degree of any vertex in D
and suppose that deg(z) > p — 7,(G) + 1. Since |V — D| = p — 7, (G).
the vertex z is adjacent to some other vertex in D, say y. By the way we
chose » we know that deg(x) > deg(y). Since z cannot be its own weak
private neighbor (since it is weakly dominated by y), * must have a weak
private neighbor w € V — D with deg(w) > deg(2) > p — 7% (G) + 1. Since
deg(w) > p—10(G)+1 > |V — D—{w}U{z}|, then w must be adjacent to
another vertex in D, say z # x. But since w is a weak private neighbor of
x, it must be true that deg(z) > deg(w) > deg(z), contradicting the choice
of 2. Thus, any vertex in D has degree at most p — 7,,(G) as claimed.

1

Since each of the v, (G) vertices in [ have degree at most p — 7, (G) and

each of the p — 4, (G) vertices in V — D have degree at most p — 1, it is
P=Yu(G)Yu(G)Hp=-D)P=1w(G)) _ (P=Yu(GNp+ruwlG)=-1)
2 = 2 :

true that ¢ <

It is easily seen that if G is a complete split graph with V = R U I,
where K induces a clique, [ is an independent set and each vertex of [
is adjacent to every vertex in I\, then v,(G) = |I]. |N| = p — 74 (G) and
g = (”'”’”‘G))(g""""(a"l). Also, if this equality holds, the above inequalities
become equalities. Thus, if G is a graph where this equality holds and D is a
Tw-set, then every vertex in D must have degree p—+,,((') and every vertex
in V — D must have degree p — 1. Hence, G is the graph with V = KFUD
where & is a clique containing p — v, (G) vertices, D is an independent set
and each vertex of D is adjacent to every vertex in K. m]

We now consider a bound on the size of a graph in terms of the independent
weak domination number. Again, we characterize all graphs which achieve
this bound.

Theorem 5 [f G is a graph with p vertices and ¢ edges, then
P —Ww(@))p+iw(G) - 1)
5 .
Furthermore, equality is achieved if and only in G is a compleie split graph.

q<

Proof. Let G be a (p,g)—graph. Also let D be an i,-set of G. Clearly,
any vertex in D has degree at most p — 7, (G) since any vertex in D is
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not adjacent to any of the ¢, (G) vertices in D. Also, each vertex in V —

D has degree at most p — 1. Thus, ¢ < (”'i”(c))(”'l)gi“(c)(”"“(G)) =
(P=iw(G)p+iu(G)-1)
g .

We get equality above if and only if D is independent, each vertex in D
has degree p — i, (G), and each vertex in V — D has degree p — 1. Hence,
q= (”"i”(c))(§+i“(c)'l) if and only if G is a complete split graph with
V = KUD where K is a clique containing p — i, (G) vertices, D is an
independent set and each vertex of D is adjacent to every vertex in K. D

3 Strong domination

Domke, Hattingh, Markus, and Ungerer [2] noted that for any graph G
with p vertices and maximum degree A(G), 75(G) < i(G) < p— A(G).
They also proved the following theorems giving necessary and sufficient
conditions for equality to hold.

Theorem 6 Let G be a graph with p vertices. Then i,(G) = p— A(G) f
and only if for every vertex v of degree A(G), V — N(v) is an independent
sel.

Theorem 7 Let G be a graph with p vertices. Then v, (G) = p— A(G) if
and only if for every vertez v of degree A(G) the following two conditions
hold:

1. V — N(v) is an independent set, and

2. Ifu € N(v) is adjacent 1o vertices x and y in V — N[v], then deg(u) <
max{deg(z), deg(y)}-

In this section we first find bounds on the size of a graph in terms of the
strong domination number. We break this result into two cases: 7v,,(G) > 3
and v5:(G) < 2.

Theorem 8 IfG is a graph with p vertices, q edges, and sirong domination
number v5,(G) > 3, then

Y AIEY))
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Proof. Let G be a (p, q)—graph with strong domination number v,,(G) >
3. We know that 7,,(G) < p— A(G) or A(G) < p— 15(G).

Case 1. Suppose A(G) < p—7,4(G)— 1. Then ¢ < §(p — 7.:(G) - 1) =
}_(p ™4 t(G))— }1 < E(})— 15:(G)) = (Vi ‘hr((')) — - ‘7“(C'))(P 1)

Case 2. Suppose A(G) = p—7,:(G). LeL v be a vertex of deglee A(G). B
Theorem 7, conditions 1 and 2 hold for v. Since V— N(v) is an mdependem
set, then for any vertex w € V — N[v], deg(w) < |[N(v)| = A(G) = p -
7”((")-

Case 2.1. Suppose there are vertices x,y € V — N[v] where deg{z) =
deg(y) = p — 75:(G). Hence, 2 and y are adjacent to every vertex in N(v),
and every vertex in N(v) is adjacent to z and y in V — N[v]. So, for any

vertex u € N(v), deg(u) < max{deg(z),deg(y)} = p — 7s:(G). Hence,
q< ‘Yst(G)(P—“Iu(G))+(P:‘7u(G))(P-'Yu(GJ-1) = (P=7:(G))(p=1)

Case 2.2. Suppose at most one vertex in V — N[v] has degree p — 75:(G).
Let k£ be the number of vertices in N(v) which have two or more neigh-
bors in V — N[v]. Hence, there are k vertices in N(v) with at most
|V — N[v]| = 75:(G) — 1 neighbors in V — N[v]. The other p— 4,,(G) — k
vertices in N(v) have at most one neighbor in V — N[v]. If a vertex in
N(v) has two or more neighbors in V — N[v], then by condition 2 of The-
orem 7 its degree must be at most A(G) — 1 = p — 74(G) — 1. Other-
wise, if a vertex in N(v) has at most one neighbor in V' — N[v], then its
degree must be at most A(G) = p — v5(G). Now, the sum of the de-
grees of the vertices in V — N[v] is equal to the number of edges between
V' — N[v] and N(v) since V — N[v] is independent. Since there are k ver-
tices in N(v) with at most 7,,(G) — 1 neighbors in V — N[v] and there are
p—7s:(G)—k vertices in N(v) which have at most one neighbor in V — N[v],
then 3~ cy_ Ny des(w) < k(s:(G) = 1) + (p — 75:(G) — k). Now,
2q EwEV(G) deg(w)
= deg(v) + Xy e (v deB(w) + ZwEV—N[v] deg(w)
<= 7:(G)] + [k(p = 15:(G) = 1) + (p — 151(G) = k)P = 15:(G))]
+[k(7st(G) - 1) + (P - 'Yst(G) - I”)]
= (P = 7 (G)p — 1) = (75:(G) = 3Np — 7:(C) — ).

Since v5:(G) > 3 and p— v5:(G) — k > 0, then ¢ < (p 15t (G))(p—1). O

A perfect matching is a spanning subgraph of a graph where all vertices have
degree one. In order to characterize all graphs for which equality holds in
the bound of Theorem 8, we need to define three types of graphs.

The first type of graph G is defined as follows. Let 3 < m < n be integers,
let H be an (n — 1 — m)-regular graph. and let [ be an independent set
of size m. Let G, = I + H. Note that every vertex of I/ has degree
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n = A(G1), while every vertex of V(H) has degree n — 1. Note also that
G, has order p = m + n. Since every vertex v of maximum degree has
V — N(v) independent, and every vertex u € N(v) has deg(u) < A(G,), by
Theorem 7, 75:(G1) = p— A(G1) = m. Furthermore, 2q = v,,(G1)A(G1) +
A(GINA(GY) = 1) = A(G1)(75:(Gh) + A(G1) — 1) = (p = 15 (G1))(p = 1)

The second type of graph G5 is defined as follows. Let n > 2 be an even in-
teger and let A be a complete graph of order n without a perfect matching.
Let {v.z,y} be an independent set and let G2 = (K + {v,z}) U {y}. Then
G2 has order p=n+ 3, deg(v) = deg(z) =n=p-3,deg(u) =n=p-3
for all u € V(H'), while y is an isolated vertex. Clearly, v,,(G2) = 3, while
2q=(p=3)p— 1D =({@—7(Ga2))(p—1).

The third type of graph G3 is defined as follows. Let k > 4 be an integer,
let H be any (k — 4)-regular graph of order &, let p > &k + 5 be an integer
such that p— & — 3 is even and let A be a complete graph of order p— & —3
without a perfect matching. Construct the graph G3 by joining H and K,
Jjoining new vertices v and 2 with every vertex of V(J) and joining the new
vertex y with every vertex of V(H). Note that every vertex of V(H) has
degree p—4, every vertex of V(K') has degree p—3, deg(v) = deg(z) = p-3,
while deg(y) = k.

Since every vertex v of maximum degree has V — N(v) independent, and
every vertex u € N(v) adjacent to two vertices of V — N[v] has deg(u) <
A(G3), by Theorem 7, 75(Gs) = p— (p—3) = 3. Furthermore, 2¢ =
k+k(p—4)+(p—k-1)(p—-38)=k+kp—4k+p’—-3p—kp+3k—p+3 =
PP =4p+3=(p-3)p-1)=(p—712(Gs))(p - 1).

Theorem 9 IfG is a graph with p vertices, ¢ edges, and strong domination
number v (G) > 3, then ¢ = M%M if and only if G is either of
type 1 or of type 2 or of type 3.

Proof. The discussion preceding the statement of the theorem showed that
if G is either of type 1 or of type 2 or of type 3, then ¢ = LL(?))(P-_”

Conversely, suppose ¥,:(G) > 3 and ¢ = MD—(-”—'—Q If A(G) < p-—
7«t(G) — 1, then by the argument in case | in the proof of Theorem 8§,
q< M%l’l”'—“, a contradiction. Hence, A(G) = p— v,(G). Let v be a
vertex of maximum degree.

Case 1. Suppose there are vertices z,y € V — N[v] where deg(z) =
deg(y) = A(G). As in case 2.1 of Theorem 8, every vertex u € N(v) has
deg(u) < A(G). In order for equality to hold, all y,,(G) vertices in V — N(v)
must have degree A(G) = p — 7(G) and all vertices in N(v) must have
degree A(G) —1=p—7,(G)—1. Let I =V — N(v) and let H = (N(v)).
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Let m = |I| and let n = p{(H). Then 3 < m = 7,4(G) = p— A(G) and
n=A(G). f m>n and u € N(v), then deg(u) > p — A(G) > A(G),
which is a contradiction, since deg(u) = A(G)— 1. Thus, m < n. Note also
that H is regular of degree n — 1 — m. Hence, G is of type 1.

Case 2. Suppose at most one vertex in V — N[v] has degree A(G), and let
k be the number of vertices in N(v) which have two or more neighbors in
V — N[v]. As in case 2.2 of Theorem 8, (75:(G) — 3)(p — 11(G) — k) =0
which means that either v,(G) = 3 or k = p—75:(G) = A(G). In the latter
case, every vertex in N(v) has two or more neighbors in V — N[v]. So, all
vertices in V — N[v] have degree A(G) = p — ¥5:(G). Thus, if there is at
most one vertex in V — N[v] with degree p — 7,,(G), then |V — N[v}| < 1
or v5:(G) < 2, a contradiction. Hence, 7,(G) = 3.

Let V — N[v] = {z,y}. Now, |[N(v)| = A(G) = p—7«(G) = p-3.
Let £ = |[N(z) N N(y)|. Since these k vertices in N(v) have two neigh-
bors in V — N[v], by condition 2 of Theorem 7, their degrees can be at
most A(G) — 1 = p —4. The other p — 3 — k vertices can have de-
gree at most A(G) = p — 3. By an argument similar to case 2.2 in the
proof of Theorem 8, deg(z) + deg(y) = p — 3+ k. So, 2¢ = deg(v) +
ZWGN(U) deg(w) + Zu:eV—N[u] cleg(w) = deg(v) + Zwe:\'(r)ﬂN(y) deg(w) -+
L we(N(r)-N(y NU(N(y)- Nz de8(w) +deg(x) +deg(y) Sp—3+k(p—4) +
p-3-k)p-3)+p—-3+k=p"—4p+3 = (p—1)(p —3). Thus,
(—Lsg-L” =¢< (—L”,_fﬂl, and equality holds in each of the bounds on
the degrees of the vertices of N[v].

Suppose first that & = 0. Then deg(u) = p — 3 for all u € N(v), and
deg(n(v)) () = p—5, so that for each vertex u € N(v), there is exactly one
vertex of N(v) which is not adjacent to w. Thus, if we let K = {N(v)), then
K is a complete graph without a perfect matching, and has order p—3 > 2,
an even number.

Since deg(z) + deg(y) =p— 3+ &k = p— 3, either N(z) # 0 and N(y) =0
or N(z) # 0 and N(y) # 0 or N(z) = 0 and N(y) # 0. Since the first
and third possibilities are similar, we only consider the first and second
possibilities. If N(x) # ® and N(y) = 0, then, if we let n = p — 3, we see
that G is a graph of type 2.

Suppose, therefore, N(z) # @ and N(y) # 0. Let w € N(2) and suppose
w € N(v) is not adjacent to u. If w € N(y). then {u,w} is a strong

dominating set of G, which is a contradiction. Thus, w € N(x). Let £ €
N(y). Then {u, £} is a strong dominating set of (i, which is a contradiction.

We may conclude that & > 1. Let v € N(z) N N(y). If deg(z) < p—1
and deg(y) < p—4, then {u,v} is a strong dominating set of G, which is a
contradiction. Thus, without loss of generality, assume that deg(x) = p—3.
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Since we are assuming that at most one of x and y has degree p — 3, we
have deg(y) < p—4. Notice that k£ = deg(y). Let H = (N(y)) and let K =
(N(v) = N(y)). Ifue V(K) and € € V(H), and u and ¢ are nonadjacent,
then {u, ¢} is a strong dominating set of G, which is a contradiction. Thus,
every vertex of K’ is adjacent to every vertex of H, and each vertex of K
is nonadjacent to exactly one vertex of KA. Thus, K is a complete graph
without a perfect matching and has order p — k — 3, an even number. Each
vertex of H has degree p — 4 and has degree £k — 4 in H. Hence, G is of
type 3.

(m}

The previous results involved graphs with larger strong domination number.
The following result covers the cases where the strong domination number
is smaller.

Proposition 10 If G is a graph with p vertices, q edges, and strong dom-
ination number v, (G) < 2, then

YCEEM ()]

Furthermore, equality holds if and only if G is either a complete graph or
a complete graph minus a perfect maiching.

Proof. Let G be a (p,¢q)—graph, and strong domination number v,,(G) <
2. We know that A(G) < p — 7.(G), so ¢ < 2522 < =7:dGp

If 7,0(G) = 1, then ¢ = E=22 ifand only if G = K, where 7,,(K)) = 1.

2

I 45:(G) = 2, then A(G) < p—2. So, ¢ = (”-._,2”’ if and only if G is regular
of degree p — 2. This is the graph obtained from K, by removing a perfect
matching. It is true that the strong domination number of such a graph is
two. (]

We now give a bound on the number of edges in a graph in terms of the
independent domination number.

Theorem 11 If G is a graph with p vertices and ¢ edges, then

(p— i(G))p
15—y

Furthermore, equalily is achieved if and only if G is a complete r-partite
graph where each of the partite sets has B verlices.
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Proof. Let G be a (p,g)—graph. Then, for every vertex v in G, deg(v) <
A(G) € p—is(G). Therefore, ¢ = 1Y,y deg(v) < LP_“L:SEM.

If G is a complete r-partite graph where each partite set contains & vertices,
then G is a regular graph where every vertex has degree p — 2. Now, any
independent strong dominating set must be a subset of one of the partite
sets, say V). The only way to independently dominate the vertices of V)
is to include the entire partite set Vj in an independent strong dominating
set. Hence, i,,(G) = |[Vi] = &. So, the degree of any vertex of G is
p—2 = p—iy(G). Thus, the total number of edges of G is ¢ = 3p(p—is:(G))
and the equality holds.

Now, suppose G is a graph with p vertices and ¢ = w edges. Since,
for any vertex v, deg(v) < A(G) < p — i(G), then every vertex must
have deg(v) = p — i5:(G) = A(G). Hence, by Theorem 6, V — N(v) is
an independent set of size i,(G). Also, for any vertex & € V — N(v),
since V — N(v) is independent and deg(z) = p — i5:(G) = |N(v)|, then
N(z) = N(v). Thus, G is a complete r-partite graph where » = ‘—,—'% D
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