PARTITIONS OF COUNTABLE POSETS.

L.M. PRETORIUS* AND C.J. SWANEPOEL!

ABSTRACT. For a countable bounded principal ideal poset P and a
natural number r, there exists a countable bounded principal ideal
poset P’ such that for an arbitrary r-colouring of the points (resp.
two-chains) of P/, a monochromatically embedded copy of P can be
found in P/. Moreover, a best possible upper bound for the height
of P’ in terms of r and the height of P is given.

1. INTRODUCTION

If X is a set then |X| denotes the cardinality of X. Let N = {1,2,3,...}
denote the natural numbers. If k is a natural number, then (}) denotes
the set of k-element subsets of X and we write k- X := {kz: £ € X} when
X is a set of natural numbers. If n is a natural number, we write [n] for
the set {1,...,n}.

For natural numbers &, ! and r the associated Ramsey number [6], denoted
by R(k,!l,r), is the smallest natural number N with the property that for

any r-colouring X : (1) — [r] of the k-element subsets of [N], there is a
Y € (") such that x is constant on (¥).

If P is any poset and the sizes of the chains of P are bounded, then for every
p € P the level £(p) of p is the size (cardinality) of the largest chain in P of
which p is the maximal element and the height A(P) of P is the maximal
level in P. For posets P and P’ an injective map A : P — P’ is called
an embedding whenever a < b iff A(e) < A(b). If in addition £(a) = £(b)
implies £(A(a)) = €(A\(b)) the embedding is called level-preserving.
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If s is a natural number, then an s-chain is a chain of size s. For posets
P and P’ and natural numbers r and s, write P’ P if for every r-
colouring x of the s-chains of P’, there is an embed({u'lg A: P — P’ such
that x is constant on the s-chains of A(P). It follows from the work of
Nesetfil and Rédl [4, 5] that for every finite poset P and natural numbers
r and s there is a finite poset P’ such that P'l—) P. Fouché (2] was able
to show that one can find such a P’ with h(P’ S R(s,h(P),r). Fors=1
this was done by Nesetfil and Rdl in [5]. This result is the best possible
as far as the height of P’ is concerned.

Call P a bounded principal ideal (bpi) poset if there is a natural number !
such that |[z]| < for all z € P, where [z] := {2 € P: z < z}. An alter-
native characterization of countable bpi posets appears in Proposition 3.1
below. (For examples of these posets, see also Theorem 2 and Section 4 of
this paper.)

We prove analogues of the results of Fouché [2] for countable bounded prin-
cipal ideal posets where one-chains (points) or two-chains are partitioned.
Our main result is the following theorem.

Theorem 1. For a countable bounded principal ideal poset P and numbers
r € N and s € {1,2}, there ezists a countable bounded principal ideal poset
P' with h(P') = R(s, h(P),r) such that P,'ET)' P.

It is clear that if P’I— P, then it necessarily follows that h(P') >
R(s,h(P),r). In this sense Theorem 1 is the best possible. It still is an
open problem whether Theorem 1 also holds for all s > 3. The finitary ar-
guments in [2] for finite posets and for s > 3 do not extend to the countable
case.

Ifky < --- < k; are natural numbers and X is any set, let Bx(ki,...,kt) :=
Ui, (kx ) with a poset structure induced by the subset relation. We also
write Bpn(k1,...,k:) instead of Bin)(ki,. .., k) if n is a natural number
and write By for the poset based on the set of finite subsets of N. We
shall see (see Proposition 3.1) that any bpi poset can be embedded into
By(k1,+ -+ , kt) for some natural numbers k, - - - Jke with k) < ... < k; and
t>1.

We shall deduce Theorem 1 from the following result.

Theorem 2. For natural numbers r,s,ki,..., ks with s € {1,2} and k; <
- < k¢, there are natural numbers Ky < --- < Ky, with m = R(s,t,r)
such that By (K, ... ’K"‘)'(s_r)- By (ky, - k).
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As an application we show in Section 4 that the poset of finite-dimensional
subspaces of a vector space of countably infinite dimension over a finite field
has the same property as By in Theorem 2. We prove a similar result for
the poset ITy of partitions of N into finite blocks where almost all blocks
are singletons.

It follows from Corollary 3 of Hindman’s Finite Unions Theorem [3] that
BN'T By for every natural number 7. Using this result, we show in
Section 4 that Iy == IIy for every natural number r.
(1) ON
2. PROOF OF THEOREM 2

The following two results are needed for the proof of Theorem 2. Finitary
versions of these results appear in [2].

Proposition 2.1. For natural numbers m and t with m > t and any
sequence of natural numbers ky < .-+ < k; there are natural numbers
liy < -+« < bl such that for every sequence 1 < a) < - < oy £ m
there is an embedding

A: By(k1,--- ke) — Byllays---sla.)-

Proof. Assume that ¢t > 2, the case t = 1 being trivial. Fori=1,...,t -1
let §; = ki1 — k; and v = max{d; : i =1,...,t — 1}. Define l3,...,In such
that

bi=k+@-1v,i=1,...,m.
For a given sequence 1 < oy < --- < ay < m, let A : By(ka,..., k) —
By(lays - - - +la,) be the map defined by

MZ)=2-ZUu{2j+1:j=1,...,(; = 1)v+ k1 — ki}
for every Z € By with |Z| = k; and i = 1,...,¢t. It follows that if |Z| = k;
then |A(Z)| = la,. Furthermore Z C Z’ if and only if A(Z) C A(Z’), since
MZ)N2-N=2-Z for every Z and (a; — 1)v+ k; — k; increases with i. O
Lemma 2.2. For natural numbers r and k1 < « -+ < ky, there exist natural
numbers Ky < --- < K, such that for every r-colouring x of the two-chains
of By(K1,...,Kyn) there ezist maps

A: By(kyy ... kn) — BN(Kl,...,K,.) andm:N— N
where X is an embedding and 7 is strictly increasing with the property that
Mo) Nm(N) = w(0) := {w(:) : i € 0} for 0 € By(ka,...,kn), and such that
for every 1 < i < j < n the two-chains of /\(BN(ki, k;)) are monochromatic.
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Proof. The proof is by induction on n, the case n = 1 holding trivially.
Assume the statement is true forn =t —1 (¢ > 2) and let 7 and k; <
.++ < k; be natural numbers. Let K3 < -+ < K;_; be natural numbers
satisfying the conditions of the statement with respect to the numbers r
and k1 < - < ky—1.

Letu = (kf:,)K‘-l' Then by repeated application of Ramsey’s Theorem B

[6] (the “finite version”) there is a natural number K; with the following
property:

P(K;): For every r-colouring X' of the elements of Bg,(Ki,...,K;1)
there is a subset Y of [K;]
with |Y| = « such that for every i = 1,2,...,t — 1 the set (}(’) is
monochromatic under x'.

Indeed, define the numbers N¢_1, N;—2,..., Np as follows:
Nii=u and N; = R(Kj41, Nj41,7), j=0,...,t—2.

Finally, set K, = Np. Let X' be any r-colouring of Bk, (Ki,...,K-1).
Suppose, inductively, that for 1 < j < t — 2 a subset Y; of [K,] with
|Y;] = N; exists such that for every ¢ € [j] the colour x' is constant on
(#). Consider the restriction of x’ to ( K‘,&;)' By the definition of N;
there exists a subset Y;41 of Y; with |Yji1| = Nj4i such that x' is constant

on (};”t‘!) Since Yj41 is contained in Yj, it follows from the induction

hypothesis that for every i € [j +1] the colour X’ is constant on (Y;{‘) The
property P(K}) is witnessed by Y = Y;_;.

In order to prove that the numbers Kj,..., K, satisfy the conditions of
the statement of the lemma with respect to the given numbers r and k; <
.++ < ki, let x be any r-colouring of the two-chains of By (K1, .- - , K3). Let
¢' = {z1 < --- < zK,} be a Ki-element subset of N and let x' be the
r-colouring of the elements of B¢/(Ki,. .., Ki-1) induced by x via

X'(0) := x(o C ¢').
By the property P(K,) there is a subset 7(, = {Zq,(1) <+ < Za (,(u)} and
colours c¢¢ ; such that (;é:) has colour c¢s; under x’. Since there are only
finitely many (say a) increasing functions a : {1,...,u} — {1,..., K},
the function Q : ¢’ — (¢ (), ¢¢ 1, -+ -, C¢,t—1) is an ar*~-colouring of (f?.)'

By Ramsey's Theorem A [6] (the “infinite version”) there is an infinite set
p = {mi < mz < ...} such that () is Q-monochromatic with colour
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(a,e1,...,¢:-1), say. This implies that for every { = {m,,,...,m;,,} €
(%) the subset 7 = {m,,,, < -+ < Mg, } is such that for all J € (g,)
we have x(J C ¢) = ¢;.

Now consider the restriction of x to the two-chains of By(Ki,...,K;-1).
By the induction hypothesis (and since the bijection ¢ — m;k, between
N and pg, = {mk, < mak, < ...} induces an isomorphism between
By(K1,..., K1) and By, (K1,...,Ki-1)) there exist maps

/\3BN(k1,---7kt—1) —'BN(Kl,...,Kt_l) and7:N— N

satisfying the conditions of the statement of the lemma and such that

A(By(k1y ... ke-1)) C By, (K1,..., Ki-1) and n(N) C pg, .

Now extend A to By(ki,...,k¢). This extension will also be denoted by

A. For every v € (,: ) let Y, := U‘,E(‘= v )/\(a). By the definition of u it
t—1

follows that |Y,| < u, say Y, = {m,, <:-- <m,,} withv < u.

Let @(0) = 0 and §; := a(t +1) —a(i) -1, i = 0,1,...,v — 1, where

a(l) < - < a(v) < -+ < afu) are as defined above. For every vy € (,':)

define

A('7) = {ml < e <L me, <my! <mm+1 < ...
<My 46, KMy, < Myp41 < ...
<my, <My,41 <0 <My, 4K—a(w)}-

To show that the extended A has the required properties, we only have to
consider subsets and two-chains involving subsets of size k,. If 7 C «v is
any two-chain in By(ky,...,k:) with |y| = k¢, then 7 C ¢ C « for some
o with |o| = ki—1, and therefore A(7) € Ag) C Y, C A(y). Thus X is
monotone. To complete the proof that A is an embedding, let o € v. If
|v] < k¢, then A(o) € A(v) by choice of A. If |y| = k; let y € o\y. Then
7(y) € n(c) = A(o)N7w(N) C A(o), while 7(y) ¢ Yy, i.e., 7(y) € A(y). Thus
also in this case A(o) € A(v) and X is an embedding.

If v € By(k:) and Y, = {m,, < --- <my,}, it follows from the construc-
tion of A(y) that my, is the a(i)th element in A(y). Therefore, since the
colour is independent of the underlying K;-element set, the two-chains in
A(By(kj, kt)) are monochromatic of colour c;.

Finally we show that A(y) N7(N) = w(y) for every v € By(k1,...,k:) with
[yl = ke If my € A(y) N 7(N) then y = O(mod K;) and therefore m, € Y,
because if mz € A(y) \ Y, then z # 0(mod K;). Consequently for some
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o C 4 with |o| = k;—;, we have that my € A(o) N7(N) = n(0) C n(y),
ie. AMvy)Nw(N) C n(y). Conversely, let m, € n(y) and o any subset of
v with my € (o) and |o| = k3. Then my € w(0) = Mo) N w(N) C
A(y) N w(N). a

Proof of Theorem 2. For point-colourings (s = 1) let m = R(1,¢,7) = r(t -
1)+1. For ky < --- < k; find Ky < --- < K, satisfying the conditions of
Proposition 2.1. Let x be an r-colouring of the 1-chains of By (K3, ..., Km).
Use Ramsey’s theorem A to find an infinite subset 8; of N such that all K;-
element subsets of $; have the same colour with respect to x. Inductively
find infinite sets 8; C Bj—1 such that all K;-element subsets of 3; have
the same colour with respect to x. By the pigeonhole principle there are
natural numbers K,, < -+ < K, such that all K, -element subsets of
Bm have the same colour with respect to x. By Proposition 2.1 the poset
By (k1, ..., k) can be embedded into Bg,, (Ka,,- .-, Kq,) and we are done.

For two-chain colourings (s = 2) let m = R(2,t,7) and let the natural
numbers L; < --- < L,, satisfy the conditions of Proposition 2.1 with
respect to the given numbers k) < -+ < k; and let K} < -+ < K
satisfy the conditions of Lemma 2.2 with respect to the numbers r and
Ly<---<Lp.

Let x be any r-colouring of the two-chains of By(K,...,Km). Then there
exists a (level-preserving) embedding X' : By(Li,...,Lm)—
By(K1,...,Kp) such that for every i,j € [m] with ¢ < j, the two-chains
of N (BN (Li, L_,-)) are monochromatic with respect to x. By Ramsey’s the-
orem B there exist t numbers 1 < a3 < -+ < &y < m such that the two-
chains in X (By(La,,---,La,)) are monochromatic with respect to x. If
X2 By(k1,...,kt)— By(Lay,---sLa,) is a (level-preserving) embedding,
then A = XNoX': By(ki,...,kt)— By(K1,...,Kn) is an embedding with
the property that the two-chains in A(By(k1,...,k:)) are monochromatic
with respect to x. O

3. ProoF OF THEOREM 1

The following proposition is an infinitary analogue of Lemma 2.1 of [2].

Proposition 3.1. For every countable bounded principal ideal poset P of
height t there are natural numbers k1 < --- < k; and a level-preserving
embedding A : P — By(k, ..., k).
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Proof. Let 7 be an injection (not necessarily order-preserving) from P into
the odd numbers. Let

XN(p) :=n([p]) =n({g€ P:q < p}).

Let jy, := max{|\(p)| : £(p) = u} and let k; := z:‘=1 Juwherei=1,...,t
For p with £(p) = i, let

Ap) = X®)U2-{1,....k — |N(p)|}.
Now if p < g, then X (p) C N(g) and £(p) < 4(g), which in turn implies

kep) < Ketg) — Jeta) < ketg) — N (9)]-
Thus A(p) € A(g). On the other hand if p £ g, then 7(p) € A(p) but
m(p) € Mg) and A(p) € A(g). Thus X is an embedding into By(ki,...,kt)
and since A(p) has k() elements, ) is level-preserving. O

Proof of Theorem 1. Let P be any countable bounded principal ideal poset
of height t. By Proposition 3.1 there is a level-preserving embedding A :
P — By(ka,...,kt) for natural numbers k; < --- < k;. By Theorem 2
there exist natural numbers K; < --- < Ky, with m = R(2,¢,r) such that
BN(Kl,...,K )72—)3 (kl,...,kg). HenceBN(Kl, Km)l——P O

4. APPLICATIONS

Let V be the vector space of countably infinite dimension over the finite
field F,, and Ly (q) the poset of the finite-dimensional subspaces of V.

If ki1,...,k are natural numbers with k; < -.- < k;, define the countable
bounded principal ideal poset Ly (g)(k1,- .., k:) to be the induced subposet
of Ly (g) consisting of the subspaces of Ly (g) with dimension k;, i = 1,...,t

Proposition 4.1. For natural numbers r,s,ky, ...,k with s € {1,2} and
ky < -+ < kg, there exist natural numbers K1 < --- < K, with m =
R(s,t,r) such that Ly(q)(K1,... ,Km)lm Ly(g)(k1, ... k).

Proof. By Proposition3.1 there exist natural numbers k] < --- < k; such
that Ly(q)(k1,--.,k:) can be embedded into By (k1,...,k;). By Theorem
2 there exist natural numbers K; < --+ < K, with m as required and such

that By(Ki,... m)l(— By (k1. -, k) Finally, By(Ky,...,Kp) can
be embedded mto Ly (q)(}>{ m) Let v1,v3,... be any fixed basis of
V. For o = {s1,...,s:i} € B (Kl, Kp) deﬁne a poset embedding p :
By(Ky,...,Kpm) — LN(q)(Kl, . .,Km) by letting p(o) be the subspace
of V generated by v,,,...,vs;. O
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Let Iy be the poset consisting of all partitions of N into finite blocks, where
almost all blocks are singletons, with the usual refinement relation (see, for
example, [1], p.13).

For b € Iy the notation b = by|...|b; implies that blocks by,...,b; are the
only blocks having cardinality greater than one. Blocks with cardinality
one are omitted.

For any b €Iy and b = by|...|b;, let 7(b), the rank of b, be defined by
r(0) = [ba] + -+~ + [be| — 2.

Lemma 4.2. Iy is a ranked poset with rank function r.

Proof. For b= by|...|b; €Iy, let B = b U---Ub;, and let I be the poset
consisting of all partitions of B. (Note that IIp is isomorphic to II|p.)
Then I can be embedded into IIy (by appending N\ B as singleton blocks
to every element of IT1g). Every saturated chain with b as maximal element
in ITy is the image of a unique saturated chain in IIg with b = by|...|b;
as maximal element. Since IIp is a ranked poset [1], every saturated chain
from € to any fixed b € Il is of the same length where ¢ is the partition of
N consisting only of singleton blocks. O

For natural numbers k; < --- < ki, let IIy(k1,...,k¢) denote the induced
sub-poset of ITy; consisting of all partitions of N into finite blocks with rank
ki,i=1,...,t. Obviously, IIy(ki,...,k:) is a countable bounded principal
ideal poset.

Proposition 4.3. For natural numbers r,s,k,. ..,k with s € {1,2} and
ki < --- < ki, there exist natural numbers K; < --- < K, with m =
R(s,t,r) such that ILy(K1,..., Km)lﬁ Oy (ks ...y ke).

Proof. The proof is analogous to that of Proposition4.1 where we now use
a poset embedding p : By(Ki,...,Km) — Iy(K1,...,Kn). For this
purpose, we identify By(Ki,...,Km) with Boa-1.nen}(K1y- .., Km) via
o {2n—-1:n € o}. For o = {s1,...,s;} € By(K1,...,Kn) we define
u(o) € On(K1, ..., Km) by p(o) = s1 2s1]s2 2s2|...|s; 2s;. This defines a
poset embedding which is rank-preserving. O

As an application of the construction in Proposition 3.1 we prove the fol-
lowing result.
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Proposition 4.4. For every naturel number r, Il 'ﬁ Hy.

Proof. Let x : Iy — [r] be any r-colouring of the points of Ily. By the
construction in the proof of Proposition4.3, there is an embedding ap :
By(1,...,m) — IIy(1,...,n) such that an4; is an extension of a, for
every n. This means that there exists an embedding « : By — Iy which
is an extension of o, for every n.

By Hindman’s Finite Unions Theorem ([3], Corollary 3.3) there exists an
embedding 8 : By — By such that af(By) is monochromatic under x.

Let 7 : [y — N be any injective map with m(b) odd for every be Il
and m,, the restriction of 7 to IIg(1,...,n) for every natural number n. By
the construction in the proof of Proposition3.1, for every natural num-
ber n there exist natural numbers k&1 < :-- < k, and an embedding
n : IOg(L,...,n) — By(k1,...,kn) such that yn41 is an extension of
4 for every n. Therefore there exists an embedding « : Iy — By which
is an extension of 7, for every n. It follows that afy : Iy — Il is an
embedding such that av(I1y) is monochromatic under x. ]

We wish to thank Professor W.L. Fouché for bringing these problems to
our attention.
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