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Abstract

In this paper we are concerned with the existence of sets of mu-
tually quasi-orthogonal latin squares (MQOLS). We establish a cor-
respondence between equidistant permutation arrays and MQOLS
which has facilitated a computer search to identify all sets of MQOLS
of order < 6. In particular we report that the maximum number of
latin squares of order 6 in a mutually quasi-orthogonal set is 3, and
give an example of such a set. We also report on a non-exhaustive
computer search for sets of 3 MQOLS of order 10, which whilst not
identifying such a set, has led to the identification of all the resolu-
tions of each (10, 3,2)-balanced incomplete block design. Improve-
ments are given on the existence results for MQOLS based on groups,
and a new construction is given for sets of MQOLS based on groups
from sets of mutually orthogonal latin squares based on groups. We
show that this construction yields sets of 2" —1 MQOLS of order 27,
based on two infinite classes of group. Finally we give a new construc-
tion for difference matrices from mutually quasi-orthogonal quasi-
orthomorphisms, and use this to construct a (2",2";2)-difference
matrix over Cy~2 x Cy.

1 Introduction

A latin square of order n is an n x n array defined on a symbol set .S with
every element of S occuring precisely once in each row and precisely once
in each column. Two latin squares of order n are said to be orthogonal
if, when superimposed so as to form an array of ordered pairs A, each of
the n2 possible ordered pairs occurs precisely once in A. In [1], Bedford
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generalised this well known concept (also see [11]). Two latin squares are
said to be quasi-orthogonal if, when superimposed so as to form an array of
unordered pairs A*, each unordered pair of the form {z, z} occurs precisely
once whilst unordered pairs of distinct symbols occur precisely twice in A*.
Although first explicitly introduced in [1], quasi-orthogonal latin squares
are related to many well established designs including Room squares, -
orthogonal latin squares, Steiner triple systems, and starters and adders.
For a detailed discussion of these relationships, see [15].

In [I] emphasis was given to the problem of constructing pairs of quasi-
orthogonal latin squares based on groups, that is where each latin square
in a given quasi-orthogonal pair can be bordered so as to form the Cayley
table of some finite group. In this paper we concern ourselves with the more
general question of the existence of sets of mutually quasi-orthogonal latin
squares (MQOLS). We present a method of exhaustive computer search to
identify all sets of MQOLS of order n by establishing a correspondence be-
tween MQOLS and equidistant permutation arrays. This search is carried
out for n < 6. Given the non-existence of a pair of orthogonal latin squares
of order 6, we observe with interest the existence of sets of 3 MQOLS
of order 6. We also present details of a computer search for a resolvable
(10,3, 2)-balanced incomplete block design with certain properties (defined
in section 3) sufficent for the existence of 3 MQOLS of order 10. In fact
this search was originally started in [10] by Keedwell, and although we find
that there is no such design, we report the classification of all resolutions
of each (10, 3, 2)-balanced incomplete block design.

For larger n, we restrict our attention to sets of MQOLS of order n based on
groups. We extend existence results for mutually quasi-orthogonal quasi-
orthomorphisms due to Jungnickel (9], Bedford [1] and Quinn [13). We also
give a construction for sets of MQOLS from sets of mutually orthogonal
latin squares (MOLS), and show that it is successful in establishing sets
of 2" — 1 mutually quasi-orthogonal latin squares of order 2" based on the
groups C3 % x Cy and C37 x Q4 (no known sets of MOLS of this size are
based on these groups). Finally we give a related construction for maximal

(27,2"; 2)-difference matrices over the group C5 =2 x Cj.

We know that there are at most n—1 MOLS of order n and that this bound
is achieved when n is a prime or prime power. It is natural to ask the same
question for MQOLS, but unfortunately, no simple answer has been found.
Currently, the best known bound is given by the maximal size of an EPA
(defined below), and is of the form n% — 4n — /2n + O(1), for n > 6: see
[12].
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2 A search for MQOLS of order <6

An exhaustive computer search for maximal sets of MQOLS of order < 6
has been performed. Central to this search was the idea of an equidistant
permutation array.

Definition 1 An equidisiant permulation array (EPA) of indez 1 isa kxn
array such that each row is a permutation of a symbol set S, of size n, and
any lwo rows agree in precisely 1 place.

Consider a set {Aq,..., Ap} of k xn EPAs and let R;; denote the i** row of
Aj. We define M(Rqp, Rys) to be the number of places in which R,p and
Rys match. If for all s # ¢, the set {Ay,..., A,} satisfies M(Ris, Rit) = 0
for all 7, then they are equivalent to the existence of a set {L;,..., L}
of latin squares of order n with the property that when two squares from
the set are superimposed so as to form an array of ordered pairs, each
ordered pair of the form (z, z) occurs exactly once. This correspondence is
established by the relation (i,¢,r) € A; & (r,c,s) € L;, where (z,y,2) €T
denotes the fact that the element z occurs as the (z, y)** entry of the array
.

The latin squares are mutually orthogonal if and only if the EPAs have the
further property that for a # 3 and ¥ # 6 M(Rqay, Rgs) = 1. Similarly the
latin squares are mutually quasi-orthogonal if and only if for « # £ and
v # 6, M(Rav, Rps) + M(Ras, Rgy) = 2.

The above equivalence provides an efficient way of constructing MQOLS
by first finding EPAs of the desired type. Consider constructing a set of k
MQOLS of order n. We need to identify kn? suitable entries for the cells of
k, nxn arrays. If we search for EPAs corresponding to MQOLS, acceptance
of a permutation as a row of an EPA is equivalent to locating the n cells of a
latin square which will contain a given element. For small n, permutations
which form candidates for rows of the EPAs are easily generated. Using this
approach, an exhaustive computer search was carried out for maximal sets
of MQOLS up to order 6. Restricting attention to maximal sets of MQOLS
which are not MOLS we found 3 MQOLS based on Zj as reported in [1], 2
MQOLS using the non-cyclic square of order 5, pairs of MQOLS of order
6 and also several triples, a representative of which is reproduced below
along with the corresponding EPAs. The search established that for these
orders, no larger sets of MQOLS exist.
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Ao Ay A
01 2 3 5 4 1 0 5 4 2 3 2 3 0 5 4
1 2 5 0 3 4 01 5 4 2 54 2 3 0 1
1 3 0 4 5 2 2 0 41 3 5 5 2 1 0 4 3
As Ag Ag
3 24015 4 5 3 1 0 2 5 4 1 2 0
4 3 0 1 5 213 45 0 0 54 2 1 3
4 5 23 10 0 4 3 5 21 31 5 2 0 4
01 2 3 4 5 5 1 3 0 2 4 4 1 0 2 5 3
1 0 56 4 3 2 0 41 3 5 2 0 5 2 1 3 4
2 3 0 5 1 4 4 0 2 5 3 1 1 2 3 5 4 0
3 2 4 0 5 1 1 3 4 2 0 5 5 0 4 3 1 2
4 5 31 20 325 410 3 410 2 5
5 4 1 2 0 3 2 5 01 4 3 2 3 5 4 0 1

3 Triples of MQOLS of order 10

Although pairs of orthogonal latin squares of order 10 are known to exist
no triple has yet been found. In [10], Keedwell performed a non-exhaustive
search for 3 MOLS of order 10 using balanced incomplete block designs
(BIBDs). In particular, a (10,3,2)-BIBD is resolvable if its 30 blocks
can be partitioned into 10 sets each containing 3 pairwise disjoint blocks.
Such a partition of blocks is called a resolution with each set of blocks
called a parallel class. Keedwell called a resolution of a (10, 3,2)-BIBD of
latin square lype if there exists a 10 x 10 latin square L = (I;;) such that
{{li1, liz, iz}, {lia, lis, lie}, {li7, lis, lis}}, 1 =0, ...,9 are the parallel classes
of the design. Keedwell required additional properties for his search, we
however have the following theorem.

Theorem 1 If there exisis a latin square type resolution of a (10,3,2)-
BIBD then there exists 3 MQOLS of order 10.

Proof: Let Lo be the latin square from which the latin square type resolu-
tion is obtained, and label the columns of Lg: ¢q,cy,...,c5. We cycle the
columns of Lg, in the following fashion to obtain L, L such that Lo, L,, L
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are MQOLS.

LO . Cp, C1,C2,C3, C4,C5,C6, C7,C8,C9
Ll . Cp, C3,C1,C2, C6,Cq,C5, C9,C7,C8
Ly: co, ¢2,¢3,01, C5,C6,Cq, Cg,Co,C7.

Consider the superimposition of L; and L; into an array of unordered pairs
A. Then all pairs of the form {z,z} occur in the 0** column of A and
nowhere else. Now consider pairs {z,y}, ¢ # y. Such a pair will occur in
A if and only if z,y occur together in a block of the BIBD. As z,y occur
together in precisely 2 blocks of the BIBD, {z,y} occurs twice in A. O

In (3, 4, 5, 6] a complete census of the 960 (10, 3,2)-BIBDs was given, as
was partial information on the number of resolutions of these designs. As
part of our search we have compiled a full catalogue of these resolutions
[14], and found, surprisingly, that not one of these resolutions was of latin
square type. This implies that neither 3 MQOLS nor 3 MOLS of order 10
can be constructed in this way.

4 Existence results for MQOLS based on groups

By generalising the concept of a complete mapping as defined in [8], Bedford
[1] showed that a quasi-complete mapping defined on the elements of a finite
group G is sufficient for the existence of a pair of MQOLS based on (¢. We
reiterate the main ideas used in [1], and given in [11]. A useful concept is
that of a quasi-ordering of a group i of order n, being a list of n elements
of GG with the following properties:

e every element in (7 of period 2 occurs precisely once in the list, as
does the identity;

o for every non-identity element z € i not of period 2, both z and z~!
occur precisely once in the list, or = occurs precisely twice with z~1
absent, or ~! occurs precisely twice whilst z is absent.

Definition 2 Let the mapping 0 : G — G be such that 0(g,),6(92),--.,0(g9n)
is a quasi-ordering of G. Define ¢ : g; — ¢i0(g:). If ¢ is a permutation on
G then 0 is quast-complete.

In the preceding definition, ¢ is referred to as the quasi-orthomorphism
associated with §. Note that if § is a permutation on G then 8 is a complete
mapping and ¢ is an orthomorphism. By letting L denote the Cayley table
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of G and Ly denote the resultant latin square after the columns of L have
been permuted according to ¢, then L and L, are quasi-orthogonal.

Definition 3 Two permutations ¢, 2 of G are quasi-orthogonal if

$1(91) " d2(91), - -, 61(gn) " 2(gn)

s a quasi-ordering of .

The above definition allows for sets of MQOLS to be obtained from the
Cayley tables of a finite group, as was shown by the following theorem.

Theorem 2 Let ¢1,¢3 be quasi-orthogonal quasi-orthomorphisms of G, let
L be the Cayley table of G with Ly, , Ly, denoling the latin squares obtained
Jrom permuting the columns of L according to ¢, and $o respectively. Then
Ly, and Ly, are quasi-orthogonal.

Proof: see [1].

Jungnickel [9] gave a weak lower bound on the number of MOLS of a
given order. Letting G and H be finite groups, Jungnickel showed that
if ¢ admits » mutually orthogonal complete mappings, and H possesses
s mutually orthogonal complete mappings, then (7 x H possesses at least
min{r, s} mutually orthogonal complete mappings. This result provides
the best known lower bound on the number of MOLS of order n for many
large values of n. Similarly, Jungnickel’s result generalises to MQOLS to
give a weak lower bound on the size of a maximal set of MQOLS possessed
by a group.

We may construct a mapping of G x H, say 6*, from a quasi-complete
mapping & of G and a complete mapping ' of H by defining 6* : G x H —
G x H by:

0*(g,h) = (6(g),0'(h)),¥Y(g9,h) € G x H.

The elements of {0*(g,h) : g € G,h € H} form a quasi-ordering of G x H
and ¢* : (g,h) — (g,h) x 8"(g, k) is a permutation on 7 x H since ¢ : g —
90(g) is a permutation on G and ¢’ : h — ho'(h) is a permutation on H,
so0 ¢* is a quasi-orthomorphism of (¢ x H.

Theorem 3 Let {¢y,...,¢,} be a set of mutually quasi-orthogonal quasi-
orthomorphisms of G and let {§},...,¢.} be a sel of mutually orthogonal
orthomorphisms of H. Then G x H possesses a sel X, of mutually quasi-
orthogonal quasi-orthomorphisms, where | X| = min{r, s}.
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Proof: Let X = {41, ..., 8},;n(rs)} Where 6(g, k) = (4i(g), $i(h)), 1 < i <
min{r,s}. Then X is a set of quasi-orthomorphisms of G x H. It remains
to be checked that for i # j, ¢7,¢; € X are quasi-orthogonal. This is so
since;

{0:(2)7'6;(=) sz € Gx H} = {(6(9)™0;(9), 04(h) '8} (k) : g € G, h € H)
{(g,h):9€Q,he H}

where @ forms a quasi-ordering of (. Such a set forms a quasi-ordering of
GxH. 0O

Hall and Paige [7] showed that for finite groups K and H, where H is
a normal subgroup of K, if there exists a complete mapping of H and a
complete mapping of K/H, then there exists a complete mapping of K. In
(1], Bedford extended this result to quasi-complete mappings whilst in [13]
Quinn extended this result to sets of orthogonal complete mappings. In
the following theorem, we state, without proof, the analogous extension to
sets of mutually quasi-orthogonal, quasi-complete mappings.

Theorem 4 If there ezist r mutually orthogonal complete mappings of H
and there exist r mulually quasi-orthogonal quasi-complele mappings of
K/H, then there ezist al least r mutually quasi-orthogonal, quasi-complete
mappings of K.

We note that although theorem 3 follows from theorem 4 on setting K =
(7 x H, the proof of theorem 3 provides a more useful direct construction.

5 MQOLS from MOLS

In this section we present a construction for MQOLS based on groups from
MOLS based on groups. Our approach is to take mutually orthogonal
orthomorphisms of a group G and from these, construct mutually quasi-
orthogonal quasi-orthomorphisms of a group (’. First we need the following
result, in which we denote the inverse of an element g in the group G; by
INVg .‘[g]'

Lemma 1 Let G; = (G, ) and G2 = (G, 0) be finile groups with identily
element e. IfVg € G, g-g # e = INVg,[g] = INVg,[g] then a quasi-

ordering of Gy is a quast-ordering of G5.

Proof: Let @ be a quasi-ordering of (71 and let g be an element of Q
not of period 2 in (i;. Since INVg, [g] = INVg,[g], g is not of period
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2 in G5 and so the occurrences of such elements do not prohibit @ from
being a quasi-ordering of G3. Now let g be an element in @ which is of
period 2 in G;. We need to show that if g does not have period 2 in (2,
then INVg,[g] occurs only once in Q. This is necessarily the case since
INVg,[g] has period 2 in G;. To see this assume to the contrary that
INVg,[g) is not of period 2 in Gy, i.e. INVg,[g]- INVg,[g] # e, and so
INVg, [INVg,[g]] = INVg,[INVeg,[g]] = g (1) Then:

INVGz[g] - INVg, [g] £ e
=>INVGI[[NVGz[g]'INVGZ[g]] 75 [
= INVG,[INVg,[g]) - INVG, [INVG,lgll # e

=>g-9 # e(by (1)

- a contradiction since g has period 2 in (7;. O

Definition 4 (Compliancy) Let Gi = (G, ), Gz = (G, 0) be finite groups.
If the following conditions are saiisfied then Gy is said lo be compliant lo
Gs.

1.VgeEG, g-9g#e= INVg, [g9] = INVg,|g)
2. All z,y € G satisfy al least one of the following identities:

INVg, [2g)-y = INVg,z]oy
INVG,UNVg,[z]-y] = INVg,[z]oy
INVG,[INVg,[z]-y] = INVg,[z]oy

INVe,[INVe, [INVa,[z) -4l = INVi,leloy.

The motivation for the above definition is that if (¢; is compliant to G5,
then a quasi-orthomorphism of G} is a quasi-orthomorphism of (i2. To
see this, let ¢ be a quasi-orthomorphism of (71 so that the list IN Vg, [g1] -
#(91),- -, INVg,[gn] - #(gn) is a quasi-ordering of (7; and hence by lemma
1, is also a quasi-ordering of G2. We are required to show that IN Vg, [g1] 0
#(g1),---, INVG,[gn] © é(gn) is a quasi-ordering of GG2. This follows by
virtue of the second condition of compliancy and the fact that if we replace
an element of a quasi-ordering by its inverse in that group then the resultant
list is still a quasi-ordering of the group. Furthermore, this result extends
in a natural way to give the following.

Theorem 5 Let G; and Go be groups with Gy compliant to Gy. If G
admits a sel M of mutually quasi-orthogonal quasi-orthomorphisms, then
M is also such a set for Ga.

306



Before giving some examples of compliant groups we present a recursive
construction which allows us to construct infinite classes of compliant groups
from particular examples.

Theorem 6 Let G) = (G,-) and G2 = (G, 0) be groups with Gy compliant
to Gy. Then C2 x Gy = (C2 x G, -) is compliant to Ca x G = (Cz X G, 0).

Proof: Firstly note that if (z,9)? # e in Cy x G then we have g - g #
e and hence INVg,[g] = INVg,[g]. It follows that INVe, xqg,[(z,9)] =
($7 INVg, [g]) = (z, INVG':[Q]) = INVC,xG._,[((D,g)]-

Now suppose INVg, [g1] - 92 = INVi,[g91] o g2 then

INVe,xc[(z1,01)] - (22,92) = (21, INVg,[g]) - (22,92)
(z122, INVG, [01] - 92)

(z122, INVg,[01] © 92)

(z1, INVg,[91]) o (22, 92)
INVe,x6,[(21,91)] 0 (22, g2).

Similarly

INVg,[INVs,[g1] - 92]
= INVC;XG)[INchx(;I[(:c]’gl)] : (x2,92)]

and:

INVg,[g1] o g2
INVe,xa,[(z1,91)] 0 (22, 92)

. INVG,[INVg,[91] - g2]
= INVCQXGQ[INVCQXG] [(zl)gl)] : (x2)g2)]

and:

INVg, [gl] 0 gs
INVe,xa,[(21,91)] o (%2, 92)

I

INVGQ[INV(;,[INVGI[gl]-g2]] = INVGQ[gl]ogv_;
= INVe,xa,[INVe,x6,[INVe,xa, [(21,01)] - (22, 92)]]
= INVe,xa.l(z1,91)] o (x2,92).0

We now give sorne examples of compliant groups. In Figure 1 we document
all pairs of compliant groups of order n, for each n < 14. H, and Hs occur
in the columns headed (7y and G respectively if and only if H; is compliant
to H2. Many of the entries in Figure 1 are special cases of more general
results. Da, is compliant to Q2, and D, is compliant to C x C,, where:

D, = (a,b:a":e,b2=e,ab=ba_l)
CoxCp = (ab:a” =e, b’ =¢,ab= ba)
Qan = (a,b:a® =¢,b® =a",ab=ba"").
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n Gl I GQ
4 Cz X Cz C4
6 D3 C2 X Cs
8 CaXxCaxCa| CaxCy
Ca X Cer X C2 Qs
Ca2 X Cy Q4
Dy Ca X Cy
Dy Q4
10 Dy Cio
12 D¢ Qs
14 D7 Chq
Figure 1:

Also, it follows from theorem 6 that C} is compliant to C3~2 x C4 and
that €32 x C4 is compliant to C773% x Q4 (where C} denotes the group
Cyx - -x Cy of order 2™). It is well known that there exists 2" —2 mutually
orthogonal orthomorphisms of C%, and therefore 2" — 1 MQOLS based on

7-% x (4 and similarly 2* — 1 MQOLS based on C572 x Q4. We note
that no sets of MOLS of this size are known to be based on these groups
for any n.

6 Difference Matrices from Quasi-
Orthomorphisms

Let (¢ be a finite group of order n. A (n, k; A)-difference matriz D = (d;;)
is a & x nA matrix with entries from G such that for each 1 <¢ < j <k,
the list dild;.‘ll, e dig ,\dj_’:‘ , contains each element of (i precisely A times.
We refer to such a list as the difference between rows i and j of D. For
further details regarding difference matrices, see [2].

The next theorem shows how quasi-orthomorphisms of groups can be used

to construct difference matrices with even A. The following proof uses the
-1

fact that if 1, ..., z, is a quasi-ordering of G then the list 21, ..., z,, 27, ...

contains every element of (7 twice.

Theorem 7 Let S = {¢1,...,¢:} be a sel of mutually quasi-orthogonal
quasi-orthomorphisms of an abelian group G. Then there exists a (n,t+2;2)
difference mairiz over G.

Proof: We construct the (¢+2) x 2n matrix D = [A|A™!] as follows, where
A~1is the array A with every entry replaced by its inverse, and A is the
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(¢ +2) x n matrix below.

d1(g1) ¢1(g2) -+ é1(gn)

A= 4q) bulgs) - dilon)
[ g2 9n
e e e

Let 6;,0; denote the quasi-complete mappings associated with ¢;,¢; € S.
Indexing rows as 1,...,¢,t+ 1,t+ 2 the difference between rows ¢ + 1 and
i is the list 6;(g1),...,0i(g9n),0:(91)"",...,8:(gn)~", which contains every
element of (& twice. Now consider the difference between rows ¢, ;. This is
the list

¢i-l(gl)¢i(gl): o "¢i_1(gﬂ)¢j(gﬂ)?[¢i_l(gl)¢j(gl)]_la ceny [¢;—l(gn)¢j(gn)]—]

which contains every element of (¢ twice. O
Corollary 1 There ezists a (2%,2%,2)-difference matriz over C3™% x Cy.

Proof: Follows from theorem 7 since there exist 2" — 2 mutually quasi-
orthogonal quasi-orthomorphisms based on C§~2 x (4. O

Although the existence of (2%,2%;2)-difference matrices is well known, as
far as the authors are aware, this is the first construction of such matrices
over the group Cy x Cy x - -+ x Cy.
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