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ABSTRACT. The following problem was introduced at a
conference in 1995. Fires start at F nodes of a graph and D
defenders (firefighters) then protect D nodes not yet on fire.
Then the fires spread to any neighbouring unprotected nodes.
The fires and the firefighters take turns until the fires can no
longer spread. We examine two cases: when the fires erupt at
random and when they start at a set of nodes which allows the
fires to maximize the damage. In the random situation, for a
given number of nodes, we characterize the graphs which
minimize the damage when D = F = 1 and we show that the
star is an optimal graph for D = 1 regardless of the value of F.
In the latter case, optimal graphs are given whenever D is at
least as large as F.

1. Introduction

The subject of this paper was originally introduced at a conference [2] in
1995. In its simplest form the problem is the following attempt to model
firefighting or virus control on a network. A fire (or virus) breaks out at a vertex
of a graph. The fire and the firefighter then alternate moves on the graph. A
move for the firefighter (defender) is to choose any vertex not yet on fire
(affected by the virus). Once a vertex has been chosen by the firefighter it is
considered protected or safe from any future moves of the fire. After the
firefighter’s move, the fire makes its move by spreading to all vertices which are
adjacent to the ones on fire, except for those that are protected. The firefighter
and the fire alternate taking turns until the fire can no longer spread. The object
of the firefighter is to have the fire damage as few of the vertices of the graph as
possible where the damage is the total number of vertices that have been set on
fire by the time the fire can no longer spread. The general problem is for F fires
to start at a set of F vertices of the graph and then D defenders or firefighters to
each choose a vertex not yet affected by the fires to protect. As before the fires
and defenders alternate moves until the fires can spread no further. Our
objective is to consider two situations. The first is when the fires erupt or break
out at random and the other is when they start at vertices which allow the fires to
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maximize the damage (measured as the number of vertices eventually set on
fire) to the graph. In both cases, we wish to determine which graphs minimize
the damage. That is, we are interested in the design of optimal graphs. In
related work, MacGillivray and Wang, in [3], considered actual algorithms for
the firefighter in order to keep the damage to a minimum. Not surprisingly, for
a general graph the problem was shown to be NP-complete even for F=D=1. In
[4), the problem was considered when the graph was a grid.

A related problem that was considered in 1978 by Gunther and Hartnell [1]
turns out to be very helpful. This problem was posed in terms of an
underground resistance movement and addressed the question of how to
establish a communications network among the members which minimizes the
effects of treachery or subversion of a particular member or members, followed
by the consequent betrayal of other members. The resistance movement is
modeled as a graph where the vertices represent the individual members of the
movement and the edges represent the lines of communication between various
members. If a vertex is subverted then any neighbours are betrayed. In section
4 the relevance of this problem to the current paper will be explained.

In what follows, for a vertex v of a graph G, N[v] will represent the set
consisting of the vertex v and all vertices that are adjacent to v whereas N(v)
will be N[v] — {v}. Similarly, N,[v] is the set of vertices consisting of N[v] as
well as any vertex adjacent to a vertex of N[v] and Ny(v) is Nj[v] — {v}. We
shall use deg(v) to represent the number of vertices adjacent to v and d(u, v) to
be the length of a shortest path between vertices u and v. A leaf is a vertex of
degree one and its unique neighbour is called a stem.

In the next section we consider the fires starting at random and in the
following section the fires start at the set of vertices which allow maximum
damage to the graph.

2. Random Fires
In this section, we will consider fires starting at random on a graph. Given
P
a graph on p vertices and F fires, we will assume that each of the (F) possible

subsets of F vertices are equally likely to be chosen by the fires. The problem is
to determine which graphs are optimal given p vertices, F fires and D defenders.
A graph G is optimal if the sum, over all subsets X of size F of V(G) of the
number of vertices damaged when the fires break out at X is minimum over all
graphs with the same number of vertices as G. That is, which graphs allow the
defenders to minimize the number of vertices destroyed. Our first result
characterizes the graphs which achieve this minimum in the special case that
there is exactly one fire and one defender.
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Theorem 2.1  For p vertices and F = D = 1, where the fire starts at random, a
connected graph G on p vertices is optimal if and only if G is a tree where (i)
each vertex of G has at most 2 neighbours of degree greater than one and (ii)
each vertex has at most one neighbour of degree more than two.

Proof: For any graph G on p vertices, since the fire is equally likely to start at
any vertex, the expected damage 1is at least as large as
> (deg(v) +1- ])/p = M, since the fire would destroy all the
veV(G) P
neighbours except for one that the defender could save. Also we note that G
must be a tree in order to minimize the number of edges and hence the damage.
Observe that if G is a tree and satisfies conditions (i) and (ii) then the damage on
G can be limited to this minimum. In particular, say the fire starts on a vertex v
with at most two neighbours of degree greater than one, say u, and u,, where at
most one of these, say u,, has degree more than two. The defender should first
choose u, and then, on the next move, the unique neighbour of u; not yet
affected by the fire. This strategy establishes the if part of the theorem. Next
note that if some vertex, say v, of G had at least 3 neighbours of degree greater
than one, then the fire would spread on its third move to at least one vertex in
Na[v] — N[v] regardless of where the defender had moved. Similarly, if v had
more than one neighbour, say u, and u,, of degree more than two, then the
defender can protect one of these, say u;, on the first move. But then on the
second move, when the fire has spread to u,, the defender cannot protect all of
the neighbours of u,. Thus the only if direction follows.

We next consider an arbitrary number of fires where there is only one defender.

Theorem 2.2 For p vertices and F 2 D = 1, where the fires start at random,
a star on p vertices is optimal.

Proof: First note that the expected damage on the star with p = k vertices,

- k-1 k
where there are F fires, is I:F(kF ])+(k —l)(F J] -:-(F) since either the F

fires start only on leaves (resulting in a total of F vertices on fire) or one of the
fires start at the centre of the star (resulting in a total damage of k — 1). We
proceed by induction on p and F. By Theorem 2.1 a star is optimal on p vertices
with F=D = 1. Assume the result holds for all F with 1 < F < f and consider F
= f. The result certainly holds for all p < F + D. Assume it is true for all p <k
and considerp=k + 1.
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Given a graph G on k + 1 vertices, find any spanning tree, say T, of G and
let x be a leaf of T with N(x) =y in T. The expected damage from F fires on G
is at least as large as the expected damage from F fires on T. The expected
damage from F fires on T is at least the expected damage from F fires on T —x,
plus a damage of 1 every time a fire is started at y but not x (keeping in mind the
observation that defenders should choose non-leaf vertices) plus the expected
damage from F — 1 fires on T — x, plus 1 for every time F — 1 fires are started on
T - x (since this implies a fire was also started at x). By the induction
hypothesis this means the sum of the damage over all possible subsets of
vertices that the F fires start at is
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Thus the expected damage for the graph G is at least as large as for the
star and the result holds for all p by induction. Since it is true for F whenever it
is valid for F — 1 and smaller, it follows by induction that the result is valid for
allF.

3. Worst Case : F = D for small values
We now consider the situation where, for a given graph and F fires, the
fires start at a set of vertices which will result in the most damage. For a given

number of vertices we wish to determine which connected graphs minimize the
damage. That is, we wish to determine, for each p, F and D, the connected
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graphs on p vertices defended by D firefighters, for which the maximum amount
of damage caused by F fires is minimized.

LEMMA 3.1 The path or cycle on p vertices are the unique optimal
connected graphs for F=D =1,

Proof: Any other connected graph has a vertex of degree 3 or more. If the fire
started at such a vertex it would destroy at least 3 vertices. But wherever the fire
starts on the path or cycle the defender can protect a neighbour and on its second
move stop the fire thus limiting the damage to 2. O

We next examine the case when F =2 = D. For G a connected graph,
let B(G) be the maximum number of vertices that can be damaged when two
fires are started, and two defenders defend optimally.

LEMMA 3.2 IfGis a tree and there exist distinct vertices u, v € V(G) such
that deg(u) + deg(v) = 8 — d(u, v), and d(u, v) < 3, then B(G)
5.

Proof: Note that if the fires start at u and v, then the damage would be at least
the vertices u and v, plus all their neighbours, minus the neighbours they have in
common, minus the two vertices defended. That is to say: B(G) = 2 + deg(u) +
deg(v) — | N[u] n N[v] |- 2. But, in a tree, | N[u] n N[v] | =3 - d(u, v) when
d(u, v) < 3, so we have B(G) = deg(u) + deg(v) — 3 + d(u,v) implying B(G) = 5.0

THEOREM 3.3 Let G be a connected graph. If | V(G) | = 10, then B(G) = 4.
Furthermore, if | V(G) | = 10, then B(G)=4 if and only if G is one of the graphs
shown in Figure 1 and, for | V(G) | 2 11, B(G) = 4 if and only if G is a path or
cycle.

Proof: It is easy to verify that if G is a path or cycle and | V(G) | 2 6, then
B(G) =4.
Now consider the only if direction.

Case 1: If veV(G) and deg(v) = 5 then either G has a star as a spanning tree or
v must have a neighbour of degree two or more (and there is a spanning
tree with this property). In either case it follows that B(G) is at least 5
by Lemma 3.2.

Case 2: If veV(G) and deg(v) = 4 then we have N(v) = {u,, uy, u;, us}. Either
the result holds or from Lemma 3.2, considering the corresponding
spanning tree, we must have deg(y) < 2, for i=1,2,3,4 and any
neighbours of the u;'s (other than v) must be of degree 1. This is a
contradiction since it implies | V(G) | £ 9.
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Case 3: If ve V(G) and deg(v) = 3 then we have N(v) = {u,, uy, us}. Either the
result holds or from Lemma 3.2 (using a spanning tree) we have deg(u;)
< 3. Furthermore we observe that at most one of the u's can be of
degree three. In the following cases we use a spanning tree with the
given degrees so as to utilize Lemma 3.2.

Case 3a: Say deg(u;) = 3. Then either the result holds or, from Lemma 3.2, u,
and u; are of degree at most two, and any neighbours of u, and us, other
than v, must be of degree one. By symmetry u, has neighbours with
the same restrictions as the neighbours of v. But this would then force
| V(G) | £ 10. For equality we must have H, as shown in Figure 1.

Case 3b: If deg(u;) = 2, then N(u;) € {V, x}. Then either the result holds or, from
Lemma 3.2, deg(x;) < 2. If deg(x;)=2, then N(x;) < { u;, yi}. Also from
the lemma, deg(y;) = 1 or the result holds. So we can conclude that
B(G) < 4 means | V(G) | < 10. For equality we must have H, as shown
in Figure 1.

By the above, we are left with the case of the maximum degree equal to
2. This concludes the proof.

YAYAN 4

H, H) P1o Cio

Figure 1
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4. Related Results

As indicated in the introduction, the results from [1] are useful. We give a
brief explanation of their relevance in this section. The problem is, given two
natural numbers b and p, to find a connected graph G of order p in which the
maximum number of betrayals resulting from b subversions is minimum and, to
find a formula for this number. in particular, given a graph G on p vertices and
an integer b, the expression K(G, b) is defined to be the maximum {| N[S] [}
where the maximum is taken over all possible subsets S of b vertices. The
expression K(p, b) is defined to be the minimum {K(G, b)} where the minimum
is taken over all connected graphs on p vertices.

The significance of this result for our present problem is that it gives a
lower bound on the damage by F fires when there are D defenders. That is, we
know that regardless of the set S of vertices where the F fires start, for |S|=b =
F, and any connected graph on p vertices, that at least K(p,b) — D vertices must
be destroyed regardless of the choice of graph. Of course, some of the fires may
continue to spread after the D defenders have made their first two moves
increasing this number. In general, the formula for K(p, b) is given by the
following theorem. The expression [x] is the greatest integer function.

Theorem 4.1 [1]

For a fixed p and b the following hold:
(i) K(,b)=p,forp<2b+1.
(ii) Forb<3, K(p,b)=3b forp=4b.
Forb24, K(p,b)=3b forp=5b-4.
(iii) CASE1l: b=3t+1.
(a) K(p,b)=(6t+3)+(a—1)wherep=(6t+3)+(2a-1)or
p=(6t+3)+(a)and 1 <a<2t+1.
(b) K(p,b)=(8t+4)+[x/5] wherep=10t+6+xand 0 <x<5t-35.

CASE2: b=3t+2.

(a) K(p,b)=(6t+5)+(a—1)wherep=(6t+5)+(2a—1)or
p=(6t+5)+(2a)and 1 Sa<2t+2,

(b) K(10t+ 10, b)= 8t +6.

(c) K(p,b)=(8t+7)+[x/5] wherep=10t+ 11 +xand 0 <x <5t—S5.

CASE 3: b=3t+3.

(a) K(p,b)=(6t+7)+(a—-1)wherep=(6t+7)+(2a—1)or
p=(6t+7)+(2a)and ] <a<2t+3.
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(b) K(10t+ 14, b)=K(10t + 15, b) =8t + 9.
(c) K(p,b)=(8t+10)+[x/5] where p=10t+16+xand 0 <x <5t—5.

It should be noted that there are three types of trees, see Figure 2, that
play a special role in [1]. One of them is the path on n vertices, denoted by P,
while the other two are called the superstar and the fifth column. In [1] it is
shown that the path achieves the values given in (ii) of Theorem 4.1. The
superstar on 2n + 1 vertices, denoted by S,, is the tree formed by taking a star
with n leaves and attaching a leaf to each of the original leaves. The tree S, is
on 2n + 2 vertices and is formed by attaching one more leaf to S, where that leaf
is attached to the central vertex of degree n. These graphs are shown in [1] to
attain the values given in part (a) of each of the three cases of (iii) of Theorem
4.1. The fifth column, denoted by F,, consists of n Ps’s, where the centre vertex
of each P;s is joined to the centre vertex of an adjacent Ps in such a manner that
these n vertices form a path. In [1], it is observed that in addition to the optimal
trees on 5n and 5n + 5 vertices (namely, F, and F,.,) one can form intermediate
trees on 5n + x vertices, for 1 < x < 4, by taking n Ps’s and one additional path of
the appropriate length. These are the graphs that achieve the values shown in
parts (b) and (c) of the cases of (iii) in Theorem 4.1. As a specific example, in
[1] it is shown that for p = 7 and b = 2 that the graph on 7 vertices which
minimizes | N{S] |, regardless of the choice of the 2 vertices in S, is S;. That is,
| N[S] | is 5. Thus we can conclude that regardless of which graph on 7 vertices
two fires start on, that the very best one could do with D firefighters is to restrict
the damage to 5 — D. Since we can manage to contain the fires to vertices in
NI[S] in this example, we have achieved the optimal graph for p =7 and b = 2.
Observe that if the graph on 7 vertices had been the path, that | N[S] | would be 6
and the damage would be 6 — D.
In general, (i) of Theorem 4.1 [1] shows that if p < 2F + 1, (noting that the
F fires play the role of the b vertices in S) then regardless of how we design a
connected graph on p vertices, all vertices of the graph are in N[S] for some
choice of S where S has F members. Hence, the damage will be p — D regardless
of the choice of graph.
At the other extreme (see (ii) of Theorem 4.1), for F <3 and p=4F, or F 2
4 and p 2 5F — 4, then, if D = F, we can do no better than by taking the path with
a resulting damage of 3F — D. Since indeed the fires can be contained to N[S],
the path is optimal.

The more interesting cases depend on which modulo class mod 3 the
number F is as indicated by Theorem 4.1.
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5. Worst Case: general F and D
The following lemma is useful in what follows.

Lemma 5.1 Given a graph G and F fires we may assume the fires do not start
on leaves unless there is no other option.

Proof: If a fire started at a leaf, it would do at least as much damage by starting
at the corresponding stem.

Lemma 5.2 If Sy, is a superstar on 2m + 1 vertices, F<m, D+ F £2m + 1
m-(F-1
and D 2 lr——(z———)] , then the maximum damage caused to this graph by F

fires when there are D defenders is | N[F] | - D.
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Proof: By Lemma 5.1 we may assume that the fires begin only at stems or at
the centre and stems. In the former case, using one defender at the centre and the
rest on leaves corresponding to the stems chosen by the fires the damage is
restricted to | N[F] | - D. In the latter situation, assume the fires start at the
centre and stems S,, S,,..., Sg-;. The defenders would first choose D stems, say
SF,SF+15e-s Spep-1, NOt chosen by the F — 1 fires. On their second move, the
defenders would choose the leaves Il .p, If +p+1, - - - » In. The result follows. [

m-(F-1)
Corollary5.3LetF<m,D+F<2m+1landD2 —2— .

(a) ForF<3and2F+ 1 <p<4F -1, for p=2m + 1, S, is an optimal graph
while for
p=2m+2S', is optimal.

(b) ForF24,
(DifF=3t+1land6t+3<p<10t+5,or
(2)ifF=3t+2and6t+5<p<10t+9,o0r
(3)if F=3t+ 3 and 6t + 7 <p < 10t + 13, the superstar graph on p vertices

is optimal.

Proof: By Theorem 4.1 we can do no better than restrict the damage to the
number given by Case 1 (a), Case 2 (a) or Case 3 (a) of part (iii). Hence we have
an optimal graph for these values of p and F.

Lemma 5.4 IfF,is attacked by F fires and there are D defenders where F + D
<5n,F> IVE-I and D > [E] , then the damage caused is limited to | N[F] | - D.
5 5

Proof: The strategy is as follows. Use 1 defender per column (unless there are
no fires on that column and none on adjacent centres of columns). If the center
vertex is not attacked directly by a fire, but a neighbour (perhaps from an
adjacent column) is, then defend at the center vertex. If a fire attacks the centre,
then defend at a neighbour on that column that is not on fire. If both stems of
that column are on fire as well as the centre, then defend at a leaf. Any
additional defenders will protect vertices adjacent to the fire. Observe that no
fire can spread to another column. Furthermore each fire on a column is
defended against on the first move of the defenders. The only possible way for a
vertex in the second neighbourhood to be damaged is if the centre of that
column is set on fire and a neighbouring stem is not. But in this situation the
defender for that column can protect the leaf on its second move. O
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Corollary 5.5 ForF=>4 whereF>|'-n-1 ,D2 [E] andF+D <5n,if
5 5
(a) F=3t+ 1 and 10t + 6 <p < 15, or '
(b)F=3t+2and 10t +10<p<15t+5, 0or
(c) F=3t + 3 and 10t + 14 < p < 15t + 10, the graph based on F, is
optimal.

Proof: By Theorem 4.1 we can do no better than restrict the damage to the
number given in Case 1 (b), Case 2 (b) or (c) or Case (3) (b) or (c) of part (iii).
Hence we have an optimal graph for these values of p and F.

We summarize the above results in the following theorem.

Theorem 5.6  Given p vertices, F fires and D defenders, the trees on p
vertices which will minimize the damage when F fires start at a set of vertices
which will do the most damage, are as follows.
(i) If p<2F + 1, then all trees on p vertices are optimal.
(ii) (@)ForF<3 and 2F+1<p<4F~1, forp=2m+ 1S, is an optimal
m-(F- 1)'I
2
(b) For F <3 and p 2 4F, then the path on p vertices is optimal.
(c) For F 24 and 2F + 1 <p < 5F — 4, there are three cases:
(1) F=3t+1(hence6t+3<p<I15t+1):For6t+3<p<l10t+35,
the superstar  graph on p vertices is optimal. For 10t + 6 < p
< 15t, the graph based on F,_is optimal.
(2) F=3t+2(hence6t+5<p<15t+6): For6t+5<p<10t+9,
the superstar graph on p vertices is optimal. For 10t + 10 < p
< 15t + 5, the graph based on F, is optimal.
(3) F=3t+3(hence6t+7<p<15t+11):For6t+7<p<10t+
13, the superstar graph on p vertices is optimal. For 10t + 14
< p <15t + 10, the graph based on F;, is optimal.
(iii) For F 24 and p > 5F — 4, the path on p vertices is optimal for D > F.

graph while for p=2m + 2 S', is optimal for D > [
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