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The queens graph Qy, has the squares of the n xn chessboard as its vertices;
two squares are adjacent if they are on the same line, that is, in the same
row, column or diagonal. Note that a square of @, has four lines: its row,
column and two diagonals. If a queen is placed on a square of Qn, the
lines of the queen are the lines of the square. A queen on square z of Qn
covers a square y if x = y or = and y are adjacent. A set D of squares is a
dominating set of Q. if every square of (J, is either in D or adjacent to a
square in D, i.e., if a set of queens, one on each square in D, covers the rest
of the board. If no two squares of the dominating set D are adjacent, then
D is an independent dominating set. If each queen on a set X of squares
covers a square which is not covered by a queen on any other square in X,

Small Irredundance Numbers
for Queens Graphs

A. P. Burger and C. M. Mynhardt
Department of Mathematics
University of South Africa
P. O. Box 392
0003 UNISA
SOUTH AFRICA
mynhacm@alpha.unisa.ac.za

Abstract
We prove some general results on irredundant sets of queens on
chessboards, and determine the irredundance numbers of the queens
graph Qr for n=25,6.

To Ernie, a dominator of fame,

For whom chess is much more than a game,
We dedicate this piece

And request do not cease

To endeavour irredundance to tame.

Introduction

then X is an irredundant set of Q.
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The domination number v(Q,) (independent domination number i(Qr),
irredundance number ir(Qy)) of @, is the minimum size amongst all dom-
inating (independent dominating, maximal irredundant) sets of Qn. It is
easily seen that any minimal dominating set of a graph is maximal irre-
dundant, and that 7(Qr) < ¥(Q»r) < i(Qx) for all n (see [12, p. 58]).

Domination on queens graphs has received considerable attention in
the 1980s and 1990s. Recent upper bounds, for example, can be found in
[4, 16], and other recent papers include [3, 5, 6]. Surveys on the queens
domination problem and other combinatorial problems on chessboards are
given in [7, 10, 13].

For some of the chessboard graphs, for example the rooks and bishops
graphs, formulas for ir are easy to obtain (and are listed in [13]), while
some small values of ir for kings graphs are also known [9]. However, apart
from the trivial values ir(Q) = ir(Q2) = #(Q3) = 1 and ir(Q4) = 2,
no other exact values of ir (@) are known. The only other results on
irredundance in queens graphs concern the upper irredundance number
IR(Q,), that is, the maximum cardinality amongst all irredundant sets of
Qn. Values of TR(Qy,) for n < 8 are given in [13], while bounds can be
found in [2, 14]. The best known lower bound for IR (Qx), which greatly
improves all previously known lower bounds, was obtained by Kearse (14].
Kearse showed that TR (Qgs) > 6k3 —29k% — O (k), and from this it follows
that TR(Qy) > 6n — O(nf).

As was shown in [1], the irredundance number of any graph is bounded
below by ir(G) > (v(G) + 1)/2. This bound, together with the lower
bound ¥(Qn) > (n — 1)/2 of P. Spencer, as cited in (7, 15], shows that
ir(Qn) = (n+1)/4.

In this paper we determine the irredundance numbers of the queens
graphs Qs and Q. (This will show that the above-mentioned lower bound
for ir(Qy) is not best possible.) These are the first missing values in the
table given in [13], and we prove the results without using a computer in
the hope that the methods may eventually be used to obtain more general
results. (It should be possible to determine ir(Qy) for small values of n by
computer.)

Definitions pertaining to domination not given here can be found in [12].
We need some further definitions. The closed neighbourhood N(v] of the
vertex v in a graph G = (V. E) (or of a square on a chessboard) consists
of v and the set of vertices adjacent to v. The closed neighbourhood of a
set S C V is defined by N[S] = UyesN[v], and the private neighbourhood
of v € S by pn(v,8) = N[v] — N[S — {v}]. A vertex in pn(v,S) is called
a private neighbour, abbreviated to pn, of v. Note that a vertex can be
its own private neighbour. Thus a set S of vertices is irredundant if for
every vertex v € S, v has at least one pn. An irredundant set S is mazimal
irredundant if for every vertex u € V —S, the set SU{u} is not irredundant,
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which means that there exists at least one vertex w € S U {u} which does
not have a pn.

If a vertex u is added to a set S and it “destroys” all the pns of some
vertex w in S (i.e., pn{w, S) # ¢ and pn(w,S U {u} = ¢), we call u an
annihilator, and say that u annihilatzs w. For U C V — S we say that S is
U-annihilated if every u € U annihilates some w € S.

If u € V — S has no pns with respect to SU{u}, i.e., if pn(u, SU{u}) = ¢,
we say u is pn-free with respect to S. We say a vertex v (or a square in
the case of chessboards) is open (with respect to .S) if it is not dominated
by S. We denote the open vertices (squares) with respect to S by Rg or
simply by R if confusion is unlikely. The following result gives a useful
characterisation of those irredundant sets that are maximal irredundant.

Theorem 1 [8] An irredundant set S of G is maximal irredundant if and
only if for each v € N[R] there exists s, € S such that ¢ # pn(s,,S) C
N[v], that is, S is N[R]-annihilated.

The following simple results will be useful later.

Proposition 2 If S is a mazimal irredundant set in a graph G and |S| <
i(G), then S is not independent.

Proof. Suppose to the contrary that S is independent. Since |S| < i(G),
S is a proper subset of some maximal independent set of G, that is, there
exists a vertex v such that S U {v} is independent. But then v € Rg and
for any s € S, s € pn(s,S U {v}), i.e., v does not annihilate any vertex in
S, a contradiction. [ ]

Proposition 3 Let S be a mazrimal irredundant set of G with |S| = v (G)—
k, where k > 1. Then there does not exist a set Y CV — S with |Y| < k
such that Y dominates R.

Proof. Suppose to the contrary that such a set Y # ¢ does exist. Then
X = SUY dominates G and | X| < v(G), t.e., |X| = v(G). Therefore X
is a minimal dominating set of G containing S as proper subset. But then
X is maximal irredundant, contradicting the maximality of S. |

2 Irredundance in the queens graph

We now return to chessboards and consider non-dominating irredundant
sets of queens. Beginning at the lower left corner of the board, we number
the rows and columns 1,2,...,n. A square in column i and row j has
coordinates (¢, 7). Note that two squares (¢,7) and (k,!) are on the same
diagonal if and only if i — k| = |j — {|. We say a square of @, is occupied
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if it contains a queen; otherwise it is unoccupied. We begin with a simple
result about the intersection of the lines of two adjacent squares on Qp.

Proposition 4 (a) If two squares q and ¢’ with respective lines l; and
U, i=1,.,4, are on the same line, say ls = Iy, then the lines l;,
i=1,2,3, intersect the lines I}, i = 1,2,3, in at most siz squares.

(b) If three squares are on the same line l, then there are at most two
squares not on | where lines from all three these squares intersect.

Proof. (a) We may assume without loss of generality that the lines are
numbered such that /; is parallel to (but does not coincide with) 4, i =
1,2,3. Thus for each i, [; can only intersect the lines l;, j #1, in a square
on the board, and the result follows.

(b) This is a simple exercise in geometry. |

We now use Proposition 3 to obtain some properties of the squares of
Q- left open by a non-dominating maximal irredundant set of queens on
the board. The idea is to show that if fewer than six rows and columns (in
total) contain open squares, then “enough” diagonals contain open squares.

Proposition 5 If X is a maximal irredundant set of queens on Qrn with
|X] < v(Qx), then R contains

(a) ezactly four squares; their coordinates are (z1,y1), (z1,92), (z2,1n)
and (z2,y2), where |z1 — 22| # ly1 — 12, or

(b) squares in (without loss of generality) ezactly two rows and at least
three columns, and if R is contained in exactly three columns, the
squares with coordinates (say) (z1,71), (x2,1), (T2,¥2) and (z3,%2)
are open, where |x1 — x2| # |y1 — y2| or [y1 — y2| # lv2 — x3|, or

(c) three squares, no two of which are in the same row or column.

Proof. (The three possibilities (a), (b) and (c) are illustrated in Figure
1 for Qs.) If there is only one row (column, diagonal) containing open
squares, then a queen placed on any square in this row (column, diagonal)
dominates the row (column, diagonal), contradicting Proposition 3. Hence
we may assume without loss of generality that the squares with coordinates
(xl)yl) and (5732,1/2) are open.

Suppose (c) does not hold, and suppose firstly that there are nevertheless
at least three rows and at least three columns containing open squares. Say
(z3,y3) with 23 ¢ {x1, 7} is open. Since (c) does not hold, y3 € {v1,92};
without loss of generality let y3 = 1. Since there are at least three rows
containing open squares, there is an open square (4, ys) with y4 ¢ {v1,v2},
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and since (c) does not hold, x4 € {z;,72}. If 24 = z,, then the open squares
(z1,¥4), (z2,¥2) and (z3,y;) contradict the fact that (c) does not hold, and
SO T4 = 2. Repeating this argument for any further open squares, we see
that each open square is either in column z3 or in row y;. But then a queen
placed on (z2,y1) dominates all oper squares, contradicting Proposition 3.

Therefore we may assume that there are either exactly two rows and
two columns containing open squares, or, without loss of generality, exactly
two rows and at least three columns containing open squares.

In the former case, the open rows (columns) are y; and y2 (z; and
23). Note that a queen placed on (z4,¥;), %,J € {1,2}, dominates all open
squares in row j and column . Thus the square in the opposite corner of
the rectangle formed by these lines is open, for otherwise Proposition 3 is
contradicted. Moreover, if |1 — z2| = |y1 — ¥2|, then a queen on (z;,y;)
dominates the opposite square, also contradicting Proposition 3. Since we
assume exactly two rows and two columns contain open squares, there are
no other open squares. Thus (a) holds.

Suppose exactly the two rows y; and y» and at least the three columns
z1, T9 and z3 contain open squares. If y; contains only one open square
(z1,1), then a queen on (z1,y2) dominates R, a contradiction. It follows
that each row contains at least two open squares. Suppose all the open
squares lie in the columns z;, =2 and x3. Without loss of generality we
may assume that z, contains two open squares, i.e., (z2,y1) and (z2,y2)
are open. Since each y; contains at least two open squares and since (1, 1)
is assumed to be open, we may also assume without loss of generality that

(z3,2) is open. If |z; — 29| = |z2 — 23| = |y1 — w2|, then a queen on
(z2,y2) dominates all possible open squares, contradicting Proposition 3.
Hence (b) holds. [ ]

In determining the irredundance numbers of Q5 and Qg we do not need
the full power of Proposition 5, but for larger boards this may well be
necessary. (In the case of Proposition 5(b) we can also obtain stronger
conditions on the relative positions of the open squares.) We now show

that ir (@s) = 3 (= v(Qs) - see [13]).

Lemma 6 Suppose X is a mazimal irredundant set of two queens on Qs.
(a) There are at most seven pn-free squares.
(b) Each queen has at least two pns.
(c) Each queen can be annihilated from at most seven squares.

Proof. Since | X| < v(Q5) =1 (Q@s) = 3, it follows from Proposition 2 that
the two queens q and ¢’ lie on the same row, column or diagonal. Denote
this line by L; without loss of generality we may assume that L is not a
column. We first note the following:
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(i) Each line of g, except L, is intersected by at most two lines of ¢’ (see
the proof of Proposition 4(a)).

(ii) The queen g on line ! consisting of k squares can be annihilated from
at most k—1 squares on [, while if g is not on [, she can be annihilated
from at most &k squares on .

(iii) If g has at least two pns p; and ps in row (column) 1 (or 5), then g can
be annihilated from at most three squares not in this row (column).
This follows from Proposition 4(a) applied to p; and p2, and the
symmetry of the common neighbours of p, and ps. (There is no room
on Qs for the other three common neighbours.)

(iv) Similarly, if g has pns on squares (4,1) and (%, 5) (or (1,1) and (5,7)),
where i € {2, 3,4}, then g can be annihilated from at most two squares
not on i.

(a) The pn-free squares relative to X are the dominated but unoccupied
squares that are not in line with the open squares, which are arranged as
stated in Proposition 5. There are at least two rows and two columns
containing these open squares. This leaves at most nine squares, i.e., at
most seven unoccupied squares. See Figure 1, in which the open squares
are shown by dots and the queens are not shown.

(b) Since L is not a column, it follows from (i) that each queen has at
least two pns in her column.

(c) Suppose g has exactly two pns. Obviously, ¢ and ¢’ have at most five
common neighbours on L and, by Proposition 4(a), at most six common
neighbours not on L. The only possibility is that they have 11 common
neighbours and g covers exactly 13 squares, i.e., g lies on the edge of Qs.
By considering all these configurations, it is apparent that there is (up to
symmetry) only one such configuration. See Figure 2 for an example, where
the queens are indicated by black dots and the pns by open circles. Then,
by (ii), ¢ can be annihilated from at most four squares on the same line !
as the pns (the squares in column 1, but not row 3, in Figure 2) and, by
(i), from at most three squares not on ! (squares (2,3), (3,2) and (3,4)
in Figure 2). Let the queen g have three or more pns. If there are at least
three pns on the same line [ as g, then g can be annihilated from at most
four squares on / and from at most two squares not on / (Proposition 4(b)).
If at least three pns are on the line I/, where ¢ is not on !/, then ¢ lies on one
of the squares mentioned in Proposition 4(b), and so ¢ can be annihilated
from at most five squares on I’ and from at most one square not on I’.

Suppose no line contains at least three pns of . If g lies in column 1 or
5, then by (ii), (iii) and the fact that ¢ has at least two pns in her column,
g can be annihilated from at most seven squares. Suppose ¢ lies in column
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Figure 1: If there are two queens on (s, then there are at most seven
pn-free squares.
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Figure 2: Each queen can be annihilated from at most seven squares.
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2. If ¢’ lies in row 1 or 5, then only two lines of ¢’ intersect column 1. Since
one of these must be L, it follows that g has three pns in her column, a
contradiction. Hence we assume that ¢ lies in rows 2 to 4. Now, if ¢ is in
row 1 or 5, then ¢’ is not in the same row as g, and hence, by (i), ¢ has two
pns in her row. As above, ¢ can be annihilated from at most seven squares.
Suppose q is in row 2, i.e., ¢ has coordinates (2,2). The only position for
g’ that does not leave three pns for ¢ in the same line, which we shall call
a valid position, is (3,3). But then (2,1) and (2, 5) are pns of ¢ and hence,
by (ii) and (iv), ¢ can be annihilated from at most six squares. Now say
q lies on (2,3). The only valid positions for ¢’ are (3,2), (3,3), (3,4) and
(4,3). If ¢’ is on (3,2) or (3,4), then ¢ has pns (1,3) and (5,3), and if ¢’
is on (3, 3), then (2,1) and (2, 5) are pns of g; hence by (ii) and (iv), g can
be annihilated from at most six squares. If ¢’ is on (4,3), then g has two
pns in column 1 and so can be annihilated from at most seven squares. By
symmetry we have shown that the result holds for ¢ in column 2 and thus
also for ¢ in column 4.

Suppose g is in column 3. As above we may assume that ¢ and ¢’ lie in
rows 2 to 4. If g lies on (3, 2), the only valid positions for ¢’ are (2,3) and
(4,3). In each case (3,1) and (3,5) are pns of ¢ and we are done. Finally,
suppose ¢ is on (3,3). Up to symmetry, the only valid position for ¢’ is
(2,2), in which case g has two pns in column 5 and we are done. ]

Of course, the result in Lemma 6(a) can be improved by considering
squares covered by the diagonals of the queens, but we don’t need a stronger
result here.

Theorem 7 ir(Qs) = 3.

Proof. Suppose ir (@s) = 2 and consider a maximal irredundant set of
Qs consisting of two queens. There are 23 unoccupied squares. All of
them must be either annihilators or pn-free. This is impossible, because by
Lemma 6 each queen can be annihilated from at most seven squares, and
the number of pn-free squares is at most seven, i.e., the total number of
annihilators or pn-free squares is at most 7+ 7+ 7 < 23. [ ]

In the final two results of this paper we show that ir (Qs) = 3 (= v (Qs)
— see [13]).

Lemma 8 Suppose X is a mazimal irredundant set of two queens on Q.

(a) There are at most 14 pn-free squares.
(b) Fach queen has at least four pns.
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Figure 3: If ir(Qg) = 2, then each queen has at least four private neigh-
bours.

(c¢) Each queen can be annihilated from at most four squares.

Proof. As in the proof of Lemma 6, the two queens have a common line L,
which we may assume is not a column.

(a) Again, the pn-free squares relative to X are the dominated but
unoccupied squares that are not in line with the open squares, which are
arranged as stated in Proposition 5. There are at least two rows and two
columns containing these open squares. This leaves at most 16 squares,
i.e., 14 unoccupied squares.

(b) Since L is not a column, it follows from (i) in the proof of Lemma
6 that each queen has at least three pns in her column. If L is a row, each
queen covers at least five other squares in her diagonals, and so at least
one diagonal contains three or more squares. Again by (i) each queen has
at least one additional pn in a diagonal. Similarly, if L is a diagonal, each
queen has at least three additional pns in her row (see Figure 3).

(c) For any queen g, there are at least three pns in the same column z
as ¢ plus at least one other pn, say r. The lines of  intersect = in at most
three squares, one of these being the square containing g. Thus there are
at most two squares in « from which g can be annihilated. Further, for any
given three squares in the same column, there are at most two squares not
in the column whose lines intersect all three given squares. Thus there are
at most two squares not on z from which ¢ can be annihilated. [ ]

Theorem 9 ir(Qs) = 3.

Proof. Suppose ir (QQ¢) = 2 and consider a maximal irredundant set X of
Q¢ consisting of two queens. There are 34 unoccupied squares. By the
maximality of X, all of them must be either annihilators or pn-free. This
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is impossible, because each queen can be annihilated from at most four
squares, and the number of pn-free squares is at most 14, that is, the total
number of annihilators or pn-free squares is at most 14 +4+4<34. W

Using the same method as in the proofs of the above theorems, it can
be shown that ir (Q7) = 4. However, the proof in this case is much more
technical and is not given here. It is also not clear how this method can be
extended to determine ir(Q),,) for large n, as the application of the inclusion-
exclusion principle (to determine the numbers of pns and annihilators) is
bound to become too complicated.

The existence of a maximal irredundant set X of queens on @, with
|X| < v(Qx) for some n seems unlikely, as the (average) number of pns
per queen seems to increase rapidly as n increases, as does the cardinality
of R, the set of open squares, and hence the cardinality of N [R]. For every
square in N [R] to annihilate a queen in X (see Theorem 1) is a tall order!

(Note: Harborth [11] recently reported that Jens-P. Bode had verified by
computer that ir(Q,) = v(Q,) for n < 10.)
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