Choosability of Bipartite Graphs

Sheila Ferneyhough
and
Gary MacGillivray*
Department of Mathematics and Statistics
University of Victoria
Victoria, Canada VW 3P4

Abstract

A graph G is called (a : b)-choosable if for every assignment of
a-sets L{v) to the vertices of (i it is possible to choose b-subsets
M (v) € L(v) so that adjacent vertices get disjoint subsets. We give a
different proof of a theorem of Tuza and Voigt that every 2-choosable
graph is (2k : k)-choosable for any positive integer k. Our proof is
algorithmic and can be implemented to run in time O(k|V (G)|).

1 Introduction

The authors of this paper are a part of Professor E.J.Cockayne’s mathe-
matical family. The present work is contained in the first author’s Master’s
thesis 2], for which Professor Cockayne was a member of the supervisory
committee, with the second author as Supervisor. The second author was
Professor Cockayne’s first graduate student, and is now his colleague at the
University of Victoria. We are very pleased to dedicate this paper to him
on the occasion of his sixtieth birthday. Two of our favourite quotes, one
by Ernie Cockayne and the other about him, follow.

You must be both idle and stupid to fail this course, one or the other will
not suffice. —-E.J.Cockayne

Professor Cockayne steadfastly refused to scale the grades, thereby depriving
me of any chance of passing the course. —from one of Professor Cockayne’s
teaching evaluations.

*Research supported by NSERC.

JCMCC 33 (2000), pp. 45-63

The concept of vertex colouring can be generalized by imposing restric-
tions on the colours allowable for each vertex. A graph G is k-choosable
(k-list-colourable) if for every assignment of k-sets L(v) to the vertices of
G, there is a proper vertex colouring m of V(G) where m(v) € L(v) for
each v € V(G). The choice number (list-chromatic number) x¢(G) is the
minimum integer £ such that G is k-choosable.

The notion of choosability can be generalized further as follows. Let a
and b be integers such that @ > b > 1. A graph G is (a : b)-choosable (1] if
for every assignment of a-sets L(v) to the vertices of G, there exist b-subsets
M (v) C L(v) for every v € V(G) such that M(u) N M(v) = @ whenever u
and v are adjacent in G. Note that a graph which is (a : 1)-choosable is
a-choosable. For a graph G with a fixed assignment of a-sets, such a choice
of b-subsets is called an (a : b)-choice.

Erdés, Rubin and Taylor {1} conjectured that every (a : b)-choosable
graph is (ak : bk)-choosable, for positive integer k. Gutner (3] obtained
the first partial result by proving that any 2-choosable graph is (4 : 2)-
choosable. Gutner and Tarsi {4] proved that any even cycle is (2k : k)-
choosable. Finally, Tuza and Voigt proved that any 2-choosable graph is
(2k : k)-choosable. Their proof is algorithmic and leads to an O(k3V})
algorithm for determining a (2k : k)-choice. We offer a different proof of
the theorem of Tuza and Voigt. Our proof is also algorithmic, and leads to
a O(k?|V]) algorithm for determining a (2k : k)-choice.

2 Preliminaries

Our proof relies on the following results of Erdds, Rubin and Taylor {1].
and Lemma 2.3 below. The latter is a generalization of Lemma 2 in {5].

We first define two crucial concepts, and then state results relating them.
The core of a graph G, denoted by core(G), is obtained by successively
removing vertices of degree 1 until none remain. The theta graph. 8,4 is
the graph consisting of three paths of lengths a. b and ¢ respectively, which
share a pair of end vertices. but are otherwise vertex disjoint.

Theorem 2.1 [1] For allm > 1, xe(62,2,2m) = 2.

As Coppya C 02’2‘2,-,,, it follows that XK(C2m+‘2) =2forallm>1 [1]
The next theorem characterizes the 2-choosable graphs.

Theorem 2.2 [1] A graph G is 2-choosable if and only if core(G) €

{Kla C2m+2»
02,2,‘2m m 2> 1}.

The proof of the following Lemma is straightforward, and left to the
reader.

46

Lemma 2.3 If a and b are positive integers such that § > 2. and G is a
graph such that core(G) is (a : b}-choosable. then G is (a : b)-choosable.

3 2-Choosable Graphs

This section presents algorithms which determine a (2k : k)-choice for the
core of any 2-choosable graph, thereby proving that any 2-choosable graph
is (2k : k)-choosable.

Each of Algorithms 2 through 5 which follow acts on a particular class
of 2-choosable graphs. If 2k-sets have been assigned to the vertices of
the input graph, then the appropriate algorithm can be used to output a
(2k : k)-choice for that graph.

In Algorithms 2 through 5, an iteration involves removing edges of the
input graph to obtain a spanning tree T with root », choosing an element
m(r) € L(r), and calling Algorithm 1, below. Algorithm 1 performs a
breadth-first search on T', choosing and deleting an element from colour
set L(v) when reaching vertex v. If d(r,v) is even, the chosen element is
added to its choice set M(v). The data structures for Algorithm 1 include
R, which is a queue of vertices, and S, which is a set of vertices of T

Algorithm 1

Input: tree T, root r, element m(r), sets M (v) and L(v) for each v € V(T
Initialization: S:=0,7:=0

BEGIN
R := queue.insert(r, empty_queue);
M(r) := M(r) Um(r); (L.1)

L(r) := L(r) — m(r);
WHILE not_empty(R) DO BEGIN
ii=14+1;
v := queue_remove(R);
FOR each neighbour u of v DO
IF u is not in R or S THEN BEGIN

R := queue.insert(u,R); (1.2)
IF m(v) € L(u) THEN

m(u) := m(v) (1.3)
ELSE

Choose m(u) € L(u) — L(v); (1.4)
L(u) := L(u) — m(u); (1.5)
IF i is even THEN

M(u) := M(u) Um(u) (1.6)

47

END;
S:=S5u{v}
END
END.

Complexity: O(k{V(T)|)

That the time complexity of this algorithm is O(k|V(T’)|) is clear from
its breadth-first search nature, in which a fixed set of operations (set union,
set difference, membership testing. and queue operations) requiring tiine
O(k) is performed for each vertex of T.

For the proofs which follow, note that after each call to Algorithm 1,
the cardinality of each colour set L(v) has decreased by one. and for each
vertex v such that d(r.v) is even, the cardinality of M (v) has increased by
one.

Lemma 3.1 Suppose there is a call to Algorithm 1 where m(v) = r is
added to M(v). Then for any vertex u which is adjucent to v in T, x will
not be in L(u) on completion of the call. and x will not be added to M(u)
during the call.

Proof. If v = r, then d(r,v) is even. Otherwise, m(v) = = and x is added
to M (v) at line (1.6), so d(r,v) is even.

Suppose that d(r,v) = d(r,u) — 1. Then m(v) is chosen before m(u). If
m(v) =z € L(u). then m(u) = 2 at line (1.3). Now z is deleted from L(u)
at line (1.5), and as d(r,u) is odd, u is not added to M (u) at line (1.6).

Suppose that d(r,v) — 1 = d(r,u). Then m(u) is chosen before m(w).
Suppose that m(u) := y. Then y is deleted from L(u) at line (1.5) and y is
not added to M(u) at line (1.6). Now. m(v) := 2 is chosen either at line
(1.3) or line (1.4). If chosen at line (1.3). then m{v) = m(u). so y = x. If
chosen at line (1.4), then y # x and m(v) € L(v) — L{u). so 2 & L{u).

Given an assignment of 2k-sets to the vertices of a tree T, Algorithm 2
determines a (2k : k)-choice for T. The initialization includes choosing an
arbitrary root r € V(T'). Algorithm 1 is called k times by Algorithm 2,
resulting in a choice of k elements for each vertex at an even distance from
r. For each vertex at an odd distance from 7, the remaining & elements in
its colour set provide its choice set.

Algorithm 2

Input: k, T, sets L(v) for each v € V(T)
Initialization: Arbitrarily choose a root vertex, r € V(T'), i := 0, M(v) :=
0 for each v € V(T)

48

BEGIN
FOR i:= 1 TO k¥ DO BEGIN

Choose m(r) € L(r); (2.1)
Call Algorithm 1
END;
FOR all v € V(T) such that d(r,v) is odd DO
M(v) ;= L(v) (2.2)
END. ‘

Output: sets M(v) for each v € V(T)
Complexity: O(k2|V(T)|)
Theorem 3.2 Any tree is (2k : k)-choosable for all k > 1.

Proof. It suffices to show that the sets M(v) for each v € V(T) are a
(2k : k)-choice for T. As the root vertex r is fixed during Algorithm 2,
there is a fixed set of vertices at an even distance from r. and a fixed set. of
vertices at an odd distance from . So if v is a vertex such that d(r, v) is odd,
elements of L(v) are added to M(v) only at line (2.2). After Algorithm 1 is
called & times, |L(v)| = k for each v, and |M(v)| = k for each v such that
d(r,v) is even. By line (2.2), [M(v)| := |L(v)| = k for all v such that d(r,v)
is odd. Therefore M(v) C L(v) and |M(v)| = k for each v € V(T).

There is a fixed set of vertices at an odd distance from r, so if v is a
vertex such that d(r,v) is odd, elements of L(v) are added to M(v) only
at line (2.2). Thus if z ¢ L(v) at any stage of Algorithm 2, then 2 is not
in M(v) on completion of the algorithm. By Lemma 3.1. if = is added to
M (v) during a call to Algorithm 1. then for any vertex u which is adjacent
to ¢, z will not be in L{u) on completion of the call. and = will not be
added to M (u) during the call. Therefore for each x € M (v), where d(r,v)
is even, x ¢ M(u) for any u adjacent to v.

Thus the sets M (v) are a (2k : k)-choice for T. g

For some m > 2, let Cop, = g, v1....,V2m—1, 0. Given an assignment
of 2k-sets to the vertices of Cayy,, Algorithm 3 determines a (2k : k)-choice
for the cycle. The algorithm searches for a pair u, v of adjacent vertices
which have distinct colour sets. If such a pair exists, then T := Cy,,, — (u.v)
and Algorithm 1 is called. This search is iterated ¢ < k times, while such a
pair of vertices exists, resulting in a choice set of i elements for each even-
indexed vertex. If ¢ = k, then for each vertex at an odd distance from r, the
remaining k elements in its colour set provide its choice set. If i < k, then
for each vertex at an even distance from r, an additional k — ¢ elements for
its choice set are chosen from L(vg). For each vertex at an odd distance
from 7, the remaining 2k — ¢ elements of its colour set, excluding the k — ¢
elements chosen above, provide a choice set of k elements.

49

Algorithm 3

Input: k, sets L(v) for each v € V(Ca,,)
Initialization: ¢ := 0, M (v) := 0 for each v € V(Cay,)

BEGIN
WHILE i < k&i AND there exists an even j. 0 < < 2m - | such thar
cither L(1,)) # L(r,.,) OR L(v)) # L{z,. 1) DO BEGIN

IF there exists an even J such that Lie,) = Lir,) DO BEGIN
T :=Cop = (v, 1)
r.= "'J:
m(r) = a where x £ Lie) - L{e,oq) (3.1}

END

ELSE IF there exists an even j swch that Lyeyy 2 L{e, o) DO BEGIN
T := C’_’m - ‘,";-)

ri=vuy
m(r) = r where o 2 L(1)) - Lie,) (3.2)
END:
Call Algorithm 1: (3.3)
=i+
END:
I[F) =k THEN
M{ry) := Lir)) for each odd 3.1
ELSE BEGIN
Choose M'(rg) <7 Lira) where M'(eg) [(3.5}
For each even y. M) o= Miepy o Mingi (3.6)
For each odd j. Mue,) o= Liey) Wy (37
END
END.

Output: sets M(v) for each v € V(Cam)

Complexity: O(mk?)

Algorithm 3 is iterated at most k times, where each iteration consists
of a fixed set of operations, including at most one call to Algorithm 1. As
the searches take time O(|V(T)|) = O(m), the other operations take time
O(k), and Algorithm 1 always acts on a tree T where |V(T)| = 2m, the
time complexity of Algorithm 3 is O(mk?).

Theorem 3.3 For all k > 1, Cop, is (2k : k)-choosable.

Proof. It suffices to show that the sets M(v) for each v € V(Cam) are a
(2k : k)-choice for Cop. For any call to Algorithm 1, r = v; where j is
even, so the vertices at an even distance from r are v; such that j is even,

50

and those at an odd distance from r are v; such that j is odd. Suppose
that v; € V(Cam) where j is odd. Elements of L(v;) are added to M(v;)
only at line (3.4) or (3.7).

Suppose that Algorithm 3 calls Algorithm 1 exactly ¢ times. Then
|L(vy)| = 2k — 4 for all v;, and [M(v;)| = i for all even j. If i = &,
then |L(v;)| = k for each v;, and |M(v;)| = k for each even j. By line
(3.4), iM(v;){ := |L(vj)| = k for each odd j. Thus M(v,) C L{v;) and
|M{v;)| = k for each v; € V(Caom).

If i <k, then for all even j, L(v;) = L(v;41) and L(v;) = L(v;j_,). Thus
all vertices have the same set. At line (3.6), |M(v;)| := [M(v;)UM’(v)| =i
+ (k- i) = k for each even j. As M'(vp) C L(vo) = L(v,), M (v;) C L(v;) for
each even j. At line (3.7), [M(v;)| := [L(v) — M'(vwo)| = 2k—i—(k—i) = k
for each odd j. As L{v,) — M'(vo) € L(v1) = L(v;). M(v;) C L(v,) for all
odd j.

The vertices at an odd distance from r are v, where j is odd, so if
vj € V(Cam) and j is odd, then elements of L({v;) are added to M(v;) only
at line (3.4) or (3.7). Thus if at any stage of Algorithm 3, « & L(v;). then
z is not in M (v;) on completion of the algorithm. Suppose that m(v) = z
is added to M(v) during a call to Algorithm 1 which acts on T. Then by
Lemma 3.1, for any u which is adjacent to v in T, z will not be in M(u)
on completion of Algorithm 3.

Consider a call to Algorithm 1 where T = Chyp — (v.vj41). and j
is even. Then by line (3.1), z € L(v;) — L(vj41). At line (1.1), = will
be added to M(v;). As z € L(vj+1) and j + 1 is odd, z will not be in
M (vj4+1) on completion of Algorithm 3. Similarly if a call is made when
T = C2m - (‘Uj,’Uj_l).

Suppose z € M (v;) was chosen at line (3.5). Then at line 3.6), M (v;) :=
M(v;) U M'(vo), where x € M'(vp). For each odd j, M(v;) := L(v,) -
M'(vg) at line (3.7), so z & M(v;).

Therefore M (u) N M(v) = 0 for each pair of adjacent vertices, and the
sets M(v) are a (2k : k) choice for Cop,. g

Let 62 2 5 consist of the paths vy, v4, v2 and vg, v3, v2 and vg, v1, v2. Given
an assignment of 2k-sets to the vertices of 8222, Algorithm 4 determines a
(2K : k)-choice for the graph. The algorithm searches for a pair of vertices,
Us, Vg, adjacent to vo (or va) such that L(vg) (or L(vz)) contains an element
which is not in L(vs) N L(v;). If such vertices exist, T := 6,52 — (vo, vs) —
(vo,vt) (or T := 65,22 — (v2,vs) — (v2,v¢)) and Algorithm 1 is called. This
search is iterated ¢ < k times, while such a pair of vertices exists, resulting
in choice sets of ¢ elements for vy and ve. If i = k, then for each of vy, v3
and vy, the remaining & elements in its colour set provide its choice set. If
i < k, then for vy and vy, an additional k — ¢ elements for its choice set
are chosen from L(vo) N L(vz). For each of v;, v3 and vy, the remaining

51

9k — 1 elements of its colour set, excluding the k — ¢ elements chosen above,
provide a choice set of k elements.

Algorithm 4

Input: k, sets L(v) for each v € V(6222)
Initialization: i := 0, M(v) := 0 for each v € V(0a,2.2)

BEGIN
WHILE [+ < k& AND ithere exists £ Lteg) - L{rg) - Liv,) OR there exists
o= L) = Lieg) - Liey) where st £ {1.3.4}. s # ¢ DO BEGIN
IF there exists » € L(vg) = L(ey) - Lie). where s 62 {131}
s 41 THEN BEGIN

I'i= a0 — (g ve) — {vg e)t (it

roT ey

mr) = th2
END

ELSE IF there exists # & L{ra) ~ L{ey) - L(ry). where s.f = {1.3.4}.
s =t THEN BEGIX

ros o
m{r) i a
END:
Call Algoritlun 1: P
Set s - |
END:
IF - &k THEN
M,y Lie)y for g = 134 [ERE

ELSE BEGIN
Choose M'trg) = M (m) 7 Lirg) 7 Liea) wheve (M) = kb 0 ol
Clhoose M {r)) 2 Liey) - M'(eg). where M(ey) = ko for j - L3 b LG
Mie,j o= Me) o M (ey) for each vertex vy LT
END
END.

Output: sets M (v) for each v € V(02,2,2)

Complexity: O(k?)

Algorithm 4 is iterated at most k times, where each iteration consists
of a fixed set of operations, including at most one call to Algorithm 1. As
the searches take time O(|V(T)|) = O(1), the other operations take time
O(k), and Algorithm 1 always acts on a tree T' where |V(T)| = 5, the time
complexity of Algorithm 4 is O(k?).

52

Theorem 3.4 Forall k > 1, 0522 is (2k : k)-choosable.

Proof. It suffices to show that the sets M (v) for each v € V(fs,2,2) are a
(2k : k)-choice for 855 5. For any call to Algorithm 1, r = v or 7 = vs, so
the vertices at an even distance from r are vy and vs, and those at an odd
distance from r are vy, v3 and v4. For j = 1, 3 and 4, elements of L(v;) are
added to M(v;) only at line (4.4) or (4.7). .

Suppose that Algorithm 4 calls Algorithm 1 exactly i times. Then
|L(v;)] = 2k — i for all v, and [M(v,)| =ifor j=0and j = 2. If i =k,
then |L(v;)| = k for each vj, and |[M(v;)| = k for j = 0 and j = 2. At line
(4.4), |M(v;)| := |L(v;)| = k for j = 1, 3 and 4. Thus M(v;) C L(v;) and
[M (v;)| = k for each v; € V(62,2,2).

If i < k, it must be shown that at line (4.5). [L(vg) N L(v2)| > k — .
Each element of L(vg) occurs in at least two of L(v;), L{vs), L(v4) and each
element of L(vq) occurs in at least two of L(vy), L(vs3), L(vq). Therefore
2|L(vo)| + 2|L(v2)| = 2|L(vo) N L{ve)| < |L(v1)l + |L(va)| + [L(va)|- As
[L(v;)] = 2k — i for each v;, 2(2k — i) + 2(2k —) — 2|L(vg) N L(vy)] <
(2k — 1) + (2k —) + (2k —). Therefore |L(vo) N L{va)| > k — £ > k ~i.

At line (4.7), |M(v;)| :== |[M(v;) UM'(vj)| =i+ (k—i)=kforj=0
and j = 2. As M'(v;) C L(uo) N L(v2), M(v;) C L(v;) for each even j. At
line (4.7), |M(v;)| == |M(v;) U M'(v;)| = |M'(v;)| = k for j = 1,3,4. As
M'(v5) C L(vj) — M'(vo), M(v;) C L(v;) for j =1,3,4.

The vertices at an odd distance from r are vy, v3 and v4. For j = 1,3 or
4, elements of L(v;) are added to M (v;) only at line (4.4) or (4.7). Thusif at
any stage of Algorithm 4, z ¢ L(v;), then z is not in M(v;) on completion
of the algorithm. Suppose that m(v) = z is added to M (v) during a call to
Algorithm 1. Then by Lemma 3.1, for any u which is adjacent to v in T, z
will not be in M (u) on completion of Algorithm 4.

Consider a call to Algorithm 1 where T = 6222 — (vo,vs) — (vg,vt)-
By line (4.2), m(v) = z, and z will be added to M(vg) at line (1.1). As
z € L(vo) — L(vs) — L(v), = & L(vs) and = & L(v,), so z will not be in
M (v,) or in M (v;) on completion of Algorithm 4. Similarly if a call is made
when T = 6329 — (v2,us) — (v2, v).

Suppose z € M(vp) was chosen at line (4.5). Then at line (4.7), M (vp) :=
M(vo) UM'(wo), where 2 € M’(vo). For j =1, 3 and 4, M(v;) := M(v;) U
M'(v;) = M'(v;), where M'(v;) € L(v;) — M'(vg). Thus z ¢ M’(v;), so
z & M(vj).

Thus M(v) N M(u) = 0 for each pair of adjacent vertices, and the sets
M(v) are a (2k : k) choice for 6322. §

For some m > 1, let 629 9m consist of the paths vy, vom42,vam and

V0, V2m+1, Yom and vg, v1,v2, . .., Vo, Given an assignment of 2k-sets to the
vertices of 022 om, Algorithm 5 determines a (2k : k)-choice for the graph.

53

For each iteration, a rooted subtree T of 82 2 2, is chosen and Algorithm 1 is
called. If the root r is such that d(r, vp) is even, then i is incremented after
the call. Otherwise, #’ is incremented. This iteration occurs i + i’ times,
while i < k, i’ < k, and certain other conditions are satisfied, resulting
in choice sets of i elements for vertices v; such that j = 0,2,....2m and
choice sets of i’ elements for v; such that j = 1,3,...,2m + 1,2m + 2.
If i = k, then for each of v1,v3,...,V2m+1,V2m+2, the remaining & — v
elements in its colour set provide the remainder of its choice set. If i’ = £,
then for each of v, vs, - ..,V2m, the remaining k — ¢ elements in its colour
set provide the rest of its choice set. If i < k and i’ < k, then ordered
pairs of elements {(Z2m+1, Zam+2) : Tam+1 € L(vam+1)s Tam+2 € L(vam+2)}
zve formed, reducing the remainder of the (2k : k)-choice for 822 2:n to a
(2k : k)-choice for Com+2.

Algorithm 5

Input: k, m, sets L(v) for each v € V(82,2,2m)
Initialization: i := 0, ¢’ := 0, M(v) := 0 for each v € V(f22.2m),
L'(vom+1) =0

BEGIN
WHILE [i < &} AND [i" < kt AND Tthere exists = Lizo) = L{ed) - Liv]
such that s.t = {1.'2m +1.2m =2} s+ 1 OR there exists o & Lty 0~
L(vs) = L{ry) such that s.t = {2m - 1.2m - 1.2m =20 5 = 1 OR there
exists an element .+ which is contained in exactly three of Lirg) Liea,).
L(tam 1) L{vame2)i DO BEGIN
IF there exists v € L{vg) — Lies) - Livoro st {4 2m - 1 2m 2 2},
s # + THEN BEGIN

T =050, - (. t5) = leg ek (.

A MY

mry o= H.2y
EXD

ELSE IF there exists r < Llea,) - Lteo Lie), where <.t &
{2m - 1.2m - 1.2+ 2}, s = t THEN BEGIN

T =00 - (Cam. 003) ~ (G, 00 (.
Pt gt
(r) t=

END

ELSE IF there exists 2 < (L{rg) ™ Lirae . 1) 7 L{eaan)) - Llvem)
THEN BEGIN

T = 032.0m — (Cam- Vo) ~ (02m - P22) (5.4

AR RS P I

mir)=2x (H.90
END

ELSE IF there exists 2 2 (Livan,)7 Livag, o3} 7 Livay, o 21) - Lirg)
THEN BEGIN
T = By an ~ (Vo tamet) = (P02 Canz2) (5.6)
FiEE gy
mi{r) =
END
ELSE IF there exists & € { L{en} Y Lieam) Y Lo 1)) - Ly, o)
THEN BEGIN

Find the minimum ¢ > 0 such that x € L(r)) for ; = .

bl 2m (5.7)
[F 1 is even THEN BEGIN
T:= e‘!.‘.’.!m = (oo} o (am) (5.8)

L BT
m(ry:=x {5.9)
END
ELSE BEGIN
1 tamya) i =y € Llvawmcz) - L{n):
C:= 0'.’..'.’.3:1: - (U'lm- age 2) = (Lo Cam 220t
IF y &€ L(vam) THEN BEGIN
Ti=C—- (et) (5.1th
ri=og
m(r) = (5.11)
Mo) 1= Mgy) {.‘/}
END
ELSE BEGIN
Find the minitoum v > O so that y £ Liv,) for j = n,
w+ lo.o... 2 {5.12)
T:=C-{vy. 1.1 (5.1:4)
s,
m(r) =y (5.1
IF « is odd THEN Miray w20 00 Mtea, .00 o {y} (5.15)
EXND
L(l"‘!,"."_l) = L(l'-_),,,.‘.g) - {_I/}I (-7“))
EXND:
END:
ELSE IF there exists 2 € (L{vo) 7 Livam) ™ Llvyga2)) = L{vanet)
THEN BEGIN
Find the minimum ¢ > 0 such that » < L{v,) for j = t.

b1, 2in
IF t is even THEN BEGIN
T:= 9‘.’.‘.’.'3111 - (f'[-) - ('-".’m- P ey) (5.17)

rie U

m(r):=ux

55

END
ELSE BEGIN
mtayey) = ¥ € Llame) = L(vg):
IF y € L(tvam) THEN BEGIN
T:=C— (.0 1518}
roo=ay
m{r) :=ur
Meapgay) == M) U {v}
EXND
END
ELSE BEGIN
Find the minimwn ¢ > 0 so that g £ Lie lor g = .
[TIC POR 2
T:=C - (en.re1) 5,19
o=,
mir):=y
IF o is odd THEN
-‘I("'.'m»i— 1)= Mg} {.‘/}
END:

L(lv".’.nn-l) 1= L{tam 1) - {y}: 152014
END:
Call Algorithm 1: HR N
IF ez {eaoea. ... tm} THEN
IR | (.22
ELSE

=i+ L

{F i =k THEN

M,y i= M) G L) for j = 2m + 2 aud each acd j £5.2:3)
Ei.sE [F i = & THEN
Mey) o= M(ey) o L{ny) for cach even j. 0 < J <2 520

CLSE BEGIN {pairing}
FOR all 2 € L(tam+1) DO

[F & L{tams+2) THEN BEGIN
L'{tam 1) 2= L'(vama) U {(e2)} 15.25)
L{vamsr) := L{vamar) - {2}
L{vamsa) 1= L(ram+2) - {J.‘}

END

ELSE IF x € L(vp) THEN BEGIN
L'(t2ma1) := L't} {(x)}, where y & L(van .20

L(ve) 15.20)

[v(("lmw-l) = L{vam -1) - {J}
L(tans0) i= Livam~2) - {‘/}

56

END
ELSE BEGIN
Lvam) i= Lo o {(e g} where g < L{eoy, .00~
L(l".’m) |-)-2']
L('~".’m w1) = L("‘.’m‘ 1) - "}
L(l".'m«'.') = L(‘"_’mc‘_" - {.‘l}
END:
Call Algoritlun 6:
FOR each (. y) € L'{(vamey) DO BEGIN
;‘1(,“2'"_‘_” = ~\1("'.’m-o-l) {‘l'};
M{vamas) = M{vaya2) {.‘/}
END
END
END.

Output: sets M(v) for each v € V(82,2,21m)

Complexity: O(mk?)

Algorithm 5 is iterated at most 2k times, where each iteration consists
of a fixed set of operations, including at most one call to Algorithm 1, either
directly from Algorithm 5, or indirectly via Algorithm 6. As the searches
take time O(|V(T')|) = O(m), the other operations take time O(k), and
Algorithm 1 always acts on a tree T where |V(T)| = 2m + 2, the time
complexity of Algorithm 5 is O(mk?).

Algorithm 6

Input: k, sets L(v) for each v € V(Caom2)

BEGIN
WHILE "+ < b AND ithere exist~ au even ;.0 < j < 2m 1 such rhat
cither Liv)) # Liv,,.) OR Liejy = Lo, 1y DO BEGIN

(F there exists an even y sacl that Leey £ L(e,,) DO BEGIN
T = (.13171-(".! = (e o)
Pl I‘,:
m{r) =2 where »r £ Lty - Lir,) 16.1)

END

ELSE IF there exists an even j such that L(r)) # L(v,_,) DO BEGIN
T = Coypaa ~ (e ey)

r= g
m(r) ;= x where & € L{v;) - L(r,) (6.2)

END:

Call Algorithm 1: (6.3}

=0 +1

57

END:

IF + = & THEN BEGIN
M(e)) == M(ry) o Lie)) for each odd j < 204 1 (6G.4)
-'\I("'.!m w1} = L(tay 1)

ELSE BEGIN
Choose M’(rgy Z Lirg) where M(ry), =k - & (6.5)
M (ey) o= Liey) = M)

For each even j. Mie,) = M{e)) s M eo): (6.6)

For cach odd j < 2 - 1. M{v)) = M) - M'(ey) (6.7)

.“l(ll".'mml) < L{vans1) - .‘l’(l'(;). where 5.\[((,f2,,,+1)i =0 (6.8)
EXND

EXND.

Note that Algorithm 6 is almost identical to Algorithm 3. Algorithm 6
acts on a 2m + 2-cycle, rather than a 2m-cycle, and no initialization is
required for Algorithm 6.

As the elements of all other sets are singletons, while the elements of
L(vam41) are ordered pairs, some definitions are required. Care is required
here, as we are defining what we mean when saying that two sets contain-
ing very different objects are “equal”. Define L(v;) = L(vam+1) if and
only if for each 22 € L(v;), there exists (y,2) € L(vam+1) such that ei-
ther y = z or z = z (or both). Define L(v;) — L(vam+1) = {zr:z ¢
L(v;) and for all (y,2) € L(vam+1), Y # z and z # x}. Define L(vam+1) -
M'(v) = {(,2) : (y.2) € L(vams1), y & M'(vo) and z & M'(vo)}. In
Algorithm 1, define m(vem+1) € L(u) if and only if m(vem=1) = (y.2),
where y € L(u) or z € L(u) (or both).

Lemma 3.5 The pairing of the elements of L(vam+1) and L(vam42) in
Algorithm 5 occurs only if every & € L(vo)U L(vam) U L(vom+1) U L(vam+-2)
is contained in exactly two or in ezactly four of L(vo), L(vam). L(vom+1)s
L(vam+2).

Proof. If the elements of L(vomy1) and L(vam42) are paired in Algo-
rithm 5, then the following conditions are satisfied.

1. If z € L(v) then z is in at least two of L(v1), L(v2m+1), L(vem+2);

2. If z € L(vam) then z is in at least two of L(vem—1), L(vam+1),
L(vam+2);

3. Ifze L(’Uo) N L('l)zm+1) N L(’l)zm+2), then z € L('Uzm);
4. If 2 € L(vam) N L(v2m+1) N L(vam+2), then 2 € L(vo);

5. If z € L(vo) N L(vam) N L(vem+1), then z € L(vam+2);

58

6. If 2 € L{vg) N L{vam) N L{vem+2), then & € L{vomyy).

By conditions 3 through 6, if z is in any three of L(vo), L(vem), L(vam+1).
L(vam+2), then z is in all four of them. By conditions 1 and 2, if x € L(vg)
or € L(vam), then 2 € L(vam41) or 2 € L(vam42). Thus it suffices to
show that if x € L(vam41) or © € L(vam+2), then & € L(v), or z € L(vam).

Aey): = (L{eo) Y L{Camsr) + 1L(0o) T Loy, ca)i -
514(."0) ik L("'_’mfl’ M L s 42} Y LA Py)
WA o) = EL(""_’m) o L("’.’mvl)i + iL(U‘.!m) L,)

iL("".'m) = LU".’N: +1)N L(”?m-&-‘l) o L("ﬂ)i
iL(”'lrmH) - L(l.’n) - L("»'?m)i + 'L(_l"Zm N IaF AT IR
{L(eame) 7 L2) = [L{02mm 1) O L) 1 L(vam) 7 Lley, o)
Livy,) = !L(f"’),"*.'_b) - L{vy) — L(L’Zm)! + ?L("'.’m 2) Y L{rg)
iL("".’m-i-'z) o L(l".'m)= iL(U'.'.'m+'.’) ™ L{rg) L(l‘-_),,,) TLira.,)

?Iv("'.»!mu-l)i

As |L(vo)| = |L(vam)| = |L({vam+1)| = |L(vam+2)], 0 = |L(vam+1)| +
|L(vem+2)| = |L(vo)| = |L(vam)| = |L(vem+1) — L{vo) — L(vem)| +|L(vam+2) —
L(vo) — L(vem)|-

Therefore |L(vam+1) — L(vg) — L(vam)| = 0 and |L(vom+2) — L(vo) —
L(vam)| =0, so any 2 € L{vp) U L(vem) U L(vam+1) U L(vama2) is contained
in exactly two or in exactly four of L(vo), L(v2m), L{vam+1), L(vam+2)- B

Lemma 3.6 The pairing of the elements of L(vaym+1) and L(vomys) in
Algorithm 5 occurs only if |L{vo) N L(vam1)| = |L(vem) N L(vams2)| and
|L(vo) N L(vam+2)| = |L(vam) N L(vama1)l-

Proof. 0 = |L(vams1)| + |L(vo)l — |L(vem42)| = |L(vam)l = 2/L(vo) N
L(vam+1)| = 2|L(vam) N L(vam+2)|. Thus |L(vo) N L(vem41)| = |L{vam) O
L(vam+2)|. Similarly for |L(vp) N L(vam+2)| = [L(v2m) N L(vom+1)l- 0

Lemma 3.7 The elements of L{vem+1) can be paired with elements of
L(vam+2) in Algorithm 5.

Proof. Suppose the elements of L(vomy1) and L(vem,42) are paired in
Algorithm 5. If £ € L(vam+1) N L(vam42) then (z,z) is paired at line (
5.25). Otherwise € L(vam+1) and & € L(vem42). If 2 € L(vam41) N L(vg)
then by Lemma 3.6, there exists y € L(vem+2) — L(vo) and (z,y) is paired
at line (5.26). Otherwise z € L(vam+1), € L(vam+2) and z & L(vp), so
z € L(vam41)NL(vay). By Lemma 3.6, there exists y € L{vam2) — L(vom)
and (z,y) is paired at line (5.27). Thus the elements of L(vem41) can be
paired with the elements of L(vey42). 8

Lemma 3.8 Suppose there is a call to Algorithm 1 where m(r) = z. If
there exists a path r = uy,ug,...,up in T where z € u; fori=1 to ¢, then
m(ue) = z during the call to Algorithm 1.

59

Proof. The proof is by induction on ¢. Suppose that a call is made to
Algorithm 1 where m(r) = z. If ¢ = 1, then m(r) = m(u1) = x during the
call to Algorithm 1.

Suppose that if there exists a path r = uy.ug,.... us in T where x € u,
for i = 1 to ¢, then m(uy—,) = x during the call to Algorithm 1. Now
m{ue—y) = x € L{ug). 50 m{ug) := r at line (1.3). »

Theorem 3.9 For allm > 1. k > 1, 0222m is (2k : k)-choosable.

Proof. It will be shown that the sets M (v) for each v € V(692 9,,) are
a (2k : k)-choice for 0222m. After Algorithm 1 is called i + 7' times,
|L(v;)] = 2k —i — i’ for all v;. For j = 0.2,....2m, [M(v))| = i, and
for j=1.3,...,2m+1,2m+2. |M(v,)| = 4. If i = k. then |L(v;)} = k -
for each v,, and for j = 0,2,....2m. |M(v,)| = k. Therefore 1A/ (v))] =
iM(vj)UL@w)l =i+ (k—i)=kfory=13,...2m+ 1L2m+2 I
i" = k. then {L(v;)| = k —1i for each vj, and for j =1,3..... 2m+1.2m +2,
1M (v;)| = k. Therefore, |M(v;)} = [M(vj) U L(v;)| = i + (k= i) = k for
§=0.2,...,2m. lfi=kori =k, then M(v;) C L(v;) and |M(v;)| = k for
each v;. If i < k and i’ < k, then the elements of L(v2y,+1) and L(vgn42)
are paired.

By Lemma 3.1, if m(v) = 2 is added to M(v) during a call to Algo-
rithm 1, then for any u which is adjacent to v in T, 2 will not be in L(u)
after the call. and z will not be added to M(u) during the call. Thus it
suffices to consider choices for vertices which are adjacent in g5 ., . but
which are not adjacent in T.

Suppose there is a call to Algorithm 1 where T = 02.0.0m — (V0. 1) -~
(vo,v¢) (line (5.1)). By line (5.2), m(w) = = and z is added to M (vp) at
line (1.1). As z € L(vg) — L(vs) — L(w), 2 & L(vs) and x & L(v). Similarly
if there is a call to Algorithm 1 where T = 022.9m — (V2. vs) — (Vam. v¢)
(line (5.3)).

Suppose there is a call made to Algorithm 1 where T = 0959, -
(vam: Vam+1) — (Vom, Vam+2) (line (5.4)). By line (5.5), m(vam+1) = T
and z is added to M(vam41) at line (1.1). As z € (L(vo) N L(vam+1) N
L(vom+2)) — L(vam), © & L(vem), but = € L(vo) and = € L(vam+2). The
next choice will be m(vp), and the choice after that will be m(vVam+y2e). As
m(vems1) = & € L(vg), m(vo) := z at line (1.3). As m(vo) = = € L(vem+2),
m(vam+2) = z at line (1.3). As d(vam+1,Vom+2) is even, = will be added
t0 M (vom42) at line (1.6). Similarly if there is a call to Algorithm 1 where
T = 62,22m — (v0, V2m+1) — (Vo, V2m+-2) (line (5.6)).

Suppose there is a call to Algorithm 1 where T’ = 62,2 o0m — (v, v4-1) —
(Vam, Vam+2) (line (5.8)). By line (5.9), m(vem) = z and z is added to
M(vom) at line (1.1). As z € (Z(vo) N L(vam) N L(vem+1)) — L{vam+2),
z & L{voms2). There exists a path r = vom, Vom—1,---, V-1, in T where

x is in L(v;) for each v; in the path. So by Lemma 3.8, m(v;) = 2 during
the call to Algorithm 1. As d(vom,v:) is even. x is added to M(¢,) at line
(1.6). As the minimum ¢ was chosen at line (5.7). 22 ¢ L(v,—,). Similarly if
there is a call to Algorithm 1 where T' = 039 9m — (v1,v1-1) = (Vam. Vam—1)
(line (5.17)).

Suppose there is a call made to Algorithm 1 where T = 6322,, ~
(vam, vam+2) — (Vo, Vam2) — (v, ve—y) (line (5.10)). By line (5.11), m(v;) = 2
and z is added to M (v;) at line (1.1). As the minimum ¢ was chosen at line
(5.7). 2 € L(v,—). There exists a path r = v, vpe1, ... 2 Vo, Vamagrs g in T
where r is in L(v;) for each v, in the path. So by Lemma 3.8, m{va,,) = =
and m(vg) = x during the call to Algorithm 1. As 2 € (L(19) N L{vy,) N
L(vst1)) — L{vamas)s € & L(vgy2). Similarly if there is a call to Algo-
rithm 1 where T' = 032 0m — (Vem, Vam+1) — (V0, V2m41) — (. vp-1) (line (
5.18)).

Suppose there is a call made to Algorithm 1 where T = 650m —
(v2m- vam+2) = (Vo, V2ins2) — (Vu, Uy 1) (line (5'13))' By line (5.14), m(v,,) =
y and y is added to M(v,) at line (1.1). As the minimum u was chosen
at line (5.12), y & L(vy—1). There exists a path 1 = vy, vyq1..... 02
in T where y is in L(v;) for each v; in the path. So by Lemma 3.8,
m(vem) = y during the call to Algorithm 1. As y € L(vgpm42) N L(mg).
y & L(vo). Suppose that u is even. Then since d(v,.vem) is even, y is
added to M{va,,) at line (1.6). As y & L(vg). some m(ug) = z € L(vp) is
added to M(vp) at line (1.6). As u is even, y is not added to M(van42)
at line (5.15), and y is deleted from L(vam42) at line (5.16). Suppose
that v is odd. Then y is added to M(vam42) at line (5.15). At line
(1.5), y is deleted from L(vem), and as d(vy,,vem) is odd, y is not added
to M (v2m) at line (1.6). Similarly if there is a call to Algorithm 1 where
T = 0222m — (Vam, V2m+1) — (V0, Vam41) — (Uny Uy y) (line (5.19)). u

An example demonstrating the application of Algorithm 5 to a 6,5,
graph follows. Suppose sets L(vo) = {1,2,3.4}, L(v1) = {1,2.5,6}, L(v) =
{1,3,4,5}, L(vs) = {4.5,6,7}, L(va) = {5,6,7,8}, L(vs) = {1,2.4.8} and
L(ve) = {3,5,6,7} are assigned to the vertices of 6 2 4.

The algorithm begins with a search for an element of L(vg) which is not
in the colour sets of at least two of the vertices adjacent to vy. Elements
1,2 € L(vg) do not satisfy this criterion, but element 3 € L(vp) does. It
is contained in neither L(v;) nor L(vs). At line (5.1), tree T is obtained
by removing edges (v, v1) and (vp,vs). Vertex vp is chosen as the root of
T, and at line (5.2), m(vg) = 3 is chosen from its colour set. At line (
5.21), Algorithm 1 is called, beginning a breadth-first search on T, where
an element will be chosen from each colour set.

Algorithm 1 begins by adding m(vg) = 3 to choice set M(vp), and
deleting it from set L(vp). Then the neighbour vs of vg is considered.

61

Because m(vg) = 3 € L(vg), m(vg) = 3 is chosen at line (1.3). Element 3 is
deleted from L(ve) at line (1.5). The neighbour v4 of vg is considered next.
As m(vg) = 3 & L(vyg), an element of L(vy) which is not in L{vs) must be
chosen at line (1.4). Element m(vy) = 8 satisfies this criterion. It is deleted
from L(vs) at line (1.5), and because v4 is at an even distance from the
root vp, element 8 is added to choice set M(v,) at line (1.6). Continuing
in this fashion, m(vs) = 8 and m(vs) = 4 are chosen, and are deleted from
sets L(vs) and L(v3), respectively. Next, m(vq) = 4 is chosen, deleted from
L(vz) and added to M(v;). Finally, m(v,) = 2 is chosen and deleted from
L(v), completing this call to Algorithm 1.

As root vg was chosen, i is incremented at line (5.22). Because i < 2.
this iteration of Algorithm 5 is completed, and there is a return to the
beginning of the loop.

Again, there is a search for an element in L(vy) which is not in the sets
of at least two of its adjacent vertices. As element 2 was deleted from L(v,).
this element is in neither L(v,) nor L(vg), thus satisfying the criterion. At
line (5.1), tree T is obtained by removing edges (vo.»1) and (v, vs) from
the 0224 graph. The root of T becomes vertex vo, m(vp) = 2 is chosen.
and Algorithm 1 is called.

First, m(vg) = 2 is added to M(v) and is deleted from L(vg). Now
m(vs) = 2 is chosen and deleted from L(vs). Then, m(v4) = 5 is chosen,
deleted from L(v,) and added to M(vy4). Next, m(vg) = 5 and m(v3) =5
are chosen. and are deleted from sets L{vg) and L(vs). respectively. Then,
m(vs) = 5 is chosen, deleted from L(vo) and added to M(vz). Finally,
m(vy) = 5 is chosen and deleted from L(w;), completing this call to Algo-
rithm 1.

Once again, i is incremented at line (5.22). Now i = 2, which means
that the choice sets for the vertices at an even distance from vy have been
completed. They are M (o) = {2,3}, M(v2) = {4,5} and M(v4) = {5.8}.
At line (5.23), the choice sets for the remaining vertices are completed by
adding their remaining elements to their respective choice sets. Set L(v1)
had elements 2 and 5 deleted, and has elements 1 and 6 remaining, so choice
set M(v;) becomes {1,6}. Similarly, M(vs) = {6,7}, M(vs) = {1,4} and
M (ve) = {6,7}. This completes the choices, and Algorithm 5.

Theorem 3.10 Any 2-choosable graph is (2k : k)-choosable for any k > 1.

Proof. By the results in this section, and the characterization of 2-choosable
graphs given by Theorem 2.2, the core of any graph which is 2-choosable
is (2k : k)-choosable for all k > 1. By Lemma 2.3, any graph whose core is
(2k : k)-choosable is (2k : k)-choosable. g

62

References

(1] P. Erdés, A.L. Rubin and H. Taylor, Choosability in graphs, Proc.
West Coast Conf. on Combinatorics, Graph Theory and Computing,
Congressus Numerantium 26 (1979) 125-157.

[2] S. Ferneyhough, Choice Numbers for Unions of Graphs, M.Sc.
Thesis, Departinent of Mathematics and Statistics, University of Vic-
toria, Victoria, B.C., Canada (1996).

[3] S. Gutner, M.Sc. Thesis, Tel Aviv University (1992).

[4] S. Gutner and M. Tarsi, Some results on (a : b)-choosability (1995),
manuscript.

[5] Zs. Tuza and M. Voigt, Every 2-choosable graph is (2m,m)-choosable,
Journal of Graph Theory, 22 (1996) 245-252.

63

