Sensitivity of the upper irredundance number to
edge addition

J.E.Dunbar
Converse College, Spartanburg, S.C., U.S.A.
e-mail:jdunbar@converse.edu

T.R.Monroe
Wofford College, Spartanburg, S.C., U.S.A.
e-mail: monroetr@wofford.edu

C.A.Whitehead
Goldsmiths College, London SE14 6NW, U.K.
e-mail: c.whitehead@gold.ac.uk

January 5, 2000

Abstract

In this study, we consider the effect on the upper irredundance number
IR(G) of a graph G when an edge is added joining a pair of non-adjacent
vertices of G. We say that G is I R-insensitive if IR(G + ¢) = IR(G) for
every edge ¢ € E. We characterize [ R-insensitive bipartite graphs and
give a constructive characterization of graphs G for which the addition of
any edge decreases I R(G). We also demonstrate the existence of a wide
class of graphs G containing a pair of non-adjacent vertices u, v such that
[R(G + uv) > IR(G).

Dedicated to Ernie Cockayne on the occasion of his 60th birthday.

1 Introduction

In this paper, all graphs considered will be finite and without multiple edges or
loops. Let G be a graph with vertex set ¥” and edge set £ and let E denote the
edge set of the complementary graph G of G. For any vertex v € V, let N(v)
denote the set of vertices adjacent to v in G and let N[v] = N(v)U {v}. For any
subset U C V', let N(U) = U,ey N(v) and N[U] = N(U)UU.

A non-empty subset S C V' is said to be an irredundaent set in G if, for every
vertex r € S, there exists a vertex v € V such that v € N[z] and v ¢ N[{S—{z}].
Such a vertex v is called a private neighbour of @ (with respect to S). The set of
all private neighbours of a vertex r with respect to a sct. S is denoted by I (z, S)
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(or just by [(x,S) if the underlying graph is clear). If for a given set S and a
given vertex r € S, I(x,S) # @, then the vertex z is said to be irredundant with
respect to S; otherwise, x is said to be redundant. A set containing a redundant
vertex is called redundant. The maximum cardinality of an irredundant set in
G is called the upper irredundance number of G and denoted by [R(G).
irredundant set in G of cardinality TR(G) is calied an I R-set.

In this study, we consider the effect on TR(G) of the addition of an edge join-
ing two non-adjacent vertices of G. We show that, in contrast to the situation
with the domination and independence numbers, if the addition of such an edge
changes TR(G), then in general it may either decrease or increase it. We say
that G is [ R-sensitive if there exists an cdge e € E such that IR(G +e) # IR(G)
and [R-insensitive otherwise. In section 3, we obtain necessary and sufficient
conditions for the existence of an edge e € E for which IR(G + ¢) > IR(G)
and also for which TR(G + e) < IR(G). We demonstrate the existance of a
wide class of graphs G for which /R(G) may be increased by the addition of a
suitably chosen missing edge.

The situation in the case of bipartite graphs is simpler to describe. By a
result of Cockayne, Favaron, Payan and Thompson (2], IR(G) = B(G) when G
is bipartite. In section 4, we show that in this case, IR(G) cannot be increased
by the addition of an edge and give a characterization of bipartite graphs that
are insensitive to edge addition.

A domination critical graph was defined by Sumner and Blitch in (8] as a
graph G for which the domination number decrcases when any edge joining two
non-adjacent vertices is added to G. Following their notation, we call a graph
k-1R-criticel if IR(G) =k > 2and IR(G+e) < k,foralle € E. In section 5, we
obtain a constructive characterization of k-1 R-critical graphs for all £ > 2. This
characterization has been obtained independently by Grobler and Mynhardt (5]
in a study of the effect on the upper domination parameters caused by adding
or removing an edge.

Related results on the effect on the domination number of a graph caused by
adding an cdge have been obtained by Carrington, Harary and Haynes [1]. A
bound on the irredundance number after removal of a vertex has been obtained
by Favaron [3]. Finally, there is an cxtensive literature on the effect on the
domination number caused by removing a vertex and by adding or removing an
edge; the interested reader is referred to {6] and {7] for an excellent survey.

We use the following notation and terminology. Let S be an irredundant set
inGandlet r € S. If AN(x) € V" — S, then we call 2 an isolate in S. Thus z
is an isolate in S if and only if £ € I{x,S). We define two subsets 59,5, C S,
where possibly one of Sp and S) is empty, by s € So if I(s,5) = {s},and s € S,
otherwise. Then every vertex of Sp is an isolate in S, while every vertex that is
in a non-trivial component of the induced subgraph (S) is in §) (but note that
S, also contains any isolate in S that has a private neighbour in V - §').

If S; # 0, every vertex of S has at least one private neighbour in V' - S. For
each vertex r € $. make an arbitrary selection of just one vertex of I(z,8) N
(V= S) and label it f(x). Then f: S — V =S, defined by £ — f(z), is
an injection. We shall call f a private neighbour function (or pnf) for S,. For
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U C S;, denote the set {f(u) : we U} by f(U).
We shall suppose throughout this paper that G is a graph of order n > 2
and that G 2 K.

2 Preliminary Results

The results in this section establish some structural properties of an I R-set for
G. In particular, we obtain in the first three results, information about vertices
that are contained in every [ R-sct in G.

Lemma 2.1 Let S be an irredundant set in G, with S, # 0§ and let f : S| —
V — 8 be a pnf for S;. Then the set S’ = Sp U f(51) is an irredundant set in
G, with |S'| =|S|. In particular, when S is an IR-set, then so is S'.

Proof. Consider the set §' = SoU f(S). Since there are no edges in G between
the sets Sp and f(S}), by the definition of f, we have z € I(z,S’), for all z € Sy.
Further, since there are no edges between S and Sy, we have f~!(y) € I(y,S"),
for all y € f(S;). Thus S’ is an irredundant set in G. Clearly |f(S1)| = |Sul,
and hence |S'| = |S|. &

Corollary 2.2 Let u € V have the property that it is contained in every I R-set
in G. Then for any [R-set S, u € Sp.

We shall say that a subset X of the vertices of a graph G is minimal with
respect to a given property P if no proper subset of X possesses property P.
With this definition of minimality, we establish the following result.

Lemma 2.3 Let X C V be an independent set that is minimal with respect to
the property that | X| > |[N(X)|. Then X is contained in every IR-set in G.

Proof. Let X satisfy the conditions of the lemnma and let S be any I R-set in G.
If N(X) =0, then X is an isolated vertex in G and the result is clearly true. So
suppose that [N(X)| > 1, and hence |[X] > 2. Let Xg =X NS, X1 =XNG5
and Xy = XN (1" = 8S), where one or more of the sets X, .X(,.X2 may be empty.
If Xy =@, there is nothing to prove, so suppose otherwise. We note that

| X = | Xol + 1X0| + )Xo}

We shall define four subsets Y; of N(X). where i = 0,1,2,3. Firstly, if
Xo #0, let Yo = N(Xp). Since the vertices of \y are isolates in S, we have
Yo C V = S. Further, Xy is a proper subset of X" and hence |Yy| > | Xol, by the
minimality of X'. When X, = 0, let Y5 = 0.

When 5, # 0, let f : S, —» V - S denote a puf for 5. If X; # 0, let
¥7 = f(X,). Then since f is injective, we have [V = |X|. When X = 0, let
¥, = 0. Let 5, = ¥(X)NS. Then since X is an independent set, ¥ C S - X.
Finally, let Z = {s € S; — N[X]: f(s) € N(\2)} and if Z # 0, let Y3 = f(Z).
Then |Y3| = |Z]. When Z =0, let Y3 = 0.
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We note that the sets 13, i = 0,1,2,3, are pairwise disjoint. Thus, in all
cases, we have the following inequality:

IN(X 2 STV 2 1X] + X |+ 1Ya] + 121

Hence the condition |X| > |N(X)| gives |X2| > [Y3] + 2]

Let §' = (SUX3)—(ZUY2). Then X is contained in S’ as a set of isolates and
hence z € I(x,S'), for all z € X. Further, foreach s € §) - X, f(s) € V- N[X],
and hence I(s,S') # @ for all s € §'—X. Thus S’ is an irredundant set. However,
|S’| > |5}, contradicting the choice of S. Hence X» =0,and X C S. &

The final result in this section establishes a useful upper bound on the degree
of a vertex contained in an irredundant set.

Lemma 2.4 Let S be any irredundant set in G. Then degz < n — |S}, for all
T€S.

Proof. If z € Sy, then z is not adjacent to any vertex of S and the result follows.
Otherwise, z € S;. Let f : §; = V' —S be a pnf for Sy. Then z is not adjacent to
any vertex of SoU f(Si — {z}). But |SoUf(S1 — {z})| = |Sel +{S1] -1 = |51,
so that in either case, degz <n —|S|. &

In the case when S is an I R-set, Lemma 2.4 gives the following theorem of
Favaron [4], which we use in the proof of Lemma 5.5 and Lemma 5.6.

Theorem 2.5 (Favaron, 1988) In any graph G with minimum degree §, I R(G) <
n-—4.

3 Effect on IR of edge addition

In general, the addition of an edge joining two non-adjacent vertices of G may
do any one of three things: it may decrease I R(G), increase I R(G) or leave it
unchanged.

In order to decrease [R(G), the addition of ¢ € E must make at least one
vertex of every [R-set S in G redundant. It can only do this by depriving some
vertex of each [ R-set S for G of all of its private neighbours with respect to S.
Thus each [ R-set S must contain at least one vertex with the property that it
has a unique private neighbour with respect to S and e must join this unique
private neighbour to another vertex of S. On the other hand, the addition of
the edge e increases [ R(G) if it enables a vertex to be adjoined to some I R-set
W of G by providing it with a private neighbour in V' — W.

The graphs shown in Figure 1 illustrate various situations that can occur.
The graph G, has just two [R-sets: {z),Z2,23} and {y1,y2,y3}. It is easily
seen that for any edge ¢ € E, IR(G; +e) = 2 and hence G| is an example of a
3-1 R-critical graph. However, for the graph G2, we have IR(G2) = 2, whereas
IR(G» + z1y1) = 3: the addition of any edge other than x y leaves TR(G-)
unchanged.
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The situation is further complicated by the fact that the addition of an edge
may cause both an increasing and a decreasing effect simultaneously, as the
example of the graph G3 shown in Figure 1 illustrates. This graph has just the
six I R-sets {u7 v, X2, 3/3}, {u, v, Y2, 33}, {U, U, L2, $3}1 {'U., v, y2yy3}v {U, Y1, Y2, y3}
and {v,z1,Z2,23}. Then in G3 + uv, v or v is redundant in each of the first
four of these sets, y; is redundant in the fifth and z, is redundant in the sixth.
However, G5 also contains the irredundant set W = {x, 22,23}, and {u}UW is
irredundant in G3 +uv. Hence T R(G3 +uv) = 4 = [R(G3), so that the net effect
of adding the edge uv has been to leave the irredundance number unchanged.
Thus, in general, we cannot isolate decreasing effects from increasing effects.

In this section, we obtain conditions on a pair of non-adjacent vertices u,v
so that TR(G + wv) # IR(G). We also show that there exists a wide class of
graphs containing an edge e € E such that IR(G + e¢) > [R(G).

We first obtain necessary and sufficient conditions for the existence of an
edge e € E that has an increasing effect on [ R(G).

Lemma 3.1 Let u,v be a pair of non-adjacent vertices in G and suppose there
exists a set T C V', where |T| > 2, with the property that T is irredundent in
G + uv, but redundant in G. Then one of u and v, say u, is in a non-trivial
component of T and W =T — u is irredundant in G; further, v € V — N[W],
u€ N(W)-W and Ig(w,W) € N(u], for any w € W"

Proof. Since T is redundant in G but irredundant in G + uv, the addition of
the edge uv must provide one of u or v with a private neighbour with respect
to T in G + uv. Without loss of generality, we may assume that u € T and
{v} = Ig+un(e,T). It follows that u is in a non-trivial component of T and
v €V ~T. Hence u € N(W) — W and v € V - N[I¥]. Further, since T is
irredundant in G + ur, we have Ig(w. W) € N{u] for any w € W. Hence for all
r € W, Ig{z, W) = I uu(e, T) and so W is irredundant in G. W
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It is useful to note that for the irredundant set W described in Lemma 3.1,
Wy # 0. This is because x has a neighbour x, say, in T. Then since T is
irredundant in G + uv. r has a private neighbour 2’ € V' — T. Thus z € .

Corollary 3.2 Let {u,c} be a pair of non-adjacent vertices. Then [R(G +
uv) > IR(G) if and only of there czists an [R-set W in G such that one of u
and v, say v, is in V" — N[IU'}, the other vertez, u, is in N(W) -~ W and, in this
case, I;(w, W) ¢ N[u], for any w € W-

Proof. If IR(G + uv) > I R(G), then the existence of W follows immediately
from the lemma, by choosing T as an I R-set for G + uv. Conversely, if W exists
satisfying the conditions of the corollary, then WU {u} is irredundant in G + uv,
establishing the result. W

The proof of Lemma 3.1 also establishes the following.

Corollary 3.8 Lete € E be such that IR(G +¢e) > IR(G). Then IR(G +e) =
IR(G) + 1. Moreover, if T is an IR-set for G + e, then some subset S C T is
an [ R-set for G.

Note that although the relationship between u and v in the statement of
Lemma 3.1 and Corollary 3.2 appears to be asymmetrical, this is not in fact the
case when W’ is inaximal irredundant in G. Then, WU {v} contains a redundant
vertex. Thus there exists a vertex y € W, such that Ig(y, W) C N(v) and we
can define a pnf f: I, = V" = W for §,. By Lemma 2.1, W' = f(W;)U W, is
also an irredundant set in GG, with |[1¥”| = |W|. Then f(y) € W', and the roles
of u and v with respect to 11" are interchanged with respect to W™,

Lemma 3.4 Let IR(G) = k > 2, and let {u,v} be a pair of non-adjacent
vertices in G. Then IR(G + wv) < [R(G). if and only if both the following
conditions are satisfied.

(a) For any IR-set S in G, at least one vertex of {u,v} is in S, suyu € S,
and {v} = I;(x.S), for some € S (where possibly « = v).

(b) There exists no irvedundant set W of size k — 1 in G such that one of
{u.v}, say v. s in V' — N[W]: the other verter u € N(IW) - W and
I (w, W) & N{ul. for any w € W

Proof. Suppose that there exists a pair of non-adjacent vertices {u,v} C V
satisfying the condirions of the lemma. Suppose further that there exists an
irredundant set T of size &k in G + wv. If T is also irredundant in G, then {u, v}
and T satisfy condition (a), and r is redundant with respect to T in G + uv.

Thus we may assume that T contains a redundant vertex in G. Since T is
irredundant in G + we. the conditions of Lemma 3.1 are satisfied. Hence we may
assume that u is in " and G contains the irredundant set W =T — {u}, where
vel - NW] ee NI} =W and I{w, W) € N[y for any w € W. But this
contradicts condition (b) of the Lemma. Thus every set of k vertices contains a
redundant vertex in G+ ue. Hence TR(G + wv) < TR(G).
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Now suppose conversely that there exists a pair of non-adjacent vertices
u, v € V' such that TR(G + uv) < [R(G). Let S be an [R-set in G. Then S
contains a redundant vertex, z say, in G + uv. Thus the addition of the edge
ur deprives  of every private neighbour with respect to S. Hence at least one
of u and v, say u, is in S. Two possibilities now arise, according to whether
w=zroru#z Ifu=ur then uis redundant in G + wv. But this occurs only if
I(u,S) = {u}. Hence u € Sp and v € S. Otherwise, u # x. This occurs only if
Ic(x.S) = {v}. Thus in either case, the sets {u,v} and S satisfy condition (a).

Suppose that condition (b) is not also satisfied. Then there exists an irre-
dundant set W of size k — 1 in G such that u € N(W) — W, I(w, W) € Nu] for
any w € W, and v € V" = N[W]. Then W U {u} is an irredundant set of size k
in G + uv, contrary to hypothesis. Thus condition (b) is also satisfied. B

From the proof of Lemma 3.4, we deduce an obvious parallel to Corollary 3.3.

Corollary 3.5 Lete € E be such that IR(G +¢) < [R(G). Then IR(G +¢) =
IR(G) ~ 1. Moreover, if S is an I R-set for G. then some proper subset S' of S
is an [ R-set for G + c.

Finally in this section, we demonstrate the existence of a wide class of graphs
G for which there is an edge e € E such that TR(G +¢) > IR(G).

Theorem 3.6 Let G be a graph of order 2k + 2, where k 2> 2. Then there is
an cdge e € E such that | R(G + e) = [R(G) + 1 if the following conditions are
satisfied.

(a) " can be partitioned into two subsets X = {u, xy,....1¢},
Y = {v,y1, .- yr}, such that the only edges between the sets X and Y are
{wai 1 <i <k}

() {ur;:1<i<k}U{oyi:1<i<k}CE;

{(¢) the induced subgraphs (X — {u}) and (Y - {v}) each contain at least one
edge.

Proof. It is easily seen that X is irredundant in G + we and X — {u} is
irredundant in G. Hence TR(G + uv) > k + 1 and TR(G) > k. We shall show
that IR(G) = k.

If & = 2, then G is isomorphic to the graph G» shown in Figure 1. Since
[R(Gs) = 2, the result holds in this case. We shall therefore suppose that £ > 3
and that G contains an irredundant set S of cardinality & + 1. We first note
that 3(G) < k and hence S; #0. Let f: S, = 1" = S be a pnf for S).

Suppose that © € S;. Then f(S; — {u}) N X = @. Thus if also z, € S,
then f(r;) = yi. Hence g, ¢ S and further v ¢ S, since v is adjacent to y;.
Let f(u) = z;, where j # i. Then neither £; nor y, is in §. Hence including
both 1 and z; in S excludes at least one other vertex of X and three vertices of
Y. For each additional vertex of X included in S. there is at least one further
vertex of Y excluded from S. Suppose y,, € S. where p & {i.j}. Then f(y,) is
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excluded from § if y, € S; and r, is excluded from S when y, € So. But this
gives |S] < &, contrary to assumption.

Thus we may assume that when « € S, then S contains no other vertex of
X. However, if y; € S, then I(y;.5) C Y. But (Y') contains an induced K3 and
hence S contains at most k — 1 vertices of ¥, again implying that |S| < k.

Lastly, assume u ¢ S, v ¢ S. Then we have {z;,y;} C Si, for some i,
1 <t <k Then f(x;) € X and f(y;) € Y. However, if f(x;) = u, then no other
vertex of X is in S. In this case, we cannot also have f(y;) = v, because this
would give |S| = 2. Thus f(y;) € Y — {v.yi}. Then, since f(y;) is excluded from
S, we again have |S| < k. But if f(r;) # u, then f(z;) € X — {u,z;}. Then
since both f(r;) and f(y;) are excluded from S, we have |S| < k in this case
too. Thus /R(G) = k and the result follows using Corollary 3.3. &

We remark here that not all graphs G for which there is an edge e € E such
that TR(G + e¢) > IR(G) are induced subgraphs of a graph obtained by this
construction. It is possible to have degu < k and degv < k when there are
sufficient edges in (X — {u}) and (Y — {v}). For example, a graph G with
satisfying condition (a) of Theorem 3.6, and with (X — {u}) = K = (Y - {v}},
N(u) = {z1,22}, N(v) = {y}, satisfies TR(G) = k and IR(G + uwv) = k + 1
when £ > 3.

4 [IR-insensitive bipartite graphs

It is well known that the upper domination parameters of G are related by the
inequalities
HG) <T(G) < IR(G),

where 3(G) denotes the independence numiber of G and ['(G) is the cardinality of
a largest. minimal dominating set for G. In the case of bipartite graphs, however,
IR(G) = B(G) by a theorem of Cockayne, Favaron, Payan and Thomason [2].
[t follows that every bipartite graph ¢ contains an IR-set consisting only of
isolates.

In this scction, we characterize hipartite graphs that are I R-inscnsitive. We
show first that when G is bipartite, [ R(() cannot be increased by the addition
of an edge.

Lemma 4.1 Let G be a bipartite graph with bipartition V'(A, B) and let {u.v} C
A. Suppose there exists T C \". with\T| =t > 2, and such that T is irredundant
in G + uv but redundant in ;. Then GG contains an independent set of size t + 1.

Proof. By Lemma 3.1, we may assume that « is in a non-trivial component of 7
and W =T - {u} is irredundant in G, satisfying the conditions u € N (W) — IV,
veV = NWland [(w. 1) € N for any w € W. Then W, # 0 and hence
we can define a pnf f: 11, - U - W for Wi, Let Ry = (1, U f(I¥)) N A
Then W' = R4 U W, is an independent set in G of cardinality ¢ — 1 and hence
W' U {u, v} is an independent set in G of cardinality ¢+ 1. B
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Lemma 4.2 IfG is a bipartite graph, then [R(G +uv) < [R(G) for all uv € E.

Proof. Let G be a bipartite graph with bipartition V (4, B), and let uv € E.
If G + uv is a bipartite graph, then IR(G + uv) = 3(G + uv) < B(G) = IR(G).
If G + uv is not a bipartite graph, then v and v lie in the same partite set of
V(G). Let T be an IR-set of G + uv and assume that IR(G + uv) > IR(G).
Then the set T is redundant in G and by Lemma 4.1 G has an independent set
of vertices of order |T| + 1 > IR(G) = 8(G), a contradiction. B

Lemma 4.3 Let G be a bipartite graph and let u,v € V" be a pair of non-
adjacent vertices such that IR(G + uv) < IR(G). Then {u,v} is contained in
every IR-set in G.

Proof. Let S be an arbitrary /R-set S in G. Then by Lemma 3.4, at least
one of the vertices u and v is in S, say u € S. Suppose that v ¢ S. Then
again by Lemma 3.4, {v} = I(z,5), for some £ € § - {u}. Thus z isin a
non-trivial component of S, so that S; # @. Let G have bipartition V (A, B)
and suppose that = € A; then v € B. Let f: S, = V" — S be a pnf for S, and
let R4 = (S1Uf(S1))NA. Then the set S’ = SpU R4 is an independent IR-set
in G. Since S' is also irredundant in G + uv, we obtain /R(G + uv) = IR(G),
contrary to hypothesis. Hence u,v € S. &

Theorem 4.4 Let G be a bipartite graph containing no isolated vertez. Then
there exists an edge e € E such that IR(G + e) < [R(G) if and only if there is
an independent set X C V" such that | X| > |[N(X)].

Proof. Let JR(G) = k and let G have bipartition 1°(4, B). Suppose that G
contains an independent set .X C V" such that | X| > [N(X)]. Let X' be a subset
of X that is minimal with respect to the property that |X'| > |[NV(X')|. Then
|X'| > 2, since [N(X")| > 1. It follows from the minimality of X', that X’ is
contained in just one set of the bipartition of V. Assume that X' C A. Further,
X' is contained in every [R-sct in G, by Lemma 2.3. Let u,v € X' and let §
be an arbitrary I R-set in G. Then by Corollary 2.2, u. v € Sp and hence {u,v}
satisfies condition (a) of Lemma 3.4.

Suppose that {u.v} does not also satisfy condition (b) of Lemma 3.4. Then
we can find an irredundant set W in G with [I¥] = & - 1 and such that u €
N(W) —W,v eV - N[W|, and I(w,W) € N[u] for any w € W. Then T =
1" U {u} is irredundant in G + ue, with |T| = k. and hence T satisfies the
conditions of Lemma 4.1. But then G contains an irredundant set of cardinality
k + 1, contradicting TR(G) = k. Thus {u, v} satisfies condition (b) of Lemma
3.4 and hence IR(G + wv) < [R(G).

Now suppose, conversely, that G contains an edge e € E such that [R(G +
¢) < IR(G). Let X be the set of all vertices that arc contained in every IR-set
in G. By Lemma 4.3, | X| > 2. Without loss of generality, we may suppose that
X N A4 #£0. Since G is bipartite, there is an independent [R-set S in G and by
assumption, X € S. Let Sa =5n A, Sg =5nB. If|Sal > [N(S4)|, then the
theorem is proved. So, suppose that |N(Sa)| 2 1S4]. Since XN A C Sa, the set
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Sa # 0. Consider the set S’ = SpUN(S,). Since G has no isolated vertex, S’ #
0. Further, since S is an independent set, |S’| = |Sg| + [N(Sa)| > |S]. Hence
S’ is an independent set with at least |S| vertices. Thus S’ is an [ R-set that
does not contain X' N 4, contradicting the choice of X. Hence |S4] > [N{(Sa)},
and the theorem is proved. W

Thus we have the following characterisation of I R-insensitive bipartite graphs
containing no isolated vertex.

Corollary 4.5 A bipartite graph G containing no isolated vertex is I R-insensitive
if and only if every independent set X C V satisfies the condition that |X| <
|N (X

It is interesting to note that in such a graph G with bipartition V' (A, B),
then |4] < [N(4)] = |B] and |B] < |N(B)| = |A|; hence |A| = |B| = [R(G).

5 IR-critical graphs

Let G be a graph of order n with IR(G) = k > 2. We shall say that G is
k-IR-critical if IR(G +e) < k, for all e € E. It follows from Corollary 3.5 that
if G is k-IR-critical, then TR(G +e) = k-1, for all e € E. In the following
lemmas, we cstablish the structure of such graphs. This characterization has
also been established by Grobler and Mynhardt, using a different proof, in a
paper [3] which appears elsewhere in this issue.

Throughout this section, we shall assuwne that G is k-1 R-critical and S is an
IR-set in G.

Lemma 5.1 G, S satisfy the following conditions:
(a) G - S is a clique;.
(b) {S1) has at most one component and, if |Sy| > 2, then (Sy) is e clique;
(c) ifveV -8 and {v} # [{(z,5), for anyz € S, then degv =n — 1.

Proof. Let u, v be a pair of non-adjacent vertices in G. Then S is irredundant
in G + uv in each of the following cases: (i) u,v € V' - S; (i) u,v € Sy; (iii)
v €S veV-85and {v} # [(z,S) for any vertex z € S — {u}. But this
contradicts the definition of G, so that none of these cases can arise. W

Lemma 5.2 If S; # 0, then |S]| > 3.

Proof. Let f: S, = 1" = S be a pnf for 5. Suppose first that Sy = {u}, for
some vertex u € S. Then since |S| > 2, there exists w € Sp. Then w and f(u)
are non-adjacent. But then S is irredundant in G + wf(u), contradicting the
definition of G. Henee |S] > 2.

Now suppose that S = {u, v}, where u, v are distinct vertices in S. Then
the set §' = (S - {e})U{f(¢)} is an independent set of k vertices in G + v f(u).
again contradicting the definition of G. W
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[t is worth noting that the argument used in the proof of Lemma 5.2 fails
if |Si] > 3. In this case, S; contains a K3, with vertex set {z,y.z}, say.
Then (f(x), f(y), f(2)) is also a K3, by Lemma 5.1. Hence the vertices £,y, z,
f(x). f(y), f(2), induce a subgraph of G isomorphic to the graph G\, shown in
Figure 1. It is easily seen that [R(G) + £f(y)) = 2.

Lemma 5.3 If u € Sy, then u has ezactly one private neighbour in V" - S.

Proof. Suppose to the contrary that v,w are distinct vertices in [(u,S}. Let
r € S - {u}. Then S is an irredundant set in G + zv. W

The preceding results place restrictions on the structure of a k-IR-critical
graph G and any I R-set in G. These are summarized in the following lemma.

Lemma 5.4 Let G be a k-I R-critical graph of order n and let S be an I R-set
in G. Then G — S is a clique, each vertez of S has a unique private neighbour
and, if v e V — S is such that {v} # [(s,S) for any s € S, then degv =n — 1.
Further, just one of the following three possibilities arise for the structure of S.

(a) (S) = Ky and |V - S| > k;

(b) (S) = Ke; |

(¢) (S)~ K,UKy_y, and |V — S| > ¢, where k > ¢ > 3.
Proof. Let |S)| = t, where 0 < t < k. When ¢t > 0, we can define a pnf f for
Sy. Then, in this case, since f(§;) CV — S, we have |V - S| > ¢t. If t = k, we
have § = S,, and hence (S) ~ K}, by Lemma 3.1, giving case (a). When ¢ =0,

we have S = Sy, giving case (b). Otherwise, Lemma 5.1 and Lemma 5.2 give
case (c). B

We now describe three families of graphs using the following notation. Let
I,k be integers such that n = k + h and let V' = 1] U 15, where Vi =
{uy, w2, ...,ur} and Vo = {v1,v2,...,va}. Denote the set of edges between V;
and 13 by E*.

Then the graph G belongs to F, if and only if the following conditions are
satisfied:

Lh>k23;
2. (7)) = Ky and (V2) = K,

3. E‘={u,'v.~:1§i§k}u{u,~vj:lgisk,k+1§j§h}.

>

The graph G belongs to Fs if and only if the following conditions are satisfied:
1. h>0,k>2

2. (1)) = Ky and (V) = K

3. E* ={uwj:1<i<k 1<j<h}

75



The graph G belongs to F3 if and only if the following conditions are satis-
fied::

l. h>t >3 k>t+1, for some integer ¢;
2. ({ul,u.g,...,ut}) = Ky, ({TL;+1.U¢+2,...,1tk}) =~ R’k_‘, and (V) = Kp;
3 E* ={uw;: 1 <i<t}U{uv; : 1 <i<k, t+1<j<h}

Remark 1 If G is in any one of the families F\, Fs, F3, then V| is an irredun-
dent set in G and hence IR(G) > k.

Lemma 5.5 If G € F,, then G is k-1 R-critical.

Proof. Let G € Fi. Since §(G) = degu; = n -k, it follows from Remark 1 and
Theorem 2.5 that IR(G) = k. Thus to show that G is k-I R-critical, it suffices
to show that TR(G +e) < k, for all e € E. Without loss of generality, we may
take e = u,v;.

Suppose that G+u, v, contains an irredundant set S with |S| = k. By Lemma
2.4, no vertex of {vk41,Uks2,...,us} is in S. Also, since uy is redundant in V)
and v, is redundant in V5, S is neither V| nor the set W = {v;,vs,...,vx} and
hence S contains at least one element from each of V, and W. Assume, without
loss of generality, that u,,us,v, € S, with p # r, r < k. Then since upu, € E,
S1 #0. Let f:5, - V — S be apaf for §|. We show that u, is redundant in
S. This follows by noting that f(u,) ¢ Vi, since every vertex of V; is adjacent
to uq, and f(up) # vp, since v, is adjacent to v,.. Hence TR(G + uyv2) < k and
G is k-I R-critical. B

Lemma 5.6 If G € F,, then G is k-1 R-critical.

Proof. Let G € F;. (Note that the restriction on k arises from the assumption
that G 2 K,.) As in the case when G € Fy, we have 6(G) = degu, = n — k,
giving TR(G) = k. Thus again it suffices to show that IR(G + €) < k, for any
edge e € E. Without loss of geucrality, we may take e = ujus.

Suppose that G + uju2 contains an irredundant set S with |S| = k. When
h =0, we have G = K; and IR(G + u,u3) = k — 1, so that the result holds.
Assume that h > (. Then no vertex of V5 is in S, by Lemma 2.4. Hence
S = V. But us is redundant with respect to V] in G + uju,. This contradiction
establishes that ITR(G + ujus) < k and G is k-T R-critical. M

Lemma 5.7 If G € F3, then G is k-IR-critical.

Proof. Suppose first that & contains an irredundant set T with |T| = &k + 1.
Then T contains no vertex of the set 5. by Lemma 2.4. Hence T C V). But
|¥1] = k. This contradiction establishes that [ R(G) < k, and hence by Remark
1, we have [R(G) = k.

Suppose that S is an irredundant set with |[S| = k in G + e, where we may
assume that e is one of the edges ey -u w4y, €2 = ujve, €3 = uy4v; and,
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when & > t + 2, eq = w4 11442- By Lemma 2.4, S contains no vertex of the
set {Ur41, V142, U} Also, V| is redundant in each of the graphs G + e,
i =1,2,3,4. Thus, without loss of generality, we may assume that S contains
Uy, g, Uy, where 1 < p,q,7 < t and r # p. Then as in the proof of Lemma 5.5, it
is easily verified that u, is redundant with respect to S. Thus G is k-7 R-critical.
[

The last four lemmas give the following characterization of k-IR-critical
graphs.

Theorem 5.8 Let G be a graph with [R(G) = k > 2. Then G is k-1 R-critical
if and only if G belongs to one of the families Fy,Fy, F3.

The previous theorem characterizes graphs with the property that the addi-
tion of any missing edge decreases I R(G). In the context of irredundance, there
are two other senses in which a graph might be said to be edge-critical: (i) if
the addition of any missing edge increases IR(G); (ii) if the addition of any
missing edge changes I R(G). We call an edge uv joining a non-adjacent pair of
vertices {u,v} an increasing edge if IR(G + uv) > IR(G); a decreasing edge if
IR(G + uwv) < IR(G); and a neutral edge if IR(G + uv) = IR(G).

We consider first the existence of graphs with /R > 2 for which every missing
edge is an increasing edge. Suppose this class is non-empty and, among all such
graphs, let G be one of least order n. Then G contains no vertex of degree n — 1.
This follows by noting that a vertex z with degz = n — 1 cannot be in any /R-
set S for G, by Lemma 2.4; further, z cannot be the unique private neighbour
of any vertex of S. Thus [R(G — z) = IR(G) and G has the property that
every Inissing edge is an increasing edge if and only if G — z has that property,
contradicting the choice of G. Thus we may assume that every vertex of G is
incident with at least one missing edge.

Let u be any vertex of G. Then there is a vertex v ¢ N[u], and uv is an
increasing edge. It follows from Corollary 3.2 that there exists an I R-set W for
G with the property that v € V — N[W)}, u € N(W) - W and Ig(w, W) € N[u},
for any w € W'

The existence of these I R-sets would appear to be quite a restrictive con-
dition on G. In particular, we show in the following lemma that no graph
satisfving the conditions of Theorem 3.6 has the property that every missing
edge is an increasing edge.

Lemma 5.9 Suppose that G is a graph satisfying the conditions of Theorem
3.6. Then not every missing edge of G is an increasing edge.

Proof. With the notation of Theorem 3.6, we may suppose that y;.y» are
adjacent. Now zy» is a missing edge. We shall show that there is no I R-set
W for G satisfying the conditions that y» € V — N[W], z, € N(W) — W and
Ig(w W) &€ N[xy], for any w e W.

Suppose to the contrary that such an [R-set W exists. It follows from the
discussion immnediately preceding Corollary 3.2 that W, # 0. Let f : U —

71



V — W bLe a pnf for W. Now IV does not contain z; or any vertex of N[y],
and hence 1" contains no vertex of the set {x; x2,y1,y2,v}. However, some
vertex of N[z] is in W;. Suppose that u € W', Then f(u) is the only vertex of
f(W1) in X. Hence no pair of vertices {«,,y,} is in W, for 3 < r < k. But then
|W| < k, a contradiction.

We may thus assume that « ¢ W. Then W C {x3,....2¢} U {y3,..., ¥x} and
hence W contains a pair of vertices {x,,y,} for at least two distinct values of
r, with 3 < r < k, say z4,Z5,¥4, 45 € W. Then for r = 1,5, f(y,) # v; further,
Ic(yr, W) # {1}, because y, € N[z,]. Thus, without loss of generality, we may
take f(y4) = ys and f(ys) = yi, where 6 < s,¢t < k and s # . But then the
vertices &y, ys, Iy, it are excluded from IV, and similarly, for each additional pair
{zp,yp} that is included in W, there is a pair {z,,y, } which is excluded. Thus
we again have |W| < k, establishing the Lemma. B

It is not difficult to find examples of graphs containing both increasing and
decreasing edges. For example, suppose G is a graph satisfying the conditions
of Theorem 3.6 with & > 3 and (X} = (}) = Kj4+1. Then uv is an increasing
edge and, by an argument similar to that used in Lemma 3.5, every edge of the
form z;y;, © # j, is a decreasing edge. However, it can also be shown that the
cdges of the set {uy; : 1 < j < k}U{vz;: 1 < i <k} are neutral edges. If
we add these edges to G, then neither u nor v can be in any IR-set for G by
Lemma 2.4. Hence uv is now a neutral edge. Adding nwv to G gives a graph in
the family F;.

We conclude with the following conjecture.

Conjecture 1 . The only graphs with IR(G) > 2 that satisfy the property that
IR(G +¢) # IR(G), for all e € E, are the yraphs of the families F\, Fa, F3, for
which every edge is a decreasing edge.
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