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Abstract

A graph G is 2-stratified if its vertex set is partitioned into two
classes (each of which is a stratum or a color class), where the
vertices in one class are colored red and those in the other class
are colored blue. Let F be a 2-stratified graph rooted at some
blue vertex v. An F-coloring of a graph is a red-blue coloring
of the vertices of G in which every blue vertex v belongs to a
copy of F rooted at v. The F-domination number v#(G) is the
minimum number of red vertices in an F-coloring of G. In this
paper we determine the F-domination number of the prisms
Cn x K> for all 2-stratified claws F rooted at a blue vertex.
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1 Introduction

Dividing the vertex set of a graph into classes according to some prescribed
rule is a fundamental process in graph theory. The vertices of a graph
can be divided into cut-vertices and non-cut-vertices. Equivalently, the
vertices of a tree are divided into its leaves and non-leaves. The vertices of a
graph is partitioned according to the degrees of its vertices. When studying
distance, the vertices of a connected graph are partitioned according to
their eccentricities. Also, in a connected rooted graph, the vertices are
partitioned according to their distance from the root. Perhaps the best
known example of this process, however, is graph coloring, where the vertex
set of a graph is partitioned into classes each of which is independent in the
graph.

In VLSI design, the design of computer chips often yields a division of
the nodes into several layers each of which must induce a planar subgraph.
So here too the vertex set of a graph is divided into classes. Motivated by
these observations, Rashidi [7] defined a graph G to be a stratified graph if
its vertex set is partitioned into classes.

Formally, then, a graph G whose vertex set has been partitioned is called
a stratified graph. If the partition is V(G) = {V1, Va,...,Vi}, then Gis a k-
stratified graph. The sets V1, Va, ..., Vi are called the strata or color classes
of G. If k = 2, we ordinarily color the vertices of V] red and the vertices of
Va blue. In this paper, we will restrict our attention to 2-stratified graphs.
In [7], Rashidi studied a number of problems involving stratified graphs;
while distance in stratified graphs was investigated in (1, 3].

A set S C V(G) of a graph G is a dominating set if every vertex not in
S is adjacent to a vertex in S. The domination number of G, denoted by
4(G), is the minimum cardinality of a dominating set. A dominating set
of G of cardinality 4(G) is called a y-set of G. The concept of domination
in graphs, with its many variations, is now well studied in graph theory.
For a thorough study of domination in graphs, see Haynes, Hedetniemi and
Slater (4, 5].

Let F be a 2-stratified graph rooted at some blue vertex v. By defini-
tion, F contains at least one red vertex. An F-coloring of a graph G is a
red-blue coloring of the vertices of G such that every blue vertex v of G
belongs to a copy of F rooted at v. The F-domination number yr(G) of
G was introduced in [2] as the minimum number of red vertices of G in an
F-coloring of G. By a minimum F-coloring of G, we mean an F-coloring
containing a minimum number of red vertices, that is, yr(G) red vertices.
The F-domination number was studied in [2] for 2-stratified graphs of order
at most 3, where it was shown that F-domination generalizes not only ordi-
nary domination but other types of domination that have been previously
studied.
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By a claw, we mean the graph K 3. There are eight possible choices
for a 2-stratified claw rooted at a blue vertex v. These graphs are shown
in Figure 1. In this paper we study “claw domination” for prisms, that
is, graphs that are the Cartesian product C, x K» of an n-cycle and the
complete graph of order 2.

v@) " UO/I\JY'%: vA\
Mo A

Figure 1: The distinct 2-stratified claws rooted at a blue vertex v

Claw domination is illustrated with the famed Petersen graph P in
Figure 2, where for each 2-stratified claw ¥; (1 < i < 8), a minimum Y;-
coloring of the Petersen graph is shown, thereby giving the following:

7Y1(P)=3, 7Y2(P)=4: 7Y3(P)=5) 7Y4(P)=5
')’Ys(P) =4, 7Y5(P)=41 7Y1(P) =4, 7Y9(P) =6

Rl RW
ook o

Figure 2: Y;-Colorings of the Petersen graph
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2 Stratified Claw Domination in Prisms

In this section we determine the Y;-domination number of an important
class of cubic graphs, namely the prisms Cp x K2, n > 3. The following
lemma concerns the Y;-domination number of cubic graphs in general.

Lemma 2.1 If G is a cubic graph containing k pairwise disjoinl copies
of K13, then vy, (G) > k.

Proof.  Let there be given a Y;-coloring of G and let v be the central
vertex in a copy of K 3. If v is blue, then v is adjacent to a red vertex in
this copy. . ]

In all proofs dealing with C,, x K3, we assume that Cy, x Kj consists
of two n-cycles C : vy, v2,-++,vn,v; and C’ : v}, 05, -+, v}, v] with v;v] an
edge for all i (1 < i < n). We also assume that addition such as va4s is
computed modulo n, and a + b is one of the integers 1,2,---,n.

Theorem 2.2  Forn >3, vy,(Cn x K2) =2[n/4].

Proof. Let G = C, x K3. Assume first that n = 0 (mod 4). So
2[n/4] = n/2. In this case, V(G) can be partitioned into n/2 subsets,
each of which induces a K; 3. By Lemma 2.1, vy, (G) > n/2. By coloring
the central vertex red in each such K 3 and all other vertices blue, we have
a Y)-coloring of G. Thus vy, (G) < n/2.

Next we consider the case where n = 1 (mod 4). Here 2[n/4] = (n +
3)/2. Now let there be given a Yj-coloring of G. Assume first that there
are two adjacent red vertices. We consider two cases.

Case 1. There exist adjacent red vertices v, vi for somei (1<i<n). We

may assume that ¢ = 1. Since either v, or v} is red, we may assume that

vq is red. Then the set V(G) — {v1, v}, v2,vn—1,¥n,v},} can be partitioned

into (2n — 6)/4 subsets, each of which induces a copy of K 3. Therefore,
2n—6 n+3

m(G) 23+ = =222 =2[7].

Case 2. For some i (1 < i< n), v; and viy; are red. We can assume that
i = 1. Then v, and v} are blue, otherwise we are in Case 1. Hence vz and
v/, are red and the set V(G) — {v1, v}, va, v3, v3,v,} can be partitioned into
(2n — 6)/4 subsets, each of which induces a K 3. This implies that

m(©) 24+ 2225 2(7].

Hence we may assume that no two adjacent vertices are red. Without
loss of generality, let v; be red. Then v} and vz are blue. Let j > 2 be the
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smallest integer for which {v;,v}} is a pair of vertices of G containing a red
vertex. Then j < 3, for otherwise, the blue vertex v is not rooted at any
copy of V7.

Next we claim that v; and v}, are red for some i (1 < i < n). Oth-
erwise, without loss of generality, we may assume that v, and vy are both
red and v4 must consequently be blue. Also, since there are no adjacent
red vertices, v}, v2, v3, and v3 are blue. Consequently, Vs, %, Vg, Uiy, ", Up
are red. However, then, v; and v, are adjacent red vertices, contrary to
our assumption. Hence, as claimed, v; and v}, are both red for some i
(1 < i< n). Since V(G) — {vi,v},,} can be partitioned into (2n — 2)/4
subsets, each of which induces a copy of K} 3, it follows that

2n—2 n

m(G) 22+ —; —2[11 :

We have now proved that vy, (G) > 2[n/4]. If we color the vertices

v1,V5,v3,v4 red as well as the vertices vg, vg, V10, -+, Uh_, red with all

other vertices colored blue, then we have a Y1-coloring of G in which exactly
2[n/4] vertices are colored red. Thus 7y, (G) = 2 [n/4].

Proofs of the cases n = 2 (mod 4) and n = 3 (mod 4) are similar to

n =1 (mod 4) and are therefore omitted. ]

A set S of vertices in a graph G is called a packing set for G if the
distance between every two vertices of S in G is at least 3. The packing
number p(G) is the cardinality of a maximum packing set (see [6]). The
following result gives bounds for vy, (G) of an arbitrary cubic graph G in
terms of its order and packing number.

Theorem 2.3  For every cubic graph G of order n,
P(G) £, (G) < n —3p(G).

Proof Since G contains at least p(G) pairwise copies of Ky 3, the lower
bound follows from Lemma 2.1. We now establish the upper bound. Let S
be a maximum packing set for G, and let N(S) be the neighborhood of S.
Since S is a packing set and G is cubic, [N(S)| = 3p(G). By coloring the
vertices of N(S) blue and other vertices red, we have a Yi-coloring with
n — 3p(G) red vertices. L]

We can use Theorem 2.2 to show that both bounds for vy, (G) given in
Theorem 2.3 are sharp. The lower bound in Theorem 2.3 is attained for the
graph C, x K, where n = 0 (mod 4); while the upper bound is attained
for the graph C,, x K3, where n =1 (mod 4).

Now we turn our attention to Y>. The following general lemma con-
cerning Ys-domination number of a cubic graph G is a consequence of the
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fact that in each Ya-coloring of G, every Ps x K contains at least two red
vertices.

Lemma 2.4 If G is a cubic graph containing k pairwise disjoint copies
of P x Ka, then vy,(G) > 2k.

Theorem 2.5 Forn >3, vv,(Cn x K2) =2[n/3].

Proof Let G = C, x K2. Assume first that n = 0 (mod 3). So 2[n/3] =
2n/3. In this case, V(G) can be partitioned into n/3 subsets, each of
which induces a Ps x K. By coloring the two central vertices in each such
P3 x K red and all other vertices blue, we have a Ya-coloring of G. Thus,
vv,(G) < 2n/3. By Lemma 2.4, vy, (G) > 2n/3.

Next we consider the case where n = 1 (mod 3). Then 2[n/3] =
(2n + 4)/3. Now let there be given a Ya-coloring of G. Assume first that
v; and v! are colored red for some 7 with 1 <i < n. Then V(G) = {vi,v}}
can be partitioned into (2n — 2)/6 subsets, each of which induces a copy of
P3 x Ko. It follows by Lemma 2.4 that

2n3—2 =2n;-4 =2[g‘|'

Thus we can assume that for each i (1 < i < n) at least one of v;, v; is blue.

If there exists an integer i (1 < i < n) such that exactly one vertex of
each of the pairs {v;, v!}, {vi41, Viqp1 ), {vig2, Viga), {vit3, viys} is red, then
the set V(G) —u;.’;’,?{v,-, v}} can be partitioned into (2n — 8)/6 subsets, each
of which induces a copy of P3 x K2. Then

(G) 2 2+

2n—-8 2n+4 n
m(G) 24+ = T =0 ]
Otherwise, for every i (1 < ¢ < n) there is one pair in {v;, v;}, {vi41, vigh
{vit2,v}yo}, and {vi43,vi43} containing only blue vertices.

Next we claim that there is no i (1 < i < n) such that one vertex of
each of three pairs {v;,v!}, {vit1,v}4,}, and {viy2,v;,} is red. Without
loss of generality, we consider {vy,v{}, {v2, 3}, {vs,v3}, and {v4, v}, one
of which contains only blue vertices. We now make several observations:

(1) Three consecutive vertices in C (or in C"), say v1, va, v3 (or v}, v5, v3),
cannot all be colored red. Otherwise, the blue vertex v} (or v2) is not rooted
at any copy of Ys.

(2) For three consecutive vertices of C, say vy, vs, v3, none of the triples
vy, va, vh; V), vh, v3; v1,vh, v5; v],v2,v3 can all be colored red. If the first
triple, say, is colored red, then v4 and v} are both blue, implying that one
of {vs, vy} is red. Then one of {v4, v}} is blue and is not rooted at any
copy of Y.
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(3) For each three consecutive vertices of C, say vy, va, vs, neither vy, v,
v3 nor v}, vz, vg can all be colored red. If the first triple, say, is red, the
blue vertex v, is not rooted at any copy of Ys.

From these three observations, we conclude that at least one of every
three pairs {v;, v{}, {vi41,9}y,}, {vi42,v},,} contains only blue vertices.

We can now consider the three pairs {vy, v}}, {va,v}}, {vs, v4}, where
we may assume that vz and vj are both blue. There are three cases.

Case 1. vy and vy are red. Then v3, V3, Un,v), are all blue. This implies
that vy, vy are red and vy, vs, vs, v§ are blue. If n = 7, then the blue vertex
v7 is not rooted at a copy of Y». Hence, we may assume that n > 10. Next
we have v7,vg are red and v}, v}, vo, vh are blue. Continuing this process,
we conclude that v,_; and v/,_, are blue. However, then the blue vertex
v}, is not rooted at any copy of Y.

Case 2. vy and v% are red. Then v}, V2, Un, ¥}, v3, v§ are blue, implying
that the blue vertex v} is not rooted at any copy of Ya.

Case 3. vy is red and vy, v}, vy, vs, v} are all blue. Then the blue vertex vh
is not rooted at any copy of Ya.

Therefore, we are left with the only possibility that there exists an (1<
i < n) such that exactly one vertex of each of the pairs {v;, v/}, {vi41, v},
{vig2, {15}, {vi4s, viy3) is red. Thus, as we have seen, 7y,(G) > 2 [n/3].

By coloring vy, v} red and v3;, v3; red for all i with 1 < i < (n—1)/3, and
all other vertices blue, we obtain a Ya-coloring of G with 2 + 2(n-1)/3=
(2n + 4)/3 red vertices. This implies that vy, (G) < (2n +4)/3 = 2 [n/3].

Now let n = 2 (mod 3). Let there be given a Ys-coloring of G. Since
every blue vertex is adjacent to a red vertex having a red neighbor, we may
assume that the pairs {v,v]}, {v2,v4} contain at least two red vertices.
However, the remaining vertices of G can be partitioned into (2n — 4)/6
subsets, each of which induces a copy of P3 x K> and so, by Lemma 2.4,
17:(G) > 2+2(2n - 4)/6 = (2n + 2)/3 = 2[n/3].

If we color the vertices v1,v] red and vs;,v}; red for all i with 1 < i <
(n —2)/3, and all other vertices blue, we obtain a Ya-coloring of G with
(2n +2)/3 red vertices. This implies that yy,(G) < (2n + 2)/3=2[n/3].
]

We now turn our attention to yy,(Cn x K3) and begin with a lemma.

Lemma 2.6 Let G be a cubic graph containing Py x Ko as an induced
subgraph. In every Y3-coloring of G, at least four vertices of P4y x Ky are
red. Furthermore, if ezactly four vertices of Py x K are colored red, then
only the siz 2-stratified graphs Py x K2 shown in Figure 3 can occur.

We state two immediate consequences of Lemma 2.6.

87



ssafievafiiets
anaficeciiors

Figure 3: The six 2-stratified graphs P4 x K3 containing
exactly four red vertices in a cubic graph with a Y3-coloring

Corollary 2.7  IfG is a cubic graph containing k pairwise disjoint copies
of Py x Ky, then vy,(G) > 4k.

Corollary 2.8 Let there be given a Ys-coloring of the graph G = Cp x K».
If vi, v}, viq1, v}y, are all blue for some i (1 < i< n), then vi—a, vj_,, vi-y,
Vi_1, Vig2, Vips, Viss, Viyz are all red.

We now determine vy, (G) for G = Cp, X Ka.
Theorem 2.9 Forn >3, vy,(Cn x K2) =n.

Proof. If we color all vertices of C red and all vertices of C’ blue, then
this is a Y3-coloring with n red vertices. Hence vy, (Cn x K2) < n.

To establish the reverse inequality, we first assume that n = 0 (mod 4).
Then V(G) can be partitioned into n/4 subsets, each of which induces a
Py x K,. It then follows by Lemma 2.6 that vy, (Cn x K2) > 4(n/4) = n.

Hence we may assume that n Z 0 (mod 4). Now assume, to the contrary,
that vy, (Cn x K2) < n. Let there be given a Y3-coloring of G with vy, (Cy x
K) red vertices. We consider three cases.

Case 1. n = 1 (mod 4). Then there exists some integer 7 (1 < i < n)
such that both vertices of {v;,v!} are blue, say i = n. Let V; = {vqj_3,
Vi3> Vaj—2, Vaj_a, Vaj-1, Yaj_1, V45, V4 for j=1,2,---,(n—1)/4. Then
(V;) = Ps x K, for all such j. Necessarily, exactly four vertices in each
subgraph (V;) are colored red. Thus each induced subgraph (Vj) is one of
the graphs H;, Ha,- - -, He in Figure 3. If (Vi) = H1, then either v; or v} is
blue and is not rooted at a copy of Ya. If (V) = Hy, then the blue vertex
vy is not rooted at a copy of Y3. The remaining possibilities are considered
in four subcases.

Subcase 1.1. (V1) = Hs. Necessarily, vi, v}, v2, and v; are red by Corol-
lary 2.8, which forces v3, v}, v4, v} to be blue. Indeed, this forces (V;) = Ha»
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for j = 2,3,---,(n — 1)/4, where v4j_3,v};_3,vaj-2,vy;_, are red and
Vaj1, vgj_l, Vaj, vf,j are blue. However, then v,_2, v}, _,, vy_1, v, _; are blue
and so v, is not rooted at any copy of Ys.

Subcase 1.2. (Vi) = Hs. Then vy, v5,v3,v5 are red and vy, v}, vy, v} are
all blue. By Corollary 2.8, this forces (V;) = Hy for j = (n — 1)/4,(n —
5)/4,---,1, which is a contradiction.

Subcase 1.3. (V1) = Hs. Then, without loss of generality, either v; and v}
are blue or v; and v, are blue. In either case, v, is not rooted at any copy
of Y3, again a contradiction.

Subcase 1.4. (V1) = He. If vy and v} are blue, then v, is not rooted at a
copy of Y3. Hence, we may assume that v, is blue and v} is red. But then
(Vi) = Ha for all j = 2,3,---,(n — 1)/4, where v,_2,v},_5,vn—1,v,_, are
blue, contradicting Corollary 2.8.

Hence if n = 1 (mod 4), then vy, (Cr x K2) > n.

Case 2. n = 2 (mod 4). There exists some integer ¢ (1 < ¢ < n) such
that there is at most one red vertex in {v;, v}, vi41, v} +1}- Assume, without
loss of generality, that i = n — 1. So at most one of the vertices v,_;,
Vp_1,Vn, v}, is red. Let V; = {v4j_3, Vaj—3) V4j-2, Vaj—2r Vaj—1, Vaj_1, V4j,
vy} forj=1,2,--,(n-2)/4.

Assume first that the vertices v,_i, v},_;,v,, v, are blue. Then all
of vy, v}, v2,v5, Vn_2, ¥)_g Un_1, vh_, are red. Now U?;:{v,-,v;} can be
partitioned into (n — 6)/4 subsets, each of which induces a Py x K,. It
follows by Lemma 2.6 that vy, (G) > 8+4 (252) = n+2, contradicting our
assumption that vy, (G) < n.

Thus we may assume that exactly one vertex of v,_1, v/,_,,vn, v}, is
red, say v,—;. Then (V;) = P4 x K for all j and exactly four vertices in
each subgraph (V;) are colored red. Thus each (V) is one of Hy, Ha, -+ -, Hg
by Lemma 2.6. Now (V;) # Hg since the blue vertex v, is not rooted at
a copy of Y3. Indeed, by Lemma 2.6 then, (V}) = H,. In fact, this forces
(V;) = Hy for j = 2,3,---,(n - 2)/4. Then vp_3,v,,_3,vn_2,0),_, are all
blue and the blue vertex v/,_, is not rooted at any copy of Y3. Therefore,
in this case, vy, (Cn x K3) > n.

Case 3. n = 3 (mod 4). Then there exists some integer i (1 < i < n)
such that at most two vertices of {v;, v}, Vigly Vg, Viga, Vi) are red, say
t = n— 2. Then there exists a pair vj, v} of blue vertices for some j =
n—2,n—1,n. If v, and v}, are both blue, then all of vy, v}, v2, v} are red.
Now (Ji=5 {vi,v}} can be partitioned into (n — 3)/4 subsets, each of which
induces a Py x K3. Hence, by Lemma 2.6, vy,(G) > 4+ 4 ("T"a) =n+1,
a contradiction. Similarly, if both v,_» and v/ _, are blue, we have a

&
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contradiction. So we may assume that both v,_; and v,_; are blue and
that exactly one vertex in each of the pairs {vn-2,v)_,} and {v,,v}} is
red. However, in any case, the blue vertex vn_1 is not rooted in any copy
of Y. Therefore, vy,(Cn x K2) > n. ]

We now consider vy, (Cp X K2) and begin with a lemma.

Lemma 2.10 Let G be a cubic graph containing Ps x K as an induced
subgraph. In every Ya-coloring of G, al least two vertices of Ps x Kz are
red.

Proof. Assume, to the contrary, that there is a Ys-coloring of G and
that there is an induced subgraph H# = P X K in G containing at most
one red vertex. We may assume that V(H) = {vy, v}, v2, 5, -, v5,v5} in
G, where v;v} € E(H) for 1 <i < 5. If H contains no red vertex, then the
blue vertex vs is not rooted at any copy of Y. So H contains exactly one
red vertex v. If v = v; (or v = v!), where i = 1,2, then v;4; (or v{,,) is not
rooted in any copy of Yy. Thus, v = v3 (or v = vj). However, then, vz (or
v3) is not rooted in any copy of Y. u

Two consequences of Lemma 2.10 are given next.

Corollary 2.11  If G is a cubic graph containing k pairwise disjoint
copies of Ps x Ka, then vy, (G) > 2k.

Corollary 2.12  Ifn and k are integers with n > 5k + 1 > 6, then
T, (Cn x K2) > 2k + 1.

Proof. Let G = C, x K3. Assume, to the contrary, that vy, (G) < 2k,
where n > 5k 4+ 1 > 6. Let there be given a Yy-coloring of G with vy,(G)
red vertices. Let S; = { i, v, vig1, Viy1, ** s Vid(n=5k=1)s v§+(n_5k_l) }
for some ¢ with 1 < i < n be a set of n — 5k pairs of consecutive vertices
in G. Then the set V(G) — S; can be partitioned into k subsets, each of
which induces a Ps x Ka. These k copies of P; X K2 require at least 2k
red vertices by Corollary 2.11. Hence, all vertices of S; are blue. Since S;
is chosen arbitrarily, this implies that all vertices of G are blue, which is
impossible. ]

The following theorem presents a formula for vy, (Cn x K32). Since its
proof involves extensive case consideration, we omit it.

Theorem 2.13  Forn > 3,
2[n/5] ifn=0,3,4 (mod 5)
ryi(Cn x K2) = orn = 2,6 (mod 10),

2[n/5] -1 fn=1,7 (mod 10).
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We now consider vy, (C,, x K3) and begin with a lemma.

Lemma 2.14  Let G be a cubic graph containing P, x Ko as an induced
subgraph. In every Ys-coloring of G, at least two vertices of Py x Ko are
red.

Proof.  Assume, to the contrary, that there is a Y;-coloring of G and
that there is an induced subgraph H = P> x K, in G containing at most
one red vertex. We may assume that V(H) = {v;, v}, v2, v4}. Assume first
that H contains no red vertices. Since v; is rooted at a copy of Y, it follows
that vy is adjacent to a blue vertex w, that is adjacent to two red vertices.
Necessarily, w; ¢ {vs, v{,v5}. However, then, w, is not rooted at a copy of
Ys.

So H contains exactly one red vertex, say v,. Since vy is rooted at a
copy of Y, it follows that vs is adjacent to a blue vertex ws that is adjacent
to two red vertices. Certainly, w, # v5. Then w; is not rooted at a copy of
Ys. So we have a contradiction in either case. =

Corollary 2.15 If G is a cubic graph containing k pairwise disjoint
copies of Py x Ka, then vy, (G) > 2k.

Theorem 2.16  Forn > 3, vy, (Cn x K3) =2[n/2].

Proof. Let G = C, x K,. We consider two cases, according to whether
n is even or n is odd.

Case 1. n is even. By Corollary 2.15, yv,(G) > n for all even n > 4. If
we color the vertices v2i41,v5;,, (0 <7< n/2—1) red and the remaining
vertices blue, we obtain a Ys-coloring of G with n red vertices. Thus,
Yvs(G) < n. Therefore, vy, (G) = 2 [n/2] for all even n > 4.

Case 2. n is odd. We first assume that n = 1 (mod 4). If we color vy, v/, red
as well as v4; 1,V 9, Vai43, Vaiga red for all i with 0 < i < [(n—1)/4] — 1
and the remaining vertices blue, we obtain a Ys-coloring of G with n + 1
red vertices. Thus, vy, (G) < n+ 1.

Next we show that vy,(G) > n + 1. Assume, to the contrary, that
7yvs(G) = n. Let there be given a Ys-coloring of G with n red vertices.
First observe that for every i (1 < ¢ < n) the set {v;,v!} contains at
most one red vertex, for otherwise, V' (G) — {v;, v!} can be partitioned into
(n — 1)/2 subsets, each of which induces a P> x K. By Corollary 2.15,
71, (G) > [2(n—1)/2]+2 = n+1, a contradiction. Assume, without loss of
generality, that v, is blue and v/, is red. Then the blue vertex v, is rooted
at a copy of Ys5. We may assume that v; is blue and v] and v are both red.
Then v5 and v are both blue and vs is red. Hence v} is red and v4 is blue.
Continuing this procedure, we have that vsit1,v}; 10, V)43, Vai+s are blue
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and vj; 1, Vai42, Vait3, V44 are red for all 1 < i < [(n—1)/4] - 1. However,
then the blue vertex v,_, is not rooted at any copy of Ys, a contradiction.
Hence, vy, (G) > n + 1. Therefore, 7y, (G) = n+ 1if n = 1 (mod 4).

Since the proof of the case when n = 3 (mod 4) is similar, we omit it. =

We now turn to the 2-stratified claw Ys. First we make the following
observation concerning packing numbers and cubic graphs.

Proposition 2.17  If G is a cubic graph, then vy,(G) > p(G).

Proof. Let there be given a Ys-coloring of G with vy, (G) red vertices.
Also, let S be a maximum packing set. For each v € S, at least one vertex
of the closed neighborhood N[v] of v is red, and so yy,(G) > p(G). ]

In order to compute vy, (Cn X K2), we begin with a lemma.

Lemma 2.18 Let G be a cubic graph containing P4 x K2 as an induced
subgraph. In every Ys-coloring of G, at least two vertices of Py x K» are
red. Furthermore, if exactly two vertices of P4 x K2 are colored red, then
only the three 2-stratified graphs Py x K3 shown in Figure 5 can occur.

o7 AT

Figure 4: The three 2-stratified graphs P4 x K7 containing exactly two red
vertices and in which every blue vertex is rooted at a copy of Ys

Proof. Assume, to the contrary, that there is a Ys-coloring of G and
that there is an induced subgraph H = P; x K2 in G containing at most

one red vertex. We may assume that V(H) = {v1, v}, va, v, - - -, v4,v4} and
that any red vertex is one of v; and vz. Then v} is not rooted in any copy
of Yg, a contradiction. [

Corollary 2.19 If G is a cubic graph containing k pairwise disjoint
copies of Py x Ka, then 4y, (G) > 2k.

Corollary 2.20 Ifn and k are positive integers with n > 4k + 1, then
Yy (Cn x K2) > 2k + 1.

Proof. We may assume that v, is red. Then V(G) — {vi,v}} can be
partitioned into k subsets, each of which induces a graph containing Py x K2
as a subgraph. Hence, by Lemma 2.19, 7y, (Cn x K2) > 2k +1. ]
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It is easy to see that vy, (Cs x K2) = 2. For n > 4, vy, (Cn x K3) is
given below.

Theorem 2.21 Letn > 4. If n =1 (mod 4), where 0 < i < 3, then
7}'5(0" X 1{2) =2 |_n/4j + 1.

Proof. Let G = C, x K3. We first assume that n = 0 (mod 4). Then
n = 4k for some integer £ > 1. By Corollary 2.19, 7y, (G) > 2k. On
the other hand, if we color the vertices v4it1,v4;,5 red for all ¢ with 0 <
¢ € k — 1 and the remaining vertices blue, then this is a Ys-coloring with
2k red vertices. Hence, vy, (G) < 2k. Therefore, if n = 0 (mod 4), then
Yvs(G) = 2|n/4] . Hence we may assume that n Z 0 (mod 4). We consider
three cases.

Case 1. n =1 (mod 4). Then n = 4k + 1 for some integer ¥ > 1. By
Corollary 2.20, vy, (G) > 2k 1. We now color vy, red as well as v4iy1,v4;,3
red for all ¢ with 0 < ¢ < £ — 1 and the remaining vertices blue. This is a
Ys-coloring with 2k + 1 red vertices. Hence, vy, (G) < 2k + 1.

Case 2. n = 2 (mod 4). Then n = 4k + 2 for some integer £ > 1. We
now color the vertices v,_1, v, red as well as vgi41, v}; +3 red for all 7 with
0 < i<k —1 and the remaining vertices blue. This is a Ys-coloring with
2k + 2 red vertices. Hence, vy, (G) < 2k + 2.

Next, we show that vy, (G) > 2k+2. By Corollary 2.20, vy, (G) > 2k+1.
Assume, to the contrary, that vy, (G) = 2k + 1. Then there exists some
integer 7 (1 < 7 < n) such that {v;, v/} contains exactly one red vertex, say
vy is red and v}, is blue.

Observe that there do not exist two consecutive pairs {v;,v!}, { vi41,
viy, } for some 7 (1 < i < n) that contains two red vertices, for otherwise,
the set V(G) — {vi, v}, viy1, v}, } can be can be partitioned into k subsets,
each of which induces a Py x K3, which implies that yy,(G) > 2k + 2, a
contradiction. Hence every 2-stratified graph P, x K in this Ys-coloring
is the graph G3. Let V; = {vaj41, 441, vajs2, Vajp2s V443, Vi3 V4j+4,
Vgj4a) With 0 < j <k — 1. Then (V;) = Gj for all j. There are only two
possible positions for the two red vertices in (V5): (1) v and v4 are red and
the remaining vertices are blue; (2) v; and v§ are red and the remaining
vertices are blue. If (1) occurs, then each (V;) has v};,, and v4j44 red and
the remaining vertices blue; while if (2) occurs, then each (V;) has v4j44
and vj; .4 red and the remaining vertices blue. In (1), the blue vertex vn-;
is not rooted at any copy of Ys, while in (2), the blue vertex v},_, is not
rooted at any copy of Ys. These both produce contradictions.

Case 3. n =3 (mod 4). Then n = 4k + 3 for some integer k > 1. We now
color the vertices vp_2, vpn—1, vp red as well as vgi4, vy;43 red for all ¢ with
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0 < i < k— 1 and the remaining vertices blue. This is a Yg-coloring with
2k + 3 red vertices. Hence, vy, (G) < 2k + 3.

We next show that yy,(G) > 2k +3. For 1 < i < mn,let S; = {w;, v},
Vitl, Uiy, Vig2, Vigo }. If some set S; contains at least three red vertices,
then vy, (G) > 2k + 3 since V(G) — S; contains at least 2k red vertices by
Corollary 2.19. Hence, we may assume that each set S; contains at most
two red vertices. We now make another observation. Suppose that there
exists i (1 < i < n) such that v;, v} are red, say v;,v] are red. Then v; and
v} are red for all j =1 (mod 3). But then vy, (G) > 2k +3, a contradiction.
Hence, at most one of »; and v/ is red for all 7 (1 <7< n).

For1<i<nletT;= {wi, v}, vig1,vi4,}. 1f some T; contains only
blue vertices, then v;12, v}, are red, which, as we have seen, is impossible.
Hence every set T: contains at least one red vertex.

Now, 7y, (G) > 2k + 1 by Corollary 2.20. However, vy,(G) # 2k + 1,
for otherwise, let there be given a Yg-coloring of G with exactly 2k + 1 red
vertices. Then there exists i with 1 < i < n such that {v;,v;} contains
exactly one red vertex, say vy, is red and v}, is blue. Applying Lemma 2.18
to the vertices v;, v}, 1 < i < n — 3, we see that Un—1,Vh_1,Un=2,V}_a
are blue. On the other hand, applying Lemma 2.18 to the vertices v;, v},
3 < i< n—1, wesee that vy, v}, va, vh are blue. But this implies that v; is
not rooted at a copy of Ys, a contradiction.

Assume, to the contrary, that vy, (G) = 2k + 2 and let there be given a
Yg-coloring of G with exactly 2k + 2 red vertices. We show that for each
i (1 < i< n), the set {vi,vi41} (and {v},v},,}) contains at most one red
vertex, for suppose that v,_; and vy, are red, say. Then v, _; and v;, are
blue. For each j with 0 < j <k — 1, let Vj = {vajq1, Vij41, vaj42, Vijq0,
Sty Vajd, vf,j_H}. Since the blue vertex v, —» is rooted at a copy of Ys, it
follows that v/,_5 and v,_s are red, that is, (Vx—1) = G3. Continuing in
this manner, we see that vgj42 and v};,, are red and so (Vj) = G for all j
(0 < j < k — 1). However, then, the blue vertex v, is not rooted at a copy
of Ys, a contradiction. Hence, for each i, the set {vi,vi;1} (or {v},v},,})
contains at most one red vertex.

We now show that each set T} contains exactly one red vertex. We have
already seen that each set T; contains at least one and at most two red
vertices. Assume, to the contrary, that there exists some i (1 < ¢ < n) such
that 7} contains exactly two red vertices, say T,,_; contains exactly two red
vertices. Necessarily, then either v,_1, v/, are red or v},_;,v, are red, say
the former. However, then, the blue vertex v}, _, is not rooted at a copy of
Ys, a contradiction. Therefore, each set T; contains exactly one red vertex,
as claimed.

We now claim that there exists i (1 < ¢ < n) such that the set S;
contains exactly two red vertices, for if every set S; has exactly one red
vertex, then this red vertex must be vy or vj,,, but then vy or Viya
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is red as well since S;4, contains exactly one red vertex. We may assume
that S, _» contains exactly two red vertices. Then either v,_» and v/, are
red or v;,_, and v, are red, say the former. This forces v4j42 and Viipq tO
be red for all j (0 < j < k — 1) and the remaining vertices to be blue and
so (V;) = G3. However, then, the blue vertex v,_3 is not rooted at a copy
of Ys, a contradiction. ]

Next we consider Y7, again beginning with a lemma.

Lemma 2.22  Let G be a cubic graph conlaining P, x K» as an induced
subgraph. In every Yz-coloring of G, at least two vertices of Py x Ky are
red.

Proof. Assume, to the contrary, that there is a Y7-coloring of G for
which some induced subgraph H = P» x K5 in G contains at most one red
vertex. We may assume that V(H) = {v, v}, va,v4} and that the vertices
v}, 2, vy are blue. Then v} is not rooted at a copy of Y7, a contradiction. m

An immediate corollary now follows.

Corollary 2.23  If G is a cubic graph containing k pairwise disjoint
copies of Py x Ka, then vy, (G) > 2k.

We now present a formula for yy,(Cn x Ka).
Theorem 2.24  Forn > 3, vy, (Cn x K2) = 2[n/2].

Proof. Let G=C, x K5. We consider two cases.

Case 1. n is even. By Corollary 2.23, vy, (C, x K3) > n. If we color the
vertices vai41, Va4 (0 < i < (n—2)/2) red and the remaining vertices blue,
then we obtain a Y7-coloring of G with n red vertices. Thus, vy, (G) < n.
Therefore, vy, (G) = n.

Case 2. n is odd. If we color vp,v;, red as well as vai41,vh;y, (0 < i <
(n—1)/2) red and the remaining vertices blue, then we obtain a Y7-coloring
of G with n 4 1 red vertices. Thus, vy, (G) < n + 1.

We next show that vy, (G) > n+ 1. Let there be given a Y7-coloring of
G with vy, (G) red vertices. If some the set {v;, v/}, 1 < i < n, contains two
red vertices, then vy, (G) > n + 1 since V(G) — {v;,v!} can be partitioned
into (n —1)/2 subsets, each of which induces a P» x K5. By Corollary 2.23,
this implies that vy, (G) > [2(n—1)/2] + 2 = n + 1. Hence, we may assume
that every set {v;,v/} contains at most one red vertex. Let {v;, v} be
a set with one red vertex. Then again by Corollary 2.23, we have that
7Y, (G) > n. Assume that yy,(G) = n. Therefore, {v;, v} contains exactly
one red vertex for each 7 with 1 < ¢ < n. Since n is odd, there must be

95



two vertices v, vi41 (or vj,v},,) that are both red. However, there cannot
be three red vertices vi, vit1,viq2 (or v, v}y, vl ,). We may assume that
vy,vp are red. This, in fact, forces v§, v}, v}, v},_; to be red. Since v3,v}
are red, we must also have vs, vg, v%, v§, etc. red. Since vj,_, is red, so is
v/, _,. However, then, the blue vertex v, is not rooted at a copy of Y7, a
contradiction. [

Finally, we turn to Yg. Since the result (and proof) is similar to that of
Y7, we state only the final result.

Theorem 2.25 Forn >3, 7y, (Cn x K2) =2[n/2].
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