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Abstract

A directed network connecting a set A to a set B is a digraph containing
an a-b path for each a € A and b € B. Vertices in the directed network
not in AU B are Steiner points. We show that in a finitely compact
metric space in which geodesics exist, any two finite sets A and B are
connected by a shortest directed network. We also bound the number of
Steiner points by a function of the sizes of A and B. Previously, such
an existence result was known only for the Euclidean plane [M. Alfaro,
Pacific J. Math. 167 (1995) 201-214). The main difficulty is that, unlike
the undirected case (Steiner minimal trees), the underlying graphs need
not be acyclic.

Existence in the undirected case was first shown by E. J. Cockayne
[Canad. Math. Bull. 10 (1967) 431-450].

Dedicated to Ernie Cockayne on the occasion of his 60th birthday

1 Introduction

Let (X, p) be a metric space, which we assume to be finitely com-
pact, i.e. closed and bounded sets are compact, and in which we
furthermore assume that any two points z,y € X are connected by
a geodesic, i.e. an arc of length p(z,y).

In this general context, Cockayne [3] was the first to show that for
any finite set A C X, there exists a shortest undirected network (i.e.
a Steiner minimal tree) connecting the points of A. In this paper we
consider the case of directed networks (defined below). Unlike the
directed case, there can be cycles in the network (see [1] for exam-
ples), which presents a problem in bounding the number of Steiner
points. We give an upper bound for the number of Steiner points
depending only on the size of the set of points being connected, and
from this deduce our existence result. Previously, such an existence
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result was shown only in the Euclidean plane [1], with the proof
depending heavily on facts of plane geometry, making it unsuitable
for generalisation even to Euclidean space. Our approach is entirely
combinatorial.

In the next section we state our terminology and formulate our re-
sults. In Section 3 we prove the main theorem, and in Section 4 we
discuss related problems and remark on computational aspects.

2 Terminology and Results

Our digraph terminology follows [2]. Let A and B be finite subsets
of the metric space (X,p). A directed network connecting A to
B, or (A, B)-network for short, is a digraph G = (V, E) such that
AUB CV C X, and there is a directed a-b path for each a € A and
b € B. The length of G is

wy= Y oz

(z.y)EE

We call the vertices in A sources, the vertices in B sinks, and (follow-
ing tradition) the vertices in V' \ (AU B) Steiner points. A shortest
(A, B)-network in X is an (A, B)-network of minimum length, pro-
vided it exists.

If a Steiner point in an (A, B)-network has at most two neighbours,
it and its incident edges may be removed and (possibly) replaced by
edges between the neighbours, to obtain a new (A, B)-network not
longer than the original network. This is easily verified by consid-
ering the various cases and using the triangle inequality. A simple
(A, B)-network is an (A, B)-network in which each Steiner point has
at least three neighbours. Clearly, if there exists a shortest (A, B)-
network in X, there also exists a simple shortest one.

Theorem In any metric space (X,p), if A,B C X, then any
simple shortest (A, B)-network has at most O(m?n + mn?) Steiner
points, where m = |A| and n = |B|.

The proof is in the next section. To derive an existence result from

this theorem, we need a compactness argument, encapsulated as
follows:
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Lemma Let (X, p) be a finitely compact metric space in which any
two points are connected by a geodesic. Let A,B C X be finite sets
and s a positive integer. Then, among all (A, B)-networks with at
most s Steiner points, there is a shortest one.

Corollary Let (X, p) be a finitely compact metric space in which
any two points are connected by a geodesic. Then, for any finite
A,B C X, there exists a shortest (A, B)-network.

Proof of Lemma As this is a standard compactness argument,
we only sketch the proof. Take a sequence of (A, B)-networks G;
such that

lim ¢(G;) = inf ¢(G),

1—00

where the infimum is taken over all (4, B)-networks G with at most
s Steiner points. The G;’s are all contained in some bounded subset
of X, so we may assume without loss that X is compact. We may
take a subsequence such that the abstract digraph structure of all
G;’s are the same (say G), since there are only finitely many digraphs
with at most |A| +|B|+ s vertices. We may again take subsequences
until all Steiner points converge, since X is compact. In the limit we
obtain an (A, B)-network (with underlying digraph a contraction of
G) of length lim; ¢(G;).

3 Bounding the number of Steiner points

Given a set of sources A and a set of sinks B of sizes |4| = m and
[B| = n in the metric space, we let G be any simple shortest (4, B)-
network. Note that by minimality, G is covered by all a-b paths
where a € A, b € B. We now show that each a-b path contains at
most O(m + n) points, thereby proving the Theorem.

It is sufficient to prove that the longest a-b path has at most O(m+n)
points, where we take the longest path over all a-b paths of all simple
shortest (A, B)-networks. Let P = a2 ...zxbo be such a longest a-
b path. We may assume that G is the simple shortest (A, B)-network
containing this path. Also, let £9 = a¢ and x4 = bg.

For each source q, let z(a) be the first point in P such that there
exists an a-z(a) path in G, and fix such a path P(a). Such an z(a)
always exists, since there is at least an a-by path. Similarly, let y(b)
be the last point in P such that there exists a y(b)-b path Q(b) in
@G, for each sink b.
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For each source a and sink b, fix an a-b path P(a,b). If P(a,b)
contains an z; and an z; (i < j) with z; appearing before z; in
P(a, b), we may replace the z;-z; subpath of P(a,b) by the subpath
TiTit1-.-Tj of P.

Also, we may replace the initial segment of P(a,b) from a to the
first point of P on P(a,b) by P(a), as well as the final segment of
P(a,b) from the last point of P on P(a,b) to b by Q(b).

We may therefore assume that P(a,b) is either disjoint with P, or

e starts off with P(a),

e then consists of subpaths of P and z;-z; paths (i > j) edge-
disjoint with P, which we call (i, j)-jumps,

e and then ends with Q(b).

In particular, P(ao, bo) = P.

Let J be the set of all (4,j)-jumps appearing in all P(a,b)’s. By
minimality of G, G is covered by the union of all (3, j)-jumps, all
P(a)’s, all Q(b)’s, and P. Let I be a minimal subset of J such that
J may be replaced by I in the above union, and G is still covered.
We modify each P(a,b) so as to use only (%, j)-jumps from I, by
replacing each (i,7)-jump in J \ I by an z;-z; path consisting of
P(a)’s, Q(b)’s, subpaths of P and (%, j)-jumps from I (such paths
existing because G is still covered).

We now show that each vertex of P is either some z(a), some y(b) or
an endpoint of some (4, j)-jump from I. Consider any ; (1 <t < k).
Since G is simple, z; is either a source or a sink, hence an z(a)
or y(b), or a Steiner point, in which case it is connected to some
vertex ¢ # Ti_),Ty41. Since z;c is not a redundant edge, it must
be contained in all paths connecting some source a to some sink b,
hence must be in P(a,b). Thus c is contained in some (%, j)-jump of
P(a,b). Since an (3, j)-jump is edge-disjoint with P, ¢ must be an
endpoint.

Thus the number of vertices of P is bounded above by m +n + 2|I|.
We now bound |I| from above. Note that by minimality, for any
(i1,51)-jump and (iz, j2)-jump in I we have &1 # 42 and ji # ja.
Denote the unique (i, j)-jump by (2, 7). Define a relation > between
I and

X ={z(a):a € A}U {y(b): b€ B}

by
(4,7) =z iff j <t <.
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Call (i1,71) and (i3, j2) consecutive if there is no (i3, j3) € I with i3
between i; and is. The relation > has the following two properties:

1. For each z; € X there are at most two (i,7) € I such that
(Z,]) - Ty

2. For any two consecutive (3,j), (k,€) € I there is at least one
z; € X such that (4,5) > = or (k,£) > z,.

From these two properties it follows that |I| < 4(m + n) + 1, hence
the number of vertices of P is at most 9(m +n) + 2.

It remains to verify the above two properties.

For the first, suppose that (i1, 1), (2, 42), (¢3,73) > =i, with 43 >
ip > i3. If j1 < j2, then (42, 72) is redundant. Therefore, j; > jo,
and similarly, j» > j3. But then (i2, j2) is again redundant.

For the second property, note that by minimality of I, if (¢, ) and
(k, £) are consecutive with ¢ > k, then j > £. There are now two
cases to consider:

j <k:If k—j =1, then we may change the directions of the (k, £)-
jump and of z¢...z; and discard z;z; to obtain a shorter (4, B)-
network. Therefore, k—j > 2. If z;4, is an endpoint of some (7', j'),
then we obtain that I is not minimal. Thus (4, j) > zj4, € X.

j>2k:Ifi-j > 2and z;; € X, then z;_, is an endpoint
of an (i,i — 1) with ' > 4. The previous case then provides a
contradiction. Thus (Z,j) > z;—1 € X. Similarly, if £ — £ > 2, then
(k,8) > t¢41 € X. Sowemay assumei—j=1land k—¢=1. If
(2, 7) has more than one edge, we may redirect G to give an (4, B)-
network with a longer ap-by path, a contradiction. Therefore, (3, )
has only one edge. Similarly, (k,£) has only one edge. Since G is
simple, z; € X.

This proves the Theorem.

4 Concluding remarks

We have made no attempt at finding the best order for the number
of Steiner points. For example, with some more effort the constant
9 in the above upper bound for the number of points on an a-b path
can be lowered. We also mention that there are metric spaces with
sets needing at least m + n Steiner points. We believe that the
best upper bound should be less than cubic. Finding a better upper
bound will be crucial in designing an algorithm that will be effective
for at least small sets of points.

101



As expected, finding a shortest (A, B)-network in a digraph is NP-
complete. The Minimal Equivalent Digraph (MED) problem is that
of finding a minimal subgraph of a graph, such that if any two ver-
tices are connected by a path in the original digraph, they are still
connected in the subdigraph. This problem is known to be NP-
complete [5], and it is easily seen that the MED problem is polyno-
mial time reducible to finding a shortest (A, B)-network in a digraph.

A related problem in Operations Research is the point-to-point con-

nection problem (see e.g. [4]), where A = {a1,a2,...,a,},B =
{b1,b2,...,b,}, and we require only that there are a;-b; paths for
each i =1,...,n. The proof of the Theorem shows that in this case

a simple network has at most O(n?) Steiner points.
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