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Abstract

The inflated graph G; of a graph G is obtained by replacing
every vertex of degree d by a clique Ka. We pursue the investigation
of domination related parameters of inflated graphs initialized by
Dunbar and Haynes. They conjectured that the lower irredundance
and domination parameters are equal for inflated graphs. Favaron
showed that in general the difference between them can be as large
as desired. In this article we prove that the two parameters are equal
for inflated trees.

Dedicated to Ernie Cockayne on the occasion of his 60th birthday

1 Introduction

Let G = (V(G), E(G)) be a simple graph of finite order |V(G)| =
n(G) > 2 and size |E(G)| = m(G). For a set A of vertices of the graph
G and a vertex v of G, the degree of v (that is the number |V (v)| of its
neighbors) is denoted by d(v), the number of the vertices of A which are
adjacent to the vertex v is denoted by d4(v), and the subgraph induced by
the set A is denoted by G[A]. If A C V, N[A] denotes the union of closed
neighborhoods of elements of A and for subsets A and B of V we say that B
is dominated by A (or that A dominates B) if BC N [A]. An independent
set S is a set of nonadjacent vertices. The minimum (resp. maximum)
cardinality of a maximal (under inclusion) independent set is denoted by
i(G) (resp. B(G)). A set D of vertices of G is dominating if svery vertex
of V — D has at least one neighbor in D. The minimum (resp. maximum)
cardinality of a minimal dominating set is denoted by ¥(G) (resp. I'G)).
For a set W of vertices of the graph G and a vertex w of W, the W-private
neighborhood of w, is the set pnyw (w) = N[w] — N[W — {w}]. The elements
of pnw (w) are called W-private neighbors of w. A W-private neighbor
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of w is either w itself, in which case w is an isolated vertex of G[W], or is
a neighbor of w in V — W which is not adjacent to any vertex of W — {w}.
This latter type will be called an external W-private neighbor (abbreviated
W-EPN) of w. In what follows if w is not an isolated vertex of G[W] and
has a unique external W-private neighbor we denote the latter by w. The
set W is irredundant if for all w € W, pnw (w) # 0. The minimum (resp.
maximum) cardinality of a maximal irredundant set is denoted by ir(G)
(resp. TR(G)). An ir-set is a maximal irredundant set of cardinality ir(G).
We mention the well-known chain of inequalities among these parameters :

ir(G) < 7(G) < i(G) < B(G) < T(G) < IR(G).

Throughout this paper, when W is a set of vertices of G, we can partition
the set of vertices of G into the disjoint union Yy U Zw U Bw U Mw U Rw
(if there is no ambiguity we omit the letter W) where
o the set Zw = {w € W | dw (w) = 0} is the set of isolated vertices of W,
o the set Yiv = W — Zw is the set of nonisolated vertices of W,

o theset By = {v € V = W | dw(v) = 1} is the set of W-EPN of some
vertex in W,

o the set My = {v €V — W | dw(v) > 2} is the set of verticesof V — W
with at least two neighbors in W,

o the set Uw = {v eV — W | dw(v) = 0} is the set of vertices of V — W
which are undominated by W.

We need one additional concept about private neighborhoods. A vertex
v annihilates (or W-annihilates if any confusion occurs) a vertex w of an
irredundant set W, if v dominates the W-private neighborhood pnw (w).
We can now state a necessary and sufficient condition for an irredundant
set to be maximal.

Theorem 1.1 (Cockayne et al., [2]) An irredundant set W is mazi-
mal, if and only if, for everyt € N[Uw] there exists w € W such that t
annthilates w.

Haynes and Schmidt [5) defined a graph operation called the inflated
graph G of a simple graph G without isolates and which is obtained as
follows. Each vertex z of degree d(z) of G is replaced by a clique C(z) ~
Kg(z) and each edge (z,y) of G is replaced by an edge (u,v) in such a
way that © € V(C(z)) and v € V(C(y)). Moreover different edges of G
are replaced by nonadjacent edges of G;. Note that there are two different
kinds of edges in G;. The edges of the cliques C(z) are colored red and
these cliques are called red cligues. The other edges, which correspond to
the edges of G, are colored blue and form a perfect matching of G;. So
every vertex of G belongs to exactly one red clique and is incident to exactly
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one blue edge (Note that vertices with degree 1 in G lie in a red clique K;
and a blue edge). Two adjacent vertices of G} are said to be red-adjacent
(and each is a red-neighbor of the other) if they belong to a same red clique
and blue-adjacent (and each is the blue-neighbor of the other) otherwise.
Observe that, since G is simple, two red cliques are joined by at most one
blue edge. In this paper we adopt the convenient following notation : if
z is a vertex of G; we denote by z’ the other endvertex of the blue edge
containing z, by C(z) the red clique containing z, and if S is a subset
of V(G) we denote by S; the inflated graph of G[S]. If S is a subset of
V(Gr), a red clique C = {z, 2o, - -+, Zp} is dominated by S if and only if
either C is occupied by S that is CNS # 0, or C is besieged by S that is
{z{,25,---,2,} C S (indeed, the neighborhood of z; located out of the red
clique C is only z} for i € {1,2,---,p}).

We point out the following results of common use when W is an irre-
dundant set of an inflated graph Gj.

Result R; If the set W is maximal irredundant, then for every u € Uy
there exists at least one vertex y in Y which is annihilated by u (see
Theorem 1.1).

Result R; If y € Yiy is annihilated by some u € Uw, then the external
W-private neighborhood of y is exactly one vertex denoted by §¥.

Proof of Rz. Suppose that the external W-private neighborhood of
y contains at least two vertices. If the blue-neighbor y' of y is one of them,
these two I¥-private neighbors have no common neighbor different from y
since the graph G is simple. Otherwise these two W-private neighbors be-
long to C(y), their common neighbors are in C(y) and hence are dominated
by y. In either case, pnw (y) cannot be dominated by any vertex of Uy, a
contradiction.

Dunbar and Haynes initialized in [3] the study of the six previous param-
eters concerning independance, domination and irredundance in the case of
inflated graphs. In particular, they pointed out that Y(Gr) = {(Gy) for
every graph G since every inflated graph is claw-free (without an induced
subgraph isomorphic to K 3) and since Allan and Laskar presented in [1] a
sufficient condition for ¥ = ¢ in terms of this forbidden subgraph. We now
give some results Dunbar and Haynes proved for inflated trees.

Theorem 1.2 (Dunbar,Haynes, [3]) Every inflated tree T satisfies
1) ¥(Ty) = i(Tr) < n(T) — 1 and equality holds if and only if the tree T is
isomorphic to the star K ,.
2) B(Ty) =T(Ty) = IR(T1) =n(T) - 1.
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In the same paper, they conjectured that ir(Gr) = v(Gr) for every
graph G. This was later shown not to be true by Favaron.

Theorem 1.3 (Favaron, [4])
For every integer k there erist 2-connected graphs G such that v(Gr) —
ir(Gr) > k.

But in this article we show that the two parameters are equal for inflated
trees.

Theorem 1.4 For every tree T, we have ir(Ty) = ¥(T1)-

2 Irredundance and domination in inflated
graphs

We begin by establishing three results concerning maximal irredundant
sets of inflated graphs in order to prove Theorem 1.4.

Definition 2.1 If W is an irredundant set of an inflated graph we con-
sider
o the set Y; which is the set of vertices y of Y which are annihilated by
some vertez u of U and such that the unique (by Result Ry) W-EPN § of
y is its blue neighbor y.
o the set Yo which is the set of vertices y of Y which are annihilated by some
vertez u of U, and in such a way that the unique (by Result Ry) W-EPN §
of y belongs to C(y) and that the vertez u annihilates no vertex of V1.
o the set By which is the subset {y’ | y € Y1} of B.
o the set By which is the set of vertices of B which have a blue-neighbor in
U.
o the set J which is the set of vertices of W admitting a vertex b of By as
an W-EPN.

Remark 2.2 Observe that from these definitions we have Yy NY, =0,
lBll = |Y1|, Y, C J, |Bg| > lel, BiNBy; =% and BiUB, C B (may be
strict). Moreover, every verter u of U annihilates at least one verter y of
YiUY,. Ify €Y, then Nw(y) € C(y). Ify € Yz then Nw(y) = {y'} and
thus a verter of Yy and a verter of Yz are never adjacent.

Lemma 2.3 If W is an irredundant set of an inflated graph, then no
vertez of M is adjacent to two vertices of Y.

Proof. Suppose that two vertices y and z of Y2 have a common neigh-
bor ¢ in M. Since ¥ and 2’ are in W, the edges ty and tz should be red,
which contradicts the fact that y and z are not in the same red clique. i
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Lemma 2.4 Let W be a mazimal irredundant set of an inflated graph,
Yy a vertez of Y and § the only W-private neighbor of y. Then the vertex
y is annihilated by only one vertez in U which is the blue-neighbor §’ of 7.
Moreover, we have C(§)NW = 0 and for every vertez t in C(§)) NU, there
exists some vertez z in Yz such that the vertex t is the blue-neighbor 7’ of
the unique W-EPN 7 of z.

Proof. By definition of Y;, the vertex y is annihilated by some vertex
u of U which is necessarily blue-adjacent to the unique W-EPN § of y (in-
deed, C(y) NU = @ since y € W). Hence the vertex u is the blue-neighbor
¥’ of §. The red clique C(¥’) has no vertex in W since the vertex ¥’ is
not dominated by the set W. Let ¢t € C(§7’) N U. The vertex t annihilates
some vertex z € Y by Ry, and z has a unique W-EPN 7 by R,. If z € Y},
then 2Z is a blue edge, tZ a red edge belonging to C(§’), and thus 7’ also
annihilates the vertex z € Y;. Thus the vertex 7’ annihilates Yy € Yo and
z €Y7 which contradicts the definition of Y. Hence z € Y — Y1, the edge
2Z is red, and the edge tZ is blue. Finally, if ¢ annihilates any vertex of Y7,
then y’ annihilates the same vertex, leading again to a contradiction. So ¢
annihilates no vertex of Y}, and thus z € Ys. |

Proposition 2.5 In every inflated graph G there exists an ir-set W
such that its associated set Y (see Definition 2.1 ) is empty.

Proof. We consider an arbitrary ir-set X of G; and from this set X we
will construct an ir-set W as required. Let 3 be the function from X into
V(Gr) which is the identity on X — Y2(X) and which is defined for every
¥ € Y2(X) by ¥(y) = § (where the vertex ¥ is the unique W-EPN of y)-
Observe that the vertex ¥(y) is in the red clique C(y). Let W be %(X).
We claim that W is an ir-set as required.

By the private neighbor property the function v is an injection and
we therefore have |W| = |¢(X)| = |X| = ir. Let us first prove that W
is a maximal irredundant set. If y € Ya(X ), then the vertex ¥(y) =¥ is
red-adjacent to y, blue-adjacent to some vertex u € U , and thus cannot
be adjacent to any other X-EPN. Hence the vertices Y(y) for y € Vs are
isolated in W, and pnw (z) D pnx(z) # 0 for every other vertex z of W (in
this case z € X — Y2(X)). Therefore W is an irredundant set of cardinality
ir. From the definition of W and the fact that no vertex of M x is adjacent
to two vertices of Y3(X) (see Lemma 2.3), it follows that N[W] 2 N[X] and
thus Uw C Ux. Moreover, if pnw (z) # pnx(z) for some z € X — Y2 (X),
that is if there exists some b € pnw (z) — pnx(z), then b is adjacent to a
vertex v € Y2(X), and the edge bv is red since by Remark 2.2 the blue-
neighbor v’ of v is in X. Hence b is adjacent to the vertex v= P(v) of C(v).
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Then b is adjacent to the two vertices # and ¥(v) of W, in contradiction
with b € pnw (z). Therefore pnw (z) = pnx (z) for all z € X —Ya(X). Now
let ¢t be any vertex of N[Uw]. Since Uy C Ux, it follows that t € N[Ux].
Since the irredundant set X is maximal and by Theorem 1.1, the vertex
t dominates pny (v) for some v € X. Suppose that v € Y2(X) and that
pnx (v) = {¥} = {¥(v)}. Ift € C(v) = C(V), then, since t & pnx(v), the
vertex ¢ is adjacent (necessarily by a blue edge) to another vertex of X.
Thus the vertex ¢ and all its neighbors are dominated by X, and therefore
t ¢ N[Ux]. Hence thr vertex t is blue-adjacent to ¥, that is, ¢ =¥’. By
Lemma 2.4, each of the other neighbors of ¢, that is each vertex of C(t), is
blue-adjacent to a vertex of W, which contradicts ¢ € N[Uw]. Therefore
v € X — Y2(X). In this case we saw that pnw(v) = pnx(v), and thus ¢
dominates pnyw (v). Hence by Theorem 1.1 W is a maximal irredundant set
of order ir.

Finally we have to prove that Yo(W) = @. Since the vertices ¥(v)
for v € Y2(X), are isolated in W, we have Yiv C Yx — Ya(X). Let y
be a vertex of Y;(X) and u a vertex of Ux dominating pnx(y). Since u
does not X-annihilate any vertex of Y2(X), by the definition of Ya(X),
the vertex u is also in Uw, and since pnw(y) = pnx(y), the vertex u W-
annihilates y. Hence y € Y;(W). The vertices of Yo(WW) belong thus to
Y(X) = [Yi(X) UY2(X)]. Let v € Y(X) — [Y1(X) U Y2(X)]. Then either
v is X-annihilated by no vertex of Ux, or pnx (v) is a red-neighbor v of v,
the vertex v is X-annihilated by the vertex v =¥’ of Ux, and u also X-
annihilates a vertex y of Y;(X). In the first case, from pnw(v) = pnx(v)
and Uy C Uy, it follows that v is W-annihilated by no vertex of Uw
and thus v ¢ Y2(W). In the second case, u belongs to Uw since any edge
between a vertex ¥(t) with ¢ € Y2(X) should be blue, and u is already
blue-adjacent to V. Since pnw(y) = pnx(y), the vertex u W-annihilates
the vertex y of Y1(W) and thus v € Yo(W). Therefore Yo (W) = 0.

Thus W is a maximal irredundant set as required and the proposition
holds.

We are now able to prove the main result which states that the lower
irredundance and domination parameters are equal for inflated trees.

Proof of Theorem 1.4 : By Proposition 2.5, there exists an ir-set
W of T; whose associated set Y2 is empty. From W we will construct a
dominating set D of T; such that |D| < |W], from which it will follow
that v(T7) < |D| € |W]| = ir(T7) and thus the theorem will hold since
ir(G) < v(G) for any graph G. Moreover our dominating set D will satisfy
the following Property P : for every red clique C of Ty, CNW # @ implies
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CnD#0.

In order to construct the dominatingset D of T}, we consider the follow-
ing skeleton Oz of the inflated tree T7. Let O be the subset YUY, UB,UB,
of T and O the subgraph of T generated by the edges of T, whose corre-
sponding edges in T are the blue edges of T7[0]. The graph O is a forest
and the graph Oz is the subgraph of 77 induced by the vertices of O whose
blue-neighbors are also in O.

Claim 1 One can partition the set of the red cliques in Oy into three
disjoint sets 7, 72 and 73 defined as follows. We say that the red clique C
in Oy belongs to
o the class 7; if V(C) C
o the class 72 if V(C) C 13,
o the class 73 if V(C) C

Proof of Claim 1 : Since by the definition of these different sets, there
is no edge between Y; and B, Y; and U, By and B,, and all the edges
between Y) and B; and between Bz and U are blue, a red clique cannot
intersect two sets among the three sets U U By, Y; and B;.

Claim 2 Every vertex u € U is blue-adjacent to a red clique in Oy
which belongs either to the class 77 or to the class 75.

Proof of Claim 2 : Suppose that the blue neighbor «’ of a neighbor u of
U does not belong to O, and thus belongs to M by the definition of B,. The
vertex v’ is red-adjacent to two vertices £; and z, of Y, which form a red
clique with v’. Hence ' cannot be adjacent to any vertex of B and Wu{«'}
is irredundant, a contradiction with the maximality of W. Therefore every
vertex u of U has its blue neighbor v’ in U U B,. We denote by C the
red clique of Ty containing v, by c¢ its corresponding vertex in 7' (by what
precedes, ¢ € ), and by C/O; the red clique of Oy corresponding to the
vertex ¢ of 0. Observe that C/O; = Tr[C N V(Oy)]. The clique C/O;
contains u’' and 4’ € U U B,. By Claim 1, if ' € U then C/O; € T;, while
if ' € By then C/O; € Ts.

Let us denote by Dy the subset W — (Y1 U J) of W.

Claim 3 We have V(O;) = O and the set Dy U J UY; dominates
V(T1) -
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Proof of Claim 8 : By definition of Op, we have V(O;) C O. On the
other hand, there is a blue perfect matching between Y; and B; and every
vertex of By is blue-adjacent to some vertex of U. Therefore by Claim 2,
the blue-neighbor of every vertex in O is in O. Hence O C V(Or) and
consequently V(O;) = O. Finally the set Do UJ UY; = W obviously
dominates V(T7) — U by the definition of U.

Claim 4 If the red clique C belongs to the class 77, then CNU # @
and CN By #0.

Proof of Claim 4 : Suppose first that the red clique C' contains some
vertex u € U. Then, by result R; and since Y2 = @, the vertex u annihi-
lates some vertex in Y; and therefore we have C N By # @. On the other
hand, suppose that the red clique C contains some vertex y € B;. Then it
immediately follows from the definition of Y; that CNU # 0.

Claim 5 A red clique C in O; which corresponds to a leaf ¢ in O does
not belong to the class 77.

Proof of Claim 5 : If Claim 5 is false, then by Claim 4, we have |C| > 2,
which contradicts the fact that the vertex ¢ is a leaf in O.

Claim 6 Denote the elements of the set J by 1,2, -, %4. Then, for
every i € {1,2,---,¢} and for any choice of b; € Bs such that b; is an
W-EPN of z;, the set Do U {b1, b2, -,b,} UY; dominates V(Ty) — U, and
satisfies Property P, that is for every red clique C of Ty, CN'W # @ implies
that CN[DgU {b1,b2,---,bg} UY1] # 0.

Proof of Claim 6 : Let A be the set DogU{by,bq,- -, bg}UYy = (W —-J)U
{b1,b2,--+,bg}. By the choice of vertices b;, that is, since b; € V(C(x:)),
it is clear that the set A satisfies Property P. Let ¢ be any integer in
{1,2,---,q}. Observe that V(C(z;)) N W = {;} since z; and its W-EPN
b; are in the same red clique (see Definition 2.1). By Claim 3 and by the
choice of vertices b; (each vertex b; dominates the red clique C(z;)), in order
to prove that the set A dominates V(T7) — U, it is sufficient to check that
the set A dominates z} for 1 < 7 < q. We consider two cases. Suppose
first that z; € Z. Then the vertex z} is red-dominated in C(z}) by W,
for otherwise z/ (resp. b}) would be a (W U {b;})-PN of z; (resp. b;) and
W U {b;} would be an irredundant set, contradicting the maximality of W.
In the second case, since z; ¢ Z then x; € W. Observe that in both cases
C(z})NW # 0 and since the set A satisfies Property P, the set A dominates

/

.Z"-.
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We are now ready to construct the dominating set D of T} as required.
We first put the vertices of Do in D, and then we put recursively vertices
in D by adding vertices from Y; U J as follows.

Let R be a tree of the forest O, let ¢o be some leaf of the tree R, Cy be
the red clique in Ry corresponding to cg and D N Cy be the set Co (which
is one vertex). Observe that by Claim 5 the red clique Cy belongs either
to the class 7 or to the class 73. Fix ¢p in R as its root and consider
it as a rooted tree. We apply to the rooted tree R the depth-first search
algorithm beginning at the root co and we construct the dominating set D
while visiting once each vertex of R.

Suppose that we are visiting a red clique C in R; corresponding to a
vertex ¢ in R. We denote by C'~ the red clique visited just before C in the
process and by a(C) the vertex of C which is blue-adjacent to C~.

e If the red clique C is Cp (which belongs to 73 or 73), let the set D N Cy
be Cop (which is one vertex).

o If the red clique C belongs to the class 77, then we do nothing.

o If the red clique C belongs to the class 7; and is not Cjp, then the red
clique C~ belongs to the class 7;. By Claim 5, the red clique C~ is not
Co and the vertex a(C~) is therefore well-defined. Let the set D N C be
C—{a(C)} and the set DNC~ be {a(C~)} (the set DNC~ corresponding to
the red clique C'~ has possibly already been defined while visiting another
red clique E in the class 73, but it is straitforward to see that in this case
DNC-=DNE-).

o If the red clique C belongs to the class 73 and is not Cj, let the set DNC
be {a(C)}.

This process stops when all the vertices of the tree R have been visited
once. We repeat the process for each tree of the forest ©.

Claim 7 The set D satisfies Property P and we have |D| < |W|.

Proof of Claim 7 : 1t follows from the construction of D that |D| < |W|,
since each clique C of 73 provides at most |C| vertices in D, and each clique
C of 73 provides one (the red clique C(¢)NJ in T} is one vertex z and in the
process we associate uniquely z to its W-EPN «(C) € B;). Moreover, in
the construction of D we move the vertices of Y; UJ without leavmg the red
clique containing them except if the red clique C considered in the process
belongs to the class 72. However in this case, the vertices of C — {a(C)}
are in D, so that CN D # B except if the red clique C is exactly one vertex
c. But since ¢ € Y, the vertex ¢ has then at least one red-neighbor in
W — (Y1UJ) = Do C D and the set D therefore satisfies Property P.
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Claim 8 If the red clique C in O belongs to the class 7; and if the
vertex a(C) is in the set U, then the vertex a(C) is in the set D.

Proof of Claim 8 : Since by Claim 5 the red clique C in 7; does not
correspond to a leaf in @, there exists at least one red clique C* visited in
the process just after C. By Claim 4 and by the definition of B;, we can
suppose without loss of generality that the red clique C* belongs to the
class 72. Then, by construction of D we get that the vertex a(C) belongs
to the set D.

Claim 9 If the red clique C belongs to the class 7z, then the set D
dominates not only the red clique C but also the blue-neighbor of a(C).

Proof of Claim 9 : Since by Claim 7 the set D satisfies Property P,
then the set D dominates the red clique C. By construction of D the red
clique C~ belongs to the class 77 and the vertex a(C~) is in D. Then the
blue-neighbor of a(C), which belongs to C~, is dominated by the vertex
a(C~) of D.

Claim 10 The set D dominates the set V(T7) — U.

Proof of Claim 10 : Let C be a red clique which belongs to the class
T3} and c its corresponding vertex in T. The red clique C(c) N J in T}
is one vertex z and in the process we associate uniquely z to its W-EPN
a(C) € B;. By Claim 6 the set V(T7) — U is dominated by the set D' =
Do U {a(C) | the red clique C belongs to the class 73} UY;. We obtain the
set D from D’ by moving some vertices from Y; to U as described in the
process of construction of D (see the case where the red clique C belongs
to the class 73). By Claim 9, the blue neighbors of these vertices of Y; and
the red cliques containing these vertices of Y are still dominated by D and
thus the set D dominates V(T7) — U.

Claim 11 The set D is a dominating set of T7.

Proof of Claim 11 : By Claim 10, it is sufficient to prove that every
u € U is dominated by the set D. Let u be any vertex in U and C be the
red clique C(u) in Oy containing the vertex u. Observe that the red clique
C belongs to the class 73, so that by Claim 5 the red clique C'~ visited
just before C in the construction of D exists. We consider two cases. In
the first case, we suppose that the red clique C~ belongs to the class 7; or
to the class 73. Then the vertex a(C) is in U and by Claim 8 the vertex
a(C) is in the set D. In the second case, the red clique C~ belongs to the
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class 73 and a(C) is in By . Suppose that the vertex o(C) is not in D,
which means that the red clique C is not occupied by D. Then, by the
construction of D, the set C'N By is exactly the vertex a(C). By Claim
2, the cliques Ct visited just after C in the process (at least one exists by
Claim 5) belong either to the class 7; or to the class 73. If such a red clique
C* belongs to the class 73, then the vertex a(C*) is in U, so that by Claim
8 the vertex a(C*) isin D. If such a red clique C* belongs to the class 73,
it immediately follows from the construction of D that the vertex a(C*t) is
in D. Thus the vertices o associated to all the cliques visited just after C
are in D. Since the blue-neighbor of a(C) is also in D, the red clique C is
therefore besieged by the set D. Hence, the vertex u is dominated by the
set D whether the red clique C~ belongs to the class 77, 72 or 7s.

Thus by Claims 7 and 11, the set D is a dominating set of T} as required
and the theorem holds. |
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