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ABSTRACT. Let G be a finite graph and let x be an eigenvalue of G of
multiplicity k. A star set for 1 may be characterized as a set X of k vertices
of G such that p is not an eigenvalue of G — X. It is shown that if G is
regular then G is determined by 1 and G — X in some cases . The results
include characterizations of the Clebsch graph and the Higman-Sims graph.

1 Background

Let G be a finite simple graph with vertex set V(G) = {1,2,...,n}, and
let p be an eigenvalue of G (that is, an eigenvalue of the (0,1)-adjacency
matrix of G). Let {ej,es,...,e,} be the standard orthonormal basis of
IR™; for example, e; is the column (1,0,...,0)T. Let P be the orthogonal
projection of IR™ onto £(u), where £(u) is the eigenspace of i1. The vectors
Pey, Pey, ..., Pe, span £(u), and so there exists a subset X of V(G) such
that the vectors Pe; (j € X) form a basis for £(u). Such a subset is called
a star set for 41, and the corresponding basis is called a star basis for £(u).
(The terminology reflects the fact that the vectors Pe;, Pe,,. .., Pe, form
a eutactic star as defined by Seidel [12].) The arguments of [5, Section 3]
show that X is a star set for p if and only if | X| = dim £(x) and g is not
an eigenvalue of G — X. Proofs of this and other results reviewed in this
section may be found in {6, Chapter 7).

If p11, pa, . . ., pm are the distinct eigenvalues of G then a ster partition
for G is a partition V(G) = X (111)UX (42)U - - UX () such that X (u;) is
a star set for u; (i =1,2,...,m). Every graph has a star partition; indeed

it was shown in {11] that if X is a star set for y; then G has a star partition
in which X (u;) = X. Given any star partition, a corresponding star basis
for IR™ is obtained by stringing together the star bases for each eigenspace.

Star partitions were introduced as part of an algebraic approach to
the graph isomorphism problem: one can associate with a graph a star
basis of JR™ which is canonical in the sense that two cospectral graphs
are isomorphic if and only if they determine the same canonical star basis
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(see [5, Sectionb), (3] and [6, Chapter 8]). Star partitions are however of
interest in their own right because star sets are related directly to graph
structure (see [5] and [9]). For example, let X be a star set corresponding
to the eigenvalue u, and let X be the complement of X in V(G). One can
show that if & # 0 then X is a dominating set; thus if G — X is connected
then so is G. If u & {—1,0} then X is even a location-dominating set,
that is, a dominating set such that distinct vertices in X have distinct
neighbourhoods in X. It follows that when p & {—1,0}, |V(G)| is bounded
in terms of | X|, and hence that there are only finitely many graphs in which
&(x) has prescribed co-dimension. The more we know about X, the more
we know about Gj; indeed. G is determined uniquely if we know pu, G — X
(the subgraph induced by X) and the embedding of X in G. For subsequent
reference, we provide further details. We label vertices of X before those

T
of X so that the adjacency matrix of G has the form A’ = ( g g ),

where A is the adjacency matrix of G — X, C is the adjacency matrix of

G — X and the non-zero entries of B correspond to the edges between X
and X. We have

s _[ui-4 -BT
“I‘A‘[ -B pl-C |

Since p is not an eigenvalue of G — X, ul — C is invertible and accordingly
the rows of (=B | ul — C) form a basis for the row-space of the matrix
ul — A'. Tt follows that there exists a matrix L such that u/ — A = L(-B)
and —BT = L(ul — C). We may eliminate L to obtain

pl — A=BT(ul -C)'B. (1)

We can now see that A, and hence the adjacency matrix of G itself, is
determined by u, B and C.

The foregoing remarks point to the possibility of characterizing graphs
by properties of X which have implications for the set E(X,X) of edges
between X and X. Examples of properties which illustrate this principle are
(i) the minimality of X as a dominating set (investigated in [10]), and (ii)
the regularity of G — X in a graph G which is itself regular [11] . For regular
graphs of prescribed degree the general principle applies if we simply specify
the graph G — X, and the purpose of this paper is to demonstrate this in
particular cases. For example, we investigate k-regular graphs (k > 1) in
which G — X is a k-star K ; or a double k-star Sy . (Here Si x denotes the
tree with two adjacent vertices of degree k and all other vertices of degree
1.) If p # k then, since £(u) L E(k) and £(k) contains the all-1 vector, we
have Z;’:l Pe; = 0. We exploit this relation in conjunction with the linear

independence of the vectors Pe; (j € X) to show that G — X is regular.



It follows that if also u ¢ {—1,0} then the X-neighbourhoods of vertices
in X form a block design on X, and its point-block incidence matrix is
just the matrix B of equation (1). In some cases (for example, 1 = 1 and
G-X =2 K,s5,0r p=2and G- X = K| 2) there is only one possibility for
this block design, and so G is then determined uniquely by ¢ and G - X.
In this way we obtain characterizations of the Clebsch graph [1, p.35] and
the Higman-Sims graph {1, p.107|.

We use the following additional notation throughout. An all-1 matrix
is denoted by J, and an all-1 column vector by j. For any vertex v of G we
write A(v) for the neighbourhood of v, that is, A(v) = {u € V(G) : u ~ v}.
Also, &*(v) = A(W)U {v}, T(v) = A(w)N X and T(v) = A(w)n X. If
A’ has spectral decomposition p Py + pa P + ... + py Py then we have
A'P; =P, = PA" (i=1,2,...,m). In particular, for P and u as above
we have the basic relation

uPej= Y  Pey (jeV(G)). 2
k€A ()

2 Induced stars

Lemma 2.1 Let G be a k-regular graph (k > 0) with an eigenvalue u of
multiplicity m. Suppose that G has a star set X corresponding to p such
that G — X = K, . Then the following hold:

(Z) B ¢ {_1>O}r

(i) ifu==kthenk=2 m=1andG is a 4-cycle,

(i) if u# k then G — X is regular of degree d, where d = pu + (—':;1%

Proof: Let X = A*(w), where deg(w) = k. We deal first with the case
# = k. Then m is the number of components of G (4, Theorem 3.23]; but
G is connected (because pu # 0) and so m = 1. Hence X consists of a single
vertex adjacent to each vertex of A(w). Thus each vertex of A(w) has
degree 2, and so k = 2. It follows that G is a 4-cycle.

Now suppose that p # k. Since £(u) and (k) are orthogonal we have,
in the notation of §1,

Z Pe, = - Z Pe, — Pe,,. (3)
u€X vEA(w)
From the basic relation (2) we have
[_I.Pew = Z Peu 3 (4)
ve€ON(w)

and (for u € X),



uPe, = Z Pey, + Z Pe;.

her(u) JET(u)

Summing over u € X, we obtain

pd Pe,=d dyPe,+(k—-1) )  Pe,, (5)

u€X ueX vEA(w)

where d,, is the degree of u in G - X.
It follows from (3) and (4) that

Z Pe, = —(p+ 1)Pey, ,
ueXN

and so u # —1 by linear independence of the vectors Pe, (u € X). If
= 0 then 3" cx(y) Pes = 0 and so dy = 0 for all u € X by equation
(5). In this case, X is an independent set and each vertex of X is adjacent
to each vertex of A(w). Thus |.X| = A - 1 and G = Kj , a contradiction
because the multiplicity of 0 as an eigenvalue of Ky x is 2(k — 1). Hence
n & {-1,0}.
Now equations (3) and (4) yield

> Pe,=(-1- Z Pe, , (6)

ueXN nEA(w)

and on eliminating 3 ¢ () Pev from equations (5) and (6) we have

(k- 1u _
Y (# du + —— 3~ ) Peu=0.

uceX

It follows that dy, = p + (ku+ll)“ forall v € X. 0

Theorem 2.2 Let G be e k-regular graph (k > 0) with n vertices and
an eigenvalue p # k of multiplicity m. Suppose that G has a star set X
corresponding to p such that G — X = K, . Then the following hold:

(i) pe€ Nu{-23(-1-5),3(=1+V5)},

(it) G — X is reqular of degree u*(u + 2),

(i) k = p(p?+3p+1).m = (p2+3u+1)(u%+2u—1) andn = (p2+3p)?,

(iv) if u € IN then a clique in G has at most pu + 1 vertices.

Proof: We retain the notation of Lemma 2.1 and make use of equation
(1) in the form
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f(u)(ul — A) = BT f(u)(uI - C)~'B, (7)

T
where f is the minimal polynomial of C. Here C = [ ? ‘6 ] , f(x) =

z(z? — k) and f(u) (uI - C)~! = (u® — k)I + uC + C2.

Each vertex of X is adjacent to a vertices of A(w), where a = k —d
and d is given by Lemma 2.1. Thus a = (k — u?)/(u + 1) and G has the
form depicted in Fig.1. Each column of the matrix B of equation (7) has
weight a, and the first row of B is zero. Accordingly a typical entry of the
matrix BT u(u? - k)(uI — C)~1B has the form

(0 xT)[Z; "f”g]ﬂo xT)[g (uzo_rk)l][f,],

that is, a® + (12 — k)xTy. On equating diagonal entries in (7) we find that
pr(u? - k) = a® + (u? — k)a, that is,

(1 + )22 - k) = —p(p® - k)2

Since s is not an eigenvalue of C, we may divide by u(u? — k) to obtain
k = p(u? + 3 +1). It follows that d = p?(u + 2) and a = u(p + 1).
Counting in two ways the edges between X and X, we have ma = k(k —1),
whence m = (u? +3p+1)(2 +2u—1). Thenn =m+k+1 = (u® +3p).

On equating off-diagonal entries in equation (7) we find that a® + (% —
k)xTy is equal to —p(u? — k) if the vertices corresponding to x and y are
adjacent, and equal to zero otherwise. If we now express e and & in terms
of pu we find that xTy is 0 or p, respectively. This tells us that for distinct
vertices uy, uy of X we have:

0if u) ~up

T(u)nD(u2)] = { B if ug o uy.

(8)



It follows that if G — X is not complete then u € IV (since p # 0 by Lemma
2.1). If G-X is complete then d = m—1, that is, (u+2)(g+1) (1 +p-1) =
0. By Lemma 2.1, p # —1 and so g is =2 or 5(—1 % v/5) in this case.

It remains to show that if u € IN and H is a clique in G with ¢ vertices
thent < u+ 1. We may suppose that ¢ > 3, and in this case H is contained
in G — X. To see this, note first that w ¢ V(H) and if V(H)NX # 0 then
V(H)N'X consists of a single vertex v of A(w); but then I'(v) contains a
pair {u,uz} of adjacent vertices, contradicting equation (8). Now the ¢
neighbourhoods T'(#) (u € V(H)) are pairwise disjoint subsets of & (w) of
size a, and so ta < k, that is, tp(p + 1) < p(p® + 3p + 1). Since p € IV it
follows that ¢(u + 1) < u? + 3pu + 2, whence t < p + 1 as required. o

It is easy to see that, in the situation of Theorem 2.2, if 4 = —2 then
m = 1 and G is a 4-cycle, while if u = %(—1 +V5)thenm =2and Gisa5-
cycle: in both cases, the hypotheses of the theorem are satisfied. If p € IN
and G is a strongly regular graph which satisfies the conclusions of Theorem
2.2 then G is a negative Latin square graph of type NL,(u? +3p); in other
words, G is a strongly regular graph with parameters ((u2 + 3u)?, u(u? +
3p +1),0,u(p + 1)) (see [1, Chapter 2]). We give two examples which
arise, and we shall see that our theorem enables us to characterize them
among all regular graphs. The first is the Clebsch graph [1, p.35], the
unique strongly regular graph with parameters (16, 5, 0, 2) : its eigenvalues
are 5,1, —3 with multiplicities 1, 10, 5 respectively. Here we take u = 1
and X = A*(w), where w is any vertex; then G — X is the Petersen
graph, itself strongly regular, with eigenvalues 3,1, —2. It follows that a
star partition of the Clebsch graph is given by X(5) = {w}, X(1) = X and
X(-3) = A(w). Another example is the Higman-Sims graph [1, p.107],
the unique strongly regular graph with parameters (100, 22, 0, 6): its
eigenvalues are 22,2, —8 with multiplicities 1, 77, 22 respectively. Here
we take £ = 2 and X = A*(w) where w is any vertex; then G — X is
the so-called 77-graph [1, p.109), itself strongly regular, with eigenvalues
16,2, —6. It follows that a star partition of the Higman-Sims graph is given
by X(22) = {w}, X(2) = X, X(-8) = O(w).

We now use the proof of Theorem 2.2 to show that there are no fur-
ther examples when g < 2; in particular we can characterize the Clebsch
graph and the Higman-Sims graph in terms of the subgraph induced by the
complement of a star set.

Corollary 2.3 Let G be a k-regular graph (k > 0) and let p (# k) be an
eigenvalue of G with a star set X such that G — X = Ky . Ifu=1 (or
k =5) then G is the Clebsch graph; and if p = 2 (or k = 22) then G is the
Higman-Sims graph.

Proof: If 4 = 1 then by Theorem 2.2, the sets T'(«) (u € X) are ten distinct
2-element subsets of A(w). Since |A(w)| = 5 these subsets are precisely all



the 2-element subsets of A(w), and so B is determined uniquely to within
labelling of the vertices of G. Since A is determined by p, B, C the graph
G itself is unique.

If 4 = 2 then the sets T'(u) (v € X) are 77 distinct 6-clement subsets
of the 22-element set A(w); moreover, by equation (8), any two of these
subsets intersect in 0 or 2 elements. In particular, no triple lies in two of
these sets which therefore account for 77 x (g) = 1540 triples from the set
A(w). But the total number of such triples is (%)) = 1540, and so each
triple lies in exactly one of the sets T'(u) (u € X).

Thus the non-zero rows of B form the point-block incidence matrix of a
(3, 6, 22)-design. By a theorem of Witt [13] there is only one such design;
hence B is unique (to within labelling of vertices), and so G is unique. O

3 A generalization

Here we extend the techniques of §2 to an investigation of a k-regular graph
G with a star set X such that X = A*(w) and A(w) induces a subgraph
hKgy, where k = hq, h > 1 and ¢ > 1. For example, if ¢ = 2 then G — X
consists of h triangles with a vertex in common; in other words, a windmsll
as defined in [1, p.31]. Recall that a cocktail-party graph is a graph of the
form hK,.

Lemma 3.1 Let G be a k-regular graph (k > 0) with n vertices and an
eigenvalue u of multiplicity m. Suppose that G has a star set X correspond-
ing to p such that X = A*(w) where A(w) induces a reqular subgraph of
degree r > 0. Then the following hold:

(x) p#-1,

(it) ifu=kthenm=1,n=k+2,7 =k -2 and G is a cocktail-party
graph,

(iti) if u # k then G — X is reqular of degree d, where

(k=1-r)u

d=p+ =y
Proof: If 1 = k then m = 1 because G is connected; hence n = k+ 2, and
so G is a cocktail-party graph. Here the single vertex in X is adjacent to
each vertex in A(w). Thus if v € A(w) then deg(v) = r + 2, and it follows
that r = k - 2.

When i # k the remaining assertions are proved in similar fashion to
Lemma 2.1, using the following three equations:

Z Pe, = - Z Pe, ~ Pe,,,

u€X vEA(w)



pPey = Z Pey,
vEA(w)

pY Pey=Y dyPe +(k—1-7) )  Pey,

ueX ueX veEA(w)

where d,, is the degree of u in G — X. o

We note that here, in contrast to Lemma 2.1, the possibility o = 0
cannot be excluded. Indeed if = 0 then |X| = k —r — 1 and X,{w} is
an independent set of k — r vertices adjacent to every vertex in A(w). The
o Jr
J D
D is the adjacency matrix of the subgraph induced by A(w). Examples
arise whenever this subgraph does not have 0 as an eigenvalue, for then
0 is not an eigenvalue of G — X, while the nullity of A" is k —r — 1. To
see this, it suffices to observe that (07|j7) does not lie in the row-space
of (J|D): indeed if (07|jT) = cT(J|D) then 0T =cTJ, 7 =cTD and so
jTj =cTDj = rcTj =0, a contradicition.

The essential difference between the configurations considered in sec-
tions 2 and 3 is however the possible presence. when 7 > 1 of a triangle
with one vertex in X and two vertices in X. This will become apparent
when we equate diagonal entries in equation (7), and it accounts for the
condition (#) in the following theorem. We write K,VH for the graph
obtained from the graph H by adding a vertex adjacent to every vertex in
H.

adjacency matrix of G therefore has the form A’ = , Where

Theorem 3.2 Let G be a k-regular graph (k > 0) with n vertices and
an eigenvalue p # k of multiplicity m. Suppose that G has a star set X
corresponding to u such that G — X = K1 VhK,, where hgq =k and ¢ > 1.
Suppose also that there ezists a verter u of X such that

(¥) G has no triangle with vertices u,vy,v2 where vy,v2 are adjacent
vertices of X.

Then
(i) G = X is regular of degree p{(1+1)* - q},

(i) k=p(p2 +3u-q+2), m=(u?+3p-q+2)(u®+2u-9),
n=(u?+3u—-q+1)>=

10



Proof: The vertices of X may be labelled so that the adjacency matrix C
of equation (7) has the form ( 2 ) , where C’ is block-diagonal with

i
Cl
h blocks J — I of size q x q.

The characteristic polynomial of C is

k

{(@+1)" Yz -g+ D)}z - T—q+1

)

{4, Theorem 2.8] and so its minimal polynomial is f(x), where
f@)=(z+1)(z - ¢+ 1)z’ - (g- )z - k}.
It follows that

f) (I -C) ' =C*+aC?+BC + v

where
a = p—2q+3,
B = pp-29+3)+(qg—-1)(g-3) -k,
v = p(p—2¢+3)+p(g-1)(g-3) - kp+(g-1)*+ (q-2)k.

The matrix f(u)(ul — C)~! has the form

I * * * *
@i+, (2¢g-2+a)J tal o

whereag =7+ (g-1)(g-2+a)and @) =¢> -3¢+ 3 +alg—2) + 5.

Now we equate (v, v)-entries in equation (7), where v is a vertex in X.
Note that if x is the column of B corresponding to v then x has the form
(0,z),Z2,...,7x)T and so we obtain

pf(p) = aga+ (2¢ — 2 + @)a’ + a; Zx,-xj, (9)

invj
where a is the weight of x. If now we take v = u then the condition (%)
ensures that . .z;r; = 0; while from Lemma 3.1 (with r = ¢ — 1) we

i~]
have

k+(g—p—p?

=k-d=
¢ p+1

We now substitute for ag and a in equation (9). Since p is not an
eigenvalue of C, we may divide by {u? — (¢ — 1)u—k} (1 —q+1) to obtain

11



-(q-1Du-k
p+1

(e +1) =

It follows that k = p(u? + 3p — ¢ + 2), hence that d = p{(s+1)*> - ¢}
and a = p(u + 1). Counting in two ways the edges between X and X,
we find that m = k(k g)/e = (u? +3p — g+ 2)(p? + 21 — q). Fmally,
n=m+k+1=(u2+3p-q+1)>=

The Paley graph P(9) [1, p.34] provides an illustration of Theorem 3.1
with p = —=2,¢q = 2,k = 4 and G - X a d-cycle. Indeed, we have the
following characterization.

Corollary 3.3 If G is a graph which satisfies the hypotheses of Theorem
3.2 with ¢ = 2 and p = —2 then G = P(9).

Proof: By Theorem 3.2, wehavek =4,m=4,n=9 and G- X 2 Cy. Let
A(v) = {6,7,8,9} where 6 ~ 7 and 8 ~ 9. By condition () the possible
sets T(u) (v € X) are {6,8},{6,9},{7,8}, {7, 9}, and each of these occurs
exactly once because X is a location-dominating set. Only two graphs can
now arise, accordlng as G — X does or does not have adjacent vertices
uy,uz such that T(u;)al(u2) = @. In the first case, the graph in question
does not have —2 as an eigenvalue of multiplicity 4, and so P(9) is the sole
candidate. a

Any strongly regular graph which satisfies the hypotheses of Theorem
3.1 is of type NL,(u? + 3 — ¢ + 1). Indeed, two further examples arise
as rank 3 graphs [1, p.36] associated with the group Oj (K) acting on a
4-dimensional vector space over a finite field JK (see (2, Chapter 1]). The
graphs in question are of type C12~ in Hubaut’s list (7] of strongly reg-
ular graphs. If JK = GF(3) then we have an example with parameters
(81,20, 1,6) and eigenvalues 20, 2, —7 of multiplicities 1, 60,20 respectively:
hereu =2and g =2. If K = GF(4) then we have an example with pa-
rameters (256, 51, 2, 12) and eigenvalues 51, 3, —13 of multiplicities 1,204, 51
respectively: here 1 = 3 and ¢ = 3. In both cases, G — X has the required
structure, and condition (x) holds for all vertices of X, because adjacent
vertices are points of an isotropic line.

4 An alternative configuration
In the previous two scctions, the star set X was taken to be the set of

non-neighbours of a single vertex. Here we explore a situation in which X
is the set of non-neighbours of two adjacent vertices.

12



Lemma 4.1 Let G be a k-reqular graph (k > 1) with an eigenvalue p of
. multiplicity m. Suppose that G has a star set X corresponding to p such
that G — X = Sy k. Then the following hold:

(i) u#0,

(i) ifu="Fkthenk=2,m=1 and G is a 5-cycle,

(i13) if u # k then G—X is regular of degree d, where d = u+ M)‘f"—'l—)
Proof: Let v,w be the adjacent vertices of degree k in G — X, and let
A = Ay U Ay, where Ay = A@)\{w} and A; = A(w)\{v}. Thus each
vertex of A is adjacent to k — 1 vertices of X. If u = k then m = 1 because

G is connected, and so k = 2,G is a 5-cycle. Accordingly, suppose that
u # k. Then

Pe,+ Pe, =~ Y Pe,— Y Pe; (10)
v€X JEA

and the basic relation (2) affords the following three equations:

pPe, = ) Pe;+ Pe, , (11)
JEOL
iPe, = Z Pe; + Pe, , (12)
FITAY
pY Pey=) dPe,+(k-1)> Pe;, (13)
u€X u€X JjEA

where d, is the degree of u in G — X. From equations (11) and (12) we
have

(1 —1)(Pe, + Pey) = ) _ Pe;. (14)
J€EL
From equations (10) and (14) we have
u Z Pej=—(u-1) Z Pe,.
j€a uEX

Since the vectors Pe, (u € X) are linearly independent we have p # 0. We
may now substitute for 3_.. o Pe; in equation (13) to obtain

u€X

from which (iii) follows. o

13



Now suppose that, in the notation of Lemma 4.1, G has an automor-
phism which interchanges v and w. We shall go on to determine the graphs
G which arise when this symmetry condition is imposed. We shall need the
following result, for which the author is indebted to F. K. Bell.

Lemma 4.2 Ifz and y are positive integers such that z° — z = 3y* — 3y
then there exists an integer n > 0 such that (z,y) = (Tn,yn), where To =
1,90 =1 and

Tnel =2Cn +3Yn =2, Yns1 =Tn+2Yn—1 (n>0).

Proof: If we write p = 2z — 1 and ¢ = 2y — 1 then the original equation
becomes: p? — 3¢® = —2. If we now define non-negative integers X,Y by
p=X +3Y,g = X +Y then we obtain the Pell equation X?2-3Y%2=1,
whose smallest solution in positive integers is (X,Y) = (2,1). Hence (by 8,
Theorem 11.11]) the solutions with X,Y € IV are (X,Y) = (X, Y) (n 2>
0) where X,, + v3Y;, = (2 + v3)". Thus (for n > 0)

Xa= 2 {@+ V3" + 2=V}, Vo= {@+V3)"-(2-VI},

from which it follows that (p,q) = (pr,qn), where

Pn=Xa +3Y = {1+ V2 +VI"+(1-V3)(2-V3)" (n20),
gn = Xn+ Yo = 55={(1+ VB2 + V3" - (1 - v3)2 - V3)"} (n20).

Thus po = ¢o = 1 and pns1 + V31 = (1 + V3)(2 + V)™ =

(2 + vV3)(pn + V3q) (n > 0). We deduce that p,41 = 2pn + 3¢n and
Gn+1 = Pn + 2gn (n = 0). The recurrence relation for (z»,yn) now follows.
a

Thoerem 4.3 Let G be a k-regular graph (k > 1) with an eigenvalue p of
multiplicity m. Suppose that G has a star set X corresponding to p such
that G — X = Sy x; and suppose also that G has an automorphism which
interchanges the central vertices of G — X. Then k = 2 and either (a)
p=2,m=1and G is a 5-cycle, or (b) p = £1,m =2 and G is a 6-cycle.

Proof: We assume that conclusion (a) does not hold, so that by Lemma
4.1, G — X is regular of degree d, where d = p + (k — 1)(p — 1)/p and
p € {0,k}. Thus each vertex of X is adjacent to a vertices of X, where
a=k—-d=(k-p%+pu-1)/p Suppose, by way of contradiction, that
i is not an integer. Then p has an algebraic conjugate which is also an
eigenvalue of G of multiplicity m. Hence 2m < |V(G)| and so m < 2k - 1.
Counting in two ways the edges between X and X, we have ma = 2(k-1)?,

14



and so m # 2k — 1. Moreover, if m < 2k —2 then a > k~ 1, whence a = k;
but then k = 2,m = 1,G is a 5-cycle and p = 2, a contradiction. It remains
to consider the case m = 2k—2 : here we have k—1 = a = (k—p%+pu—1)/u,
whence (u — 1)(#+ k- 1) =0 and p € {1,1 - &k}, a contradiction. Hence
HLEZ.

We label the vertices of X so that the adjacency matrix C of G — X
has the form

2302 S
iT 010 > 10T k 0 j
OT 1 0 jT . Then C* = jT 0 k OT ,
o0 j o O jo J
[ O kj 0 J
o | KT 0 2%-1 0o
Tl oT 2%-1 0 KT
| J 0 kj o
and
kJ 0 (2k - 1)j 0
cd = oT k?+ k-1 0 (2k —1)j7
T @k-1)7 0 k2 +k-1 oT
i o (2k - 1)j 0 kJ

By a formula of Heilbronner (4, Theorem 2.12], C has characteristic

polynomial {(z% — k + 1):5"‘2}2 - (z¥=1)2. The minimal polynomial of C
is therefore f(z), where

f(z) =zg(z)g9(-z), glz)=z>+z-k+1.

Accordingly, (¢ -C)~! is a quartic in C, and we find that f(u)(ul~C)~! =
C* + aC® + BC? + 4C + 61, where

a=p, B=p®-2k+1, v=yp(u®-2k+1),

6= f(u)/pu=p (W -2k+1)+(k-1)%

Hence f(u)(ul — C)~! — 61 =
(k+ B)J (ak +7)j Ck-1+8)j aJ
(ak + 7)iT K2 +k-1+0k a2k~1)+v (2k—1+8)T

(2k-14+8)T a2k-1)+y K +k-1+p8k (ak+)jT
aJ (2k = 1 + B)j (ak + v); (k+0)J

Now let u € X and (in the notation of Lemma 4.1) let a; = |T(u)nd\
(i = 1,2), so that our graph has the form depicted in Fig.2. Thena;+a3 =
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k—a —an °

i = —g(~p)/p > 0 and the u-th row of BT has the form (xT,0,0,x7) where
x, has weight a; (1 = 1,2). On equating (u,u) - entries in equation (7) we
have

1f () = 6(xTxy +xTx2) + (k + B)(xTJxy +xF Ixz) + o(x] Jxz + %3 Ix1),

equivalently,
pf(p) = éa + (k + B)(a} + d3) + 2aa1a2. (15)
We can now show that a; # a». For if a) = a3 = %a and we express

«, 3.6,a in terms of k and p, we find that equation (15) becomes

2utg(1)g(— 1) = g(p)g(—p)*(=2p + 1).
Since u is not an eigenvalue of G — X we may divide by g( w)g(—p) to obtain
opt = (p* —p—k+1)(-2p +1).

Since 2u! and 2u — 1 are coprime the only possibility is that p = 1 and
k = 3; but this is a contradiction since g(1) = 0.

Next, let ¢ = 7(u) where 7 is an automorphism of G which interchanges
v and w, and let t, u be the columns of B corresponding to the vertices ¢, u.

16
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Since 7(X) = X while 7 interchanges &) and A, we have |T{t)n 2| = a2
and |T(t)n Q2| = a;. Since a; # az we have t # u. Thus 7 is fixed-point-free
on X and |X]| is even.

On equating (t, u)-entries in equation (7) we have

—f(1)aw = 6tTu + (k + B)2a102 + a(a? + a3), (16)

where ayy, is the (¢, u)-entry of A. We can now show that if aja; = 0 then
G is a 6-cycle. For if {a),a2} = {a,0} then T(t) and T'(u) are disjoint;
thus t7u = 0 and from equation (16) we have a;, f(1t) + ua® = 0. Hence
t ~uand a = —p?(a — 2). It follows that a = 1,2 = £1 and hence that
k =2,m = 2. Then G is a 6-cycle and we have case (b) of the theorem.
Accordingly, we assume from now on that ajas > 0 for every choice of the
vertex u € X. We shall eliminate in turn the cases u <0,z > 1,p = 1.
If we add equations (15) and (16) we obtain

(1 — aw) (1) = 6(a + tTu) + (k + B + a)a’.

On expressing «, 3,6 and ¢ in terms of k and p, this equation simplifies to

(- aw) = p*tTu+ 1 -p)(p? - p-k+1). (17)
Now suppose that y is negative, say i1 = ~A, A > 0. Equation (17) becomes

N tan) . A o
;= tTu+ A .
k Tty Ve A (18)

Since 0 < MTu < da= A2+ A -k + 1, we have

k< =M/A+1)—k+2002+A+1),

whence A* <2(A +1)(A2+ A +1-k).

If £ > 3 then A < 2(A +1)(A +2)(A = 1), whence A = 2 and k < 4.
Equation (18) cannot be satisfied when & = 4 and A = 2; while if £ = 3 we
have a contradiction because f(—2) = 0. If k = 2 then G is a cycle and
(since | X| is even) the only possible value for X is 1; but then a = 1 and
ajap = 0, contrary to assumption.

We now know that the integer y cannot be negative. Next, suppose
by way of contradiction that x > 1. From the expression for x in Lemma
4.1, we know that u divides k — 1, say k = su + 1, where s € IN. Then
a=ay+a2 =s - p+ 1. From equation (15) we have

plp+1—s)(u +p—1-35) = (u—s)(u—1-s) - 2aa,,

whence
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2a1a3 = —pt + (s = 2)pd + 2s + Nu? — (2s + sH)p + 5% + 5.

To simplify the arithmetic we write b; = a;—1 (i = 1,2) and b = by +ba:
note that b, and by are non-negative because aj,az > 0 ; and by # b2
because a; # a2. We have b = s—u—1 and we find that 2b,b; = b(— s+ul+
21)(1n—1). Note that b > 0 for otherwise k = u2+u+1 and f(u) = 0. Note
also that since y > 1 and byb; > 0 we have p® +2u > s, say s = p 242u—e,
where € > 0. Now by, by are roots of a quadratic with discriminant 8, where
8 = b2 — 4b1bs. We find that 6 = b{s(2 — 1) — 2u3 — 2% + 3 — 1}, and
since # > 0 we have

S 2ud +2u% - 3u+1

W+p-1
2u-—1 ’

2
= 2u —
W+ -1

It follows that € < u + 1. For future reference we note here that if we
express 8 in terms of p and ¢ we find that § = o? — o}, where

=p?+pu—-1-pe and ap = (- 1)e. (19)

Counting X — X edges in two ways, we find that [X|a = 2(k—1)2. Since
| X| is even, this tells us that a divides u 252, Since @ = s — i+ 1 we deduce
that o divides p?(z — 1)2. Now consider the greatest common divisors

= (a,1?) and h = (a, (x—1)%). We have (g, h) = 1 and @ = gh; moreover,
g={(a,p+1—¢)and h = (a,3p —€) because a = p + p+ 1 - €. Now

> %(u+ 1—¢)(3p—e¢) for otherwise 3(u? +u+1—¢) < (p+1-¢€)(3p—¢),
whence (e — 4 + 2) > 3, a contradiction.

It follows that a = p(u+1 — E)(3u —¢) where p € {1,4}. If p=1 then
pWlrtputl—c = 3u? +3u 4pe — e +€2, equivalently (2p s% =24+ (p—-1)>2
Hence {u,u — 1} = {e? — f2, 2ef} ¢nd u—ec=e +f2 where e and f
are positive integers. If 4 = % — f‘ then2f2=p—-e>ip—1=ef -
whence 2f > e and u 2ef+1>e*+1,a contradlctlon If p =2ef then
2f% =p—e+1> jpu, whence 2f2 > ef and p > €2, a contradiction.

Now suppose that p = % In this case we have 2(u2 + p +1 —¢) =
3u? + 3u — dpe — ¢ + €2, which may be written:

(4p — 1 - 2¢)% = 2(2p)? + (2u — 3)2.
Since € < %p + 1, we have

dp—1-2e=+/12p2 — 1244+ 9.

Hence 122 — 12u + 9 = 9(2v — 1)? for some positive integer v. Thus
p?—p =3v2—3vande = 2u—3v+1. We now use the fact that § = o} -a3,
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where the integers a;, as are given by equation (19), while 6 is itself a non-
zero square. To exploit the form of the corresponding Pythagorean triple,
we need some information on the greatest common divisor ¢ of a; and as.
Let p be a prime which divides o, and note that 3v? = 2 mod p because
oy + ag = 312 — 2. We show first that p does not divide ¢; for otherwise
we have 3v2 = 2,42 + u -1 = 0 and 2u — 3v + 1 = 0 mod p, whence
0=(2u+30)(2u—-3v+1)=4p? -0 +2u+3v = du® - 9% +2u + 32 -
p?+p = 3p?% - 602 + 3p = 3(p? + 1) — 602 = 3 -4 mod p, a contradiction.
Hence p does not divide ¢; but p divides (z — 1)¢ and so ¢ = 1 mod p. It
follows that 0 = u? — u = 3v? — 3v and hence that 3v = 2 mod p. Now
0 = 312 - 3v — v(3v — 2), whence v = 0 mod p and necessarily p = 2. Thus
o is a power of 2.

Now, since a? — a3 is a non-zero square, there exist coprime positive
integers e, f of opposite parity such that either (i) a; = o(e? + f2) and
az = o(e? — f2) or (ii) a = d(e? + f*) and a; = 20ef. In case (i) we
have 302 — 2 = a; + ay = 20e? whence v is even, say v = 2A. But then
622 — 1 = oe? and s0 ¢ = 1,e* = —1 mod 3, a contradiction. In case
(ii) we have 3v2 — 2 = a; + a = o(e + f)?, where e + f is odd. If v
is even, say v = 2\, we have 1202 — 2 = g(e + f)?, whence 0 = 2 and
(e + f)? = -1 mod 3, a contradiction. If v is odd then ¢ = 1; and if
we write v = 2A — 1,e + f = 2x — 1 then we obtain 3A? — 3\ = x% — x.
In the notation of Lemma 4.2, we now have v = y,, and A = y, for
some non-negative integers m, n; moreover v = 2A — 1, and so n > 0 (for
otherwise ym = yn = 1 and u € {0,1}). Hence y, < 2y, — 1; and since
also Yn41 = Tn + 2yn — 1 we have yn < ¥m < Yn+1. This contradiction
eliminates the possibility that g > 1.

It remains to deal with the case u = 1. In this case G—X = (k—1)K; by
Lemma 4.1. Moreover the equation obtained by equating diagonal entries
in (7) is

(k = 1)(k — 3) = (k — 1)*(k — 3) + (2 = k)(a} + a2) + 2a;a,,

where a; + a; = a = k — 1. It follows that ajas = & — 2 and hence that
{a1,a2} = {1,k — 2}. Note that k¥ > 4 because ¢; # a2 and ajaz # 0.
Accordingly X = T U U where 7 interchanges T and U, and a; = 1,a; =
k —2 for each vertex in T, while a; = k—2,a = 1 for each vertex in U. For
teT, uelU let t,u denote the corresponding columns of B. On equating
(t, u)-entries in equation (7) we find that tTu = 1 —ay,, i.e. [T(#)al(w)| =1
ift #u, 0ift ~u. If u,u’ € U and we equate (u,u’)-entries then we find
that u"u' =k — 2 — auy, ie.

Fnfei={ g15uzy . (20)
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Similarly, if ¢,#' € T then

ronren={ § I3 E (21)

For y € X, we write A;(y) for T{y)al; (1 =1,2);thusfort € T, v e U
we have |[A(t)| = |Az(u)| = 1 and |A2(t)] = |A1(u)] = k — 2. We show
first that the set of subsets Aj(u) (u € U) does not coincide with the set
of all (k — 2)-element subsets of A;. For otherwise by symmetry the set of
subsets A2(t) (t € T) coincides with the set of all (k — 2)-element subsets
of Ay and in this situation each vertex of A; is adjacent to precisely one
vertex of T, while each vertex of A, is adjacent to precisely one vertex of
U. It follows that the U — A, edges and the T — A, edges are independent.
In particular |T(u)aI(u')] = k — 3 for every pair of distinct vertices wu,u’
in U. It follows from equation (20) that U induces a complete subgraph, a
contradiction.

We now know that U has at least two vertices u;, uy with a common
neighbourhood in Ay, say Aj(u1) = Aj(ug) = A}. Suppose that there is
a third vertex uz € U such that A;(u3) = Af, and let Az(u;) = {v;} (i =
1,2,3). Note that vy, vz, v3 are distinct because X is a location-dominating
set. If u is a vertex in U such that A (u) # A] then u is adjacent to at most
one of vy,v2,v3; say u £ va, u # v3. Then [T(u)aL(uz)] = [T(u)al(us)| =
k-3, and so by equation (20) we have u ~ us and u ~ us, a contradiction.

We conclude that either (1) A;(u) = Af forevery u € U, or (2) A (u) #
A for all u € U\{u;,uz2}. In case (1), A has a vertex adjacent to every
vertex in T, and by symmetry, A, has a vertex adjacent to every vertex in
U. Thus T'(¢)nI'(u) = @ for every t € T and every u € U. By equation (17),
every vertex in T is adjacent to every vertex in U; but then |T| = |U| =1
and k = 2, contrary to assumption. Thus case (1) does not. arise. In case
(2), consider a vertex u € U\{u1, u2}, and let Ao(u;) = {v;} (i =1,2). At
most one of vy, vz is a neighbour of u and so by equation (20), u is adjacent
to one of u;,us. Since u;,us have degree 1 in G — X, there are at most
two such vertices u and so |X| < 4, k € {4,5}. We eliminate the cases
k=4, k=25 in turn.

In the case k = 4, let U = {uy,uz,uz}, Do(w) = {v;} (i = 1,2),
Ai(uy) = Di(ue) = {wy, we}, Di(us) = {we, w3}, A2 = {vy,v2,v3}. Since
ug is not adjacent to both u; and us, it is adjacent to one of vy, v3, and there
are two possibilities: (a) uy ~ ug ~ va, (b) uz ~ uz ~ v;. Note that v is
the unique vertex in A adjacent to every vertex in T'; hence v3 = 7(w,).
Now consider case (a). Since v; is adjacent to two vertices in U, we also have
v = 7(w3) and hence vy = 7(w;). Let 7(u;) =t; (1 =1,2,3). Thent; ~t3
and ua ~ t3. By considering the images of U — A, edges under 7 we see
that ¢; ~ vy, ty ~ vy, t3 ~ vo. Now since t5 o t3 we have |T'(t2)n(t3)| = 2
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and so Aj(tz) = A(t3). Necessarily Aj(ta) = Hy(t3) = {_w3}, and so
the graph is completed by the edge tyw;. But now T'(u3)al(t;) = 0, a
contradiction because t; % u3.

Now consider case (b), where vz = 7(ws),v3 = 7(wy),v; = T(ws). If
t; = 7(u;) (i =1,2,3) then t; ~ t3, t; ~ u, and the images under 7 of the
U ~ A edges are tyvg, tyvg, tavs, tavs, t3v;, t3vs. Now by equation (21),
IT(t1)aT(t3)| = 2 because t; # t3, and so t;,t3 have a common neighbour
in Ay. This vertex is necessarily w3 and the graph is completed by the
edge tow;. Now |T(u2)nl(t2)] = 2. a contradiction.

For the last step in the proof, suppose that k = 5, and let U =
{ur, u2, u3, uq}, D1(wr) = Hy(u2) = {wr, w2, w3}, Ar(us) = {w2, w3, wa},
Da(uy) = {v1}, Da(uz) = {ve}. (Recall that vy # v, because X is a
location-dominating set.) Again, there are two possibilities: (a) vy ~ uz ~
ug, (b) vz ~ uz ~ u). Consider case (a). The vertex u4, like ua, is adjacent
to exactly one of v, vs; but since us % uy we have v ~ ug ~ u;. Now
u3 o uq and so |T(ua)nl(uq)| = 2 whence A (ug) = A((us). In case (b),
we have similarly v; ~ uq ~ u2 and &,(u4) = H)(us). Accordingly we may
interchange u3 and u4 if necessary and consider only case (a). Let Ay =
{v1,v2,v3,v4}. By considering the number of w; — U edges (1 = 1,2,3,4) we
see that 7 maps {ws, w3} to {v3,v4} and v3, vy are adjacent to each vertex
in T. Since {ws, w3} = A{u2)ndi1(usz), v2 ~ usz and uy ~ vy, we may let
T = {ti,t2,t3,t4} where Do(t3)nDa(ts) = {v3,v4}, t3 ~ t4 and ¢} ~ ts.
The Aj-neighbourhoods of vertices in T are {v;,v3,v4}, {v2,v3,v4} (each
arising twice). Accordingly we may label ¢, ts so that ¢; ~ v; and t2 ~ vp.
We can now obtain a contradiction : t2 % w; since v, is already a common
neighbour of ¢ and us, and t5 % w4 because v» is already a common neigh-
bour of ¢2 and u4. Since wo and wy have no neighbours in T', it follows that
t2» has no neighbours in A;. This final contradiction completes the proof
of the theorem.
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