Star Sets in Regular Graphs

Peter Rowlinson
Mathematics & Statistics Group
Department of Computing Science & Mathematics
University of Stirling
Scotland, FK9 4LA

ABSTRACT. Let G be a finite graph and let μ be an eigenvalue of G of multiplicity k. A star set for μ may be characterized as a set X of k vertices of G such that μ is not an eigenvalue of G-X. It is shown that if G is regular then G is determined by μ and G-X in some cases. The results include characterizations of the Clebsch graph and the Higman-Sims graph.

1 Background

Let G be a finite simple graph with vertex set $V(G) = \{1,2,\ldots,n\}$, and let μ be an eigenvalue of G (that is, an eigenvalue of the (0,1)-adjacency matrix of G). Let $\{e_1,e_2,\ldots,e_n\}$ be the standard orthonormal basis of \mathbb{R}^n ; for example, e_1 is the column $(1,0,\ldots,0)^T$. Let P be the orthogonal projection of \mathbb{R}^n onto $\mathcal{E}(\mu)$, where $\mathcal{E}(\mu)$ is the eigenspace of μ . The vectors Pe_1,Pe_2,\ldots,Pe_n span $\mathcal{E}(\mu)$, and so there exists a subset X of V(G) such that the vectors Pe_j ($j\in X$) form a basis for $\mathcal{E}(\mu)$. Such a subset is called a star set for μ , and the corresponding basis is called a star basis for $\mathcal{E}(\mu)$. (The terminology reflects the fact that the vectors Pe_1,Pe_2,\ldots,Pe_n form a eutactic star as defined by Seidel [12].) The arguments of [5, Section 3] show that X is a star set for μ if and only if $|X| = \dim \mathcal{E}(\mu)$ and μ is not an eigenvalue of G - X. Proofs of this and other results reviewed in this section may be found in [6, Chapter 7].

If $\mu_1, \mu_2, \ldots, \mu_m$ are the distinct eigenvalues of G then a star partition for G is a partition $V(G) = X(\mu_1)\dot{\cup}X(\mu_2)\dot{\cup}\cdots\dot{\cup}X(\mu_m)$ such that $X(\mu_i)$ is a star set for μ_i $(i=1,2,\ldots,m)$. Every graph has a star partition; indeed it was shown in [11] that if X is a star set for μ_i then G has a star partition in which $X(\mu_i) = X$. Given any star partition, a corresponding star basis for \mathbb{R}^n is obtained by stringing together the star bases for each eigenspace.

Star partitions were introduced as part of an algebraic approach to the graph isomorphism problem: one can associate with a graph a star basis of \mathbb{R}^n which is canonical in the sense that two cospectral graphs are isomorphic if and only if they determine the same canonical star basis

(see [5, Section5], [3] and [6, Chapter 8]). Star partitions are however of interest in their own right because star sets are related directly to graph structure (see [5] and [9]). For example, let X be a star set corresponding to the eigenvalue μ , and let \overline{X} be the complement of X in V(G). One can show that if $\mu \neq 0$ then \overline{X} is a dominating set; thus if G - X is connected then so is G. If $\mu \notin \{-1,0\}$ then \overline{X} is even a location-dominating set, that is, a dominating set such that distinct vertices in X have distinct neighbourhoods in \overline{X} . It follows that when $\mu \notin \{-1,0\}, |V(G)|$ is bounded in terms of $|\overline{X}|$, and hence that there are only finitely many graphs in which $\mathcal{E}(\mu)$ has prescribed co-dimension. The more we know about \overline{X} , the more we know about G; indeed, G is determined uniquely if we know μ , G - X(the subgraph induced by \overline{X}) and the embedding of \overline{X} in G. For subsequent reference, we provide further details. We label vertices of X before those of \overline{X} so that the adjacency matrix of G has the form $A' = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}$, where A is the adjacency matrix of $G - \overline{X}$, C is the adjacency matrix of G-X and the non-zero entries of B correspond to the edges between X

$$\mu I - A' = \left[\begin{array}{cc} \mu I - A & -B^T \\ -B & \mu I - C \end{array} \right].$$

and \overline{X} . We have

Since μ is not an eigenvalue of G-X, $\mu I-C$ is invertible and accordingly the rows of $(-B \mid \mu I-C)$ form a basis for the row-space of the matrix $\mu I-A'$. It follows that there exists a matrix L such that $\mu I-A=L(-B)$ and $-B^T=L(\mu I-C)$. We may eliminate L to obtain

$$\mu I - A = B^T (\mu I - C)^{-1} B.$$
 (1)

We can now see that A, and hence the adjacency matrix of G itself, is determined by μ , B and C.

The foregoing remarks point to the possibility of characterizing graphs by properties of \overline{X} which have implications for the set $E(X,\overline{X})$ of edges between X and \overline{X} . Examples of properties which illustrate this principle are (i) the minimality of \overline{X} as a dominating set (investigated in [10]), and (ii) the regularity of G-X in a graph G which is itself regular [11]. For regular graphs of prescribed degree the general principle applies if we simply specify the graph G-X, and the purpose of this paper is to demonstrate this in particular cases. For example, we investigate k-regular graphs (k>1) in which G-X is a k-star $K_{1,k}$ or a double k-star $S_{k,k}$. (Here $S_{k,k}$ denotes the tree with two adjacent vertices of degree k and all other vertices of degree 1.) If $\mu \neq k$ then, since $\mathcal{E}(\mu) \perp \mathcal{E}(k)$ and $\mathcal{E}(k)$ contains the all-1 vector, we have $\sum_{j=1}^n P\mathbf{e}_j = \mathbf{0}$. We exploit this relation in conjunction with the linear independence of the vectors $P\mathbf{e}_j$ $(j \in X)$ to show that $G-\overline{X}$ is regular.

It follows that if also $\mu \notin \{-1,0\}$ then the \overline{X} -neighbourhoods of vertices in X form a block design on \overline{X} , and its point-block incidence matrix is just the matrix B of equation (1). In some cases (for example, $\mu = 1$ and $G - X \cong K_{1,5}$, or $\mu = 2$ and $G - X \cong K_{1,22}$) there is only one possibility for this block design, and so G is then determined uniquely by μ and G - X. In this way we obtain characterizations of the Clebsch graph [1, p.35] and the Higman-Sims graph [1, p.107].

We use the following additional notation throughout. An all-1 matrix is denoted by J, and an all-1 column vector by \mathbf{j} . For any vertex v of G we write $\Delta(v)$ for the neighbourhood of v, that is, $\Delta(v) = \{u \in V(G) : u \sim v\}$. Also, $\Delta^*(v) = \Delta(v) \cup \{v\}$, $\Gamma(v) = \Delta(v) \cap X$ and $\overline{\Gamma}(v) = \Delta(v) \cap \overline{X}$. If A' has spectral decomposition $\mu_1 P_1 + \mu_2 P_2 + \ldots + \mu_m P_m$ then we have $A'P_i = \mu_i P_i = P_i A'$ $(i = 1, 2, \ldots, m)$. In particular, for P and μ as above we have the basic relation

$$\mu P \mathbf{e}_j = \sum_{k \in \Delta(j)} P \mathbf{e}_k \quad (j \in V(G)). \tag{2}$$

2 Induced stars

Lemma 2.1 Let G be a k-regular graph (k > 0) with an eigenvalue μ of multiplicity m. Suppose that G has a star set X corresponding to μ such that $G - X \cong K_{1,k}$. Then the following hold:

- (i) $\mu \notin \{-1,0\},$
- (ii) if $\mu = k$ then k = 2, m = 1 and G is a 4-cycle,
- (iii) if $\mu \neq k$ then $G \overline{X}$ is regular of degree d, where $d = \mu + \frac{(k-1)\mu}{\mu+1}$.

Proof: Let $\overline{X} = \Delta^*(w)$, where $\deg(w) = k$. We deal first with the case $\mu = k$. Then m is the number of components of G [4, Theorem 3.23]; but G is connected (because $\mu \neq 0$) and so m = 1. Hence X consists of a single vertex adjacent to each vertex of $\Delta(w)$. Thus each vertex of $\Delta(w)$ has degree 2, and so k = 2. It follows that G is a 4-cycle.

Now suppose that $\mu \neq k$. Since $\mathcal{E}(\mu)$ and $\mathcal{E}(k)$ are orthogonal we have, in the notation of §1,

$$\sum_{u \in X} P \mathbf{e}_u = -\sum_{v \in \Delta(w)} P \mathbf{e}_v - P \mathbf{e}_w. \tag{3}$$

From the basic relation (2) we have

$$\mu P \mathbf{e}_w = \sum_{v \in \Delta(w)} P \mathbf{e}_v , \qquad (4)$$

and (for $u \in X$),

$$\mu P \mathbf{e}_u = \sum_{h \in \Gamma(u)} P \mathbf{e}_h + \sum_{j \in \overline{\Gamma}(u)} P \mathbf{e}_j.$$

Summing over $u \in X$, we obtain

$$\mu \sum_{u \in X} P \mathbf{e}_u = \sum_{u \in X} d_u P \mathbf{e}_u + (k-1) \sum_{v \in \Delta(w)} P \mathbf{e}_v , \qquad (5)$$

where d_u is the degree of u in $G - \overline{X}$.

It follows from (3) and (4) that

$$\sum_{u \in X} P \mathbf{e}_u = -(\mu + 1) P \mathbf{e}_w ,$$

and so $\mu \neq -1$ by linear independence of the vectors $P\mathbf{e}_u$ $(u \in X)$. If $\mu = 0$ then $\sum_{v \in \Delta(w)} P\mathbf{e}_v = \mathbf{0}$ and so $d_u = 0$ for all $u \in X$ by equation (5). In this case, X is an independent set and each vertex of X is adjacent to each vertex of X is an independent set and X is a contradiction because the multiplicity of 0 as an eigenvalue of X, is X is X in the proof of X is adjacent X in X is X in X

Now equations (3) and (4) yield

$$\sum_{u \in X} P\mathbf{e}_u = (-1 - \frac{1}{\mu}) \sum_{v \in \triangle(w)} P\mathbf{e}_v , \qquad (6)$$

and on eliminating $\sum_{v \in \Delta(w)} P \mathbf{e}_v$ from equations (5) and (6) we have

$$\sum_{u\in X} \left(\mu-d_u + \frac{(k-1)\mu}{\mu+1}\right) P\mathbf{e}_u = \mathbf{0}.$$

It follows that $d_u = \mu + \frac{(k-1)\mu}{\mu+1}$ for all $u \in X$.

Theorem 2.2 Let G be a k-regular graph (k > 0) with n vertices and an eigenvalue $\mu \neq k$ of multiplicity m. Suppose that G has a star set X corresponding to μ such that $G - X \cong K_{1,k}$. Then the following hold:

- (i) $\mu \in \mathbb{N}_{\cup}\{-2, \frac{1}{2}(-1-\sqrt{5}), \frac{1}{2}(-1+\sqrt{5})\},$
- (ii) $G \overline{X}$ is regular of degree $\mu^2(\mu + 2)$,
- (iii) $k = \mu(\mu^2 + 3\mu + 1)$, $m = (\mu^2 + 3\mu + 1)(\mu^2 + 2\mu 1)$ and $n = (\mu^2 + 3\mu)^2$,
- (iv) if $\mu \in \mathbb{N}$ then a clique in G has at most $\mu + 1$ vertices.

Proof: We retain the notation of Lemma 2.1 and make use of equation (1) in the form

Fig.1

$$f(\mu)(\mu I - A) = B^T f(\mu)(\mu I - C)^{-1} B,$$
(7)

where f is the minimal polynomial of C. Here $C = \begin{bmatrix} 0 & \mathbf{j}^T \\ \mathbf{j} & 0 \end{bmatrix}$, $f(x) = x(x^2 - k)$ and $f(\mu) (\mu I - C)^{-1} = (\mu^2 - k)I + \mu C + C^2$.

Each vertex of X is adjacent to a vertices of $\Delta(w)$, where a=k-d and d is given by Lemma 2.1. Thus $a=(k-\mu^2)/(\mu+1)$ and G has the form depicted in Fig.1. Each column of the matrix B of equation (7) has weight a, and the first row of B is zero. Accordingly a typical entry of the matrix $B^T \mu(\mu^2 - k)(\mu I - C)^{-1}B$ has the form

$$(0 \mathbf{x}^T) \begin{bmatrix} \mu^2 & \mu \mathbf{j}^T \\ \mu \mathbf{j} & J \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{y} \end{bmatrix} + (0 \mathbf{x}^T) \begin{bmatrix} 0 & \mathbf{0}^T \\ \mathbf{0} & (\mu^2 - k)I \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{y} \end{bmatrix} ,$$

that is, $a^2 + (\mu^2 - k)\mathbf{x}^T\mathbf{y}$. On equating diagonal entries in (7) we find that $\mu^2(\mu^2 - k) = a^2 + (\mu^2 - k)a$, that is,

$$(\mu+1)^2\mu^2(\mu^2-k) = -\mu(\mu^2-k)^2.$$

Since μ is not an eigenvalue of C, we may divide by $\mu(\mu^2 - k)$ to obtain $k = \mu(\mu^2 + 3\mu + 1)$. It follows that $d = \mu^2(\mu + 2)$ and $a = \mu(\mu + 1)$. Counting in two ways the edges between X and \overline{X} , we have ma = k(k-1), whence $m = (\mu^2 + 3\mu + 1)(\mu^2 + 2\mu - 1)$. Then $n = m + k + 1 = (\mu^2 + 3\mu)^2$.

On equating off-diagonal entries in equation (7) we find that $a^2 + (\mu^2 - k)\mathbf{x}^T\mathbf{y}$ is equal to $-\mu(\mu^2 - k)$ if the vertices corresponding to \mathbf{x} and \mathbf{y} are adjacent, and equal to zero otherwise. If we now express a and k in terms of μ we find that $\mathbf{x}^T\mathbf{y}$ is 0 or μ , respectively. This tells us that for distinct vertices u_1, u_2 of X we have:

$$|\overline{\Gamma}(u_1) \cap \overline{\Gamma}(u_2)| = \begin{cases} 0 \text{ if } u_1 \sim u_2\\ \mu \text{ if } u_1 \not\sim u_2. \end{cases}$$
 (8)

It follows that if $G - \overline{X}$ is not complete then $\mu \in \mathbb{N}$ (since $\mu \neq 0$ by Lemma 2.1). If $G - \overline{X}$ is complete then d = m - 1, that is, $(\mu + 2)(\mu + 1)(\mu^2 + \mu - 1) = 0$. By Lemma 2.1, $\mu \neq -1$ and so μ is -2 or $\frac{1}{2}(-1 \pm \sqrt{5})$ in this case.

It remains to show that if $\mu \in \mathbb{N}$ and H is a clique in G with t vertices then $t \leq \mu+1$. We may suppose that $t \geq 3$, and in this case H is contained in $G-\overline{X}$. To see this, note first that $w \notin V(H)$ and if $V(H) \cap \overline{X} \neq \emptyset$ then $V(H) \cap \overline{X}$ consists of a single vertex v of $\Delta(w)$; but then $\Gamma(v)$ contains a pair $\{u_1, u_2\}$ of adjacent vertices, contradicting equation (8). Now the t neighbourhoods $\overline{\Gamma}(u)$ ($u \in V(H)$) are pairwise disjoint subsets of $\Delta(w)$ of size a, and so $ta \leq k$, that is, $t\mu(\mu+1) \leq \mu(\mu^2+3\mu+1)$. Since $\mu \in \mathbb{N}$ it follows that $t(\mu+1) < \mu^2+3\mu+2$, whence $t \leq \mu+1$ as required.

It is easy to see that, in the situation of Theorem 2.2, if $\mu = -2$ then m=1 and G is a 4-cycle, while if $\mu=\frac{1}{2}(-1\pm\sqrt{5})$ then m=2 and G is a 5cycle: in both cases, the hypotheses of the theorem are satisfied. If $\mu \in \mathbb{N}$ and G is a strongly regular graph which satisfies the conclusions of Theorem 2.2 then G is a negative Latin square graph of type $NL_{\mu}(\mu^2 + 3\mu)$; in other words, G is a strongly regular graph with parameters $((\mu^2 + 3\mu)^2, \mu(\mu^2 +$ $3\mu + 1$, 0, $\mu(\mu + 1)$ (see [1, Chapter 2]). We give two examples which arise, and we shall see that our theorem enables us to characterize them among all regular graphs. The first is the Clebsch graph [1, p.35], the unique strongly regular graph with parameters (16, 5, 0, 2): its eigenvalues are 5, 1, -3 with multiplicities 1, 10, 5 respectively. Here we take $\mu = 1$ and $\overline{X} = \Delta^*(w)$, where w is any vertex; then $G - \overline{X}$ is the Petersen graph, itself strongly regular, with eigenvalues 3, 1, -2. It follows that a star partition of the Clebsch graph is given by $X(5) = \{w\}, X(1) = X$ and $X(-3) = \Delta(w)$. Another example is the Higman-Sims graph [1, p.107], the unique strongly regular graph with parameters (100, 22, 0, 6): its eigenvalues are 22, 2, -8 with multiplicities 1, 77, 22 respectively. Here we take $\mu = 2$ and $\overline{X} = \Delta^*(w)$ where w is any vertex; then $G - \overline{X}$ is the so-called 77-graph [1, p.109], itself strongly regular, with eigenvalues 16, 2, -6. It follows that a star partition of the Higman-Sims graph is given by $X(22) = \{w\}, X(2) = X, X(-8) = \Delta(w).$

We now use the proof of Theorem 2.2 to show that there are no further examples when $\mu \leq 2$; in particular we can characterize the Clebsch graph and the Higman-Sims graph in terms of the subgraph induced by the complement of a star set.

Corollary 2.3 Let G be a k-regular graph (k > 0) and let $\mu \neq k$ be an eigenvalue of G with a star set X such that $G - X \cong K_{1,k}$. If $\mu = 1$ (or k = 5) then G is the Clebsch graph; and if $\mu = 2$ (or k = 22) then G is the Higman-Sims graph.

Proof: If $\mu = 1$ then by Theorem 2.2, the sets $\overline{\Gamma}(u)$ ($u \in X$) are ten distinct 2-element subsets of $\Delta(w)$. Since $|\Delta(w)| = 5$ these subsets are precisely all

the 2-element subsets of $\Delta(w)$, and so B is determined uniquely to within labelling of the vertices of G. Since A is determined by μ, B, C the graph G itself is unique.

If $\mu=2$ then the sets $\overline{\Gamma}(u)$ $(u\in X)$ are 77 distinct 6-element subsets of the 22-element set $\Delta(w)$; moreover, by equation (8), any two of these subsets intersect in 0 or 2 elements. In particular, no triple lies in two of these sets which therefore account for $77\times\binom{6}{3}=1540$ triples from the set $\Delta(w)$. But the total number of such triples is $\binom{22}{3}=1540$, and so each triple lies in exactly one of the sets $\overline{\Gamma}(u)$ $(u\in X)$.

Thus the non-zero rows of B form the point-block incidence matrix of a (3, 6, 22)-design. By a theorem of Witt [13] there is only one such design; hence B is unique (to within labelling of vertices), and so G is unique. \Box

3 A generalization

Here we extend the techniques of §2 to an investigation of a k-regular graph G with a star set X such that $\overline{X} = \triangle^*(w)$ and $\triangle(w)$ induces a subgraph hK_q , where k = hq, $h \ge 1$ and q > 1. For example, if q = 2 then G - X consists of h triangles with a vertex in common; in other words, a windmill as defined in [1, p.31]. Recall that a cocktail-party graph is a graph of the form $\overline{hK_2}$.

Lemma 3.1 Let G be a k-regular graph (k > 0) with n vertices and an eigenvalue μ of multiplicity m. Suppose that G has a star set X corresponding to μ such that $\overline{X} = \triangle^*(w)$ where $\triangle(w)$ induces a regular subgraph of degree r > 0. Then the following hold:

- (i) $\mu \neq -1$,
- (ii) if $\mu = k$ then m = 1, n = k + 2, r = k 2 and G is a cocktail-party graph,

(iii) if $\mu \neq k$ then $G - \overline{X}$ is regular of degree d, where

$$d=\mu+\frac{(k-1-r)\mu}{\mu+1}.$$

Proof: If $\mu = k$ then m = 1 because G is connected; hence n = k + 2, and so G is a cocktail-party graph. Here the single vertex in X is adjacent to each vertex in $\Delta(w)$. Thus if $v \in \Delta(w)$ then $\deg(v) = r + 2$, and it follows that r = k - 2.

When $\mu \neq k$ the remaining assertions are proved in similar fashion to Lemma 2.1, using the following three equations:

$$\sum_{u \in X} P \mathbf{e}_u = -\sum_{v \in \Delta(w)} P \mathbf{e}_v - P \mathbf{e}_w,$$

$$\mu P \mathbf{e}_w = \sum_{v \in \triangle(w)} P \mathbf{e}_v,$$

$$\mu \sum_{u \in X} P \mathbf{e}_u = \sum_{u \in X} d_u P \mathbf{e}_u + (k - 1 - r) \sum_{v \in \Delta(w)} P \mathbf{e}_v ,$$

where d_u is the degree of u in $G - \overline{X}$.

We note that here, in contrast to Lemma 2.1, the possibility $\mu=0$ cannot be excluded. Indeed if $\mu=0$ then |X|=k-r-1 and $X_{\cup}\{w\}$ is an independent set of k-r vertices adjacent to every vertex in $\Delta(w)$. The adjacency matrix of G therefore has the form $A'=\begin{pmatrix} O & J^T \\ J & D \end{pmatrix}$, where D is the adjacency matrix of the subgraph induced by $\Delta(w)$. Examples arise whenever this subgraph does not have 0 as an eigenvalue, for then 0 is not an eigenvalue of G-X, while the nullity of A' is k-r-1. To see this, it suffices to observe that $(\mathbf{0}^T|\mathbf{j}^T)$ does not lie in the row-space of (J|D): indeed if $(\mathbf{0}^T|\mathbf{j}^T)=\mathbf{c}^T(J|D)$ then $\mathbf{0}^T=\mathbf{c}^TJ$, $\mathbf{j}^T=\mathbf{c}^TD$ and so $\mathbf{j}^T\mathbf{j}=\mathbf{c}^TD\mathbf{j}=r\mathbf{c}^T\mathbf{j}=0$, a contradiction.

The essential difference between the configurations considered in sections 2 and 3 is however the possible presence when $r \geq 1$ of a triangle with one vertex in X and two vertices in \overline{X} . This will become apparent when we equate diagonal entries in equation (7), and it accounts for the condition (*) in the following theorem. We write $K_1 \nabla H$ for the graph obtained from the graph H by adding a vertex adjacent to every vertex in H.

Theorem 3.2 Let G be a k-regular graph (k > 0) with n vertices and an eigenvalue $\mu \neq k$ of multiplicity m. Suppose that G has a star set X corresponding to μ such that $G - X \cong K_1 \nabla h K_q$, where hq = k and q > 1. Suppose also that there exists a vertex u of X such that

(*) G has no triangle with vertices u, v_1, v_2 where v_1, v_2 are adjacent vertices of \overline{X} .

Then

(i) $G - \overline{X}$ is regular of degree $\mu\{(\mu + 1)^2 - q\}$,

(ii)
$$k = \mu(\mu^2 + 3\mu - q + 2)$$
, $m = (\mu^2 + 3\mu - q + 2)(\mu^2 + 2\mu - q)$, $n = (\mu^2 + 3\mu - q + 1)^2$.

Proof: The vertices of \overline{X} may be labelled so that the adjacency matrix C of equation (7) has the form $\begin{pmatrix} 0 & \mathbf{j}^T \\ \mathbf{j} & C' \end{pmatrix}$, where C' is block-diagonal with h blocks J-I of size $q \times q$.

The characteristic polynomial of C is

$$\{(x+1)^{q-1}(x-q+1)\}^h(x-\frac{k}{x-q+1})$$

[4, Theorem 2.8] and so its minimal polynomial is f(x), where

$$f(x) = (x+1)(x-q+1)\{x^2 - (q-1)x - k\}.$$

It follows that

$$f(\mu)(\mu I - C)^{-1} = C^3 + \alpha C^2 + \beta C + \gamma$$

where

$$\alpha = \mu - 2q + 3,$$

$$\beta = \mu(\mu - 2q + 3) + (q - 1)(q - 3) - k,$$

$$\gamma = \mu^{2}(\mu - 2q + 3) + \mu(q - 1)(q - 3) - k\mu + (q - 1)^{2} + (q - 2)k.$$

The matrix $f(\mu)(\mu I - C)^{-1}$ has the form

$$\alpha_0 I + \left[\begin{array}{cc} * & * \\ * & (2q-2+\alpha)J \end{array} \right] + \alpha_1 \left[\begin{array}{cc} * & * \\ * & C' \end{array} \right]$$

where $\alpha_0 = \gamma + (q-1)(q-2+\alpha)$ and $\alpha_1 = q^2 - 3q + 3 + \alpha(q-2) + \beta$.

Now we equate (v, v)-entries in equation (7), where v is a vertex in X. Note that if x is the column of B corresponding to v then x has the form $(0, x_1, x_2, \ldots, x_k)^T$ and so we obtain

$$\mu f(\mu) = \alpha_0 a + (2q - 2 + \alpha)a^2 + \alpha_1 \sum_{i \sim j} x_i x_j, \tag{9}$$

where a is the weight of x. If now we take v=u then the condition (\star) ensures that $\sum_{i\sim j} x_i x_j = 0$; while from Lemma 3.1 (with r=q-1) we have

$$a = k - d = \frac{k + (q - 1)\mu - \mu^2}{\mu + 1}.$$

We now substitute for α_0 and a in equation (9). Since μ is not an eigenvalue of C, we may divide by $\{\mu^2 - (q-1)\mu - k\}$ $(\mu - q + 1)$ to obtain

$$-\mu(\mu+1) = \frac{\mu^2 - (q-1)\mu - k}{\mu+1}$$

It follows that $k = \mu(\mu^2 + 3\mu - q + 2)$, hence that $d = \mu\{(\mu + 1)^2 - q\}$ and $a = \mu(\mu + 1)$. Counting in two ways the edges between X and \overline{X} , we find that $m = k(k-q)/a = (\mu^2 + 3\mu - q + 2)(\mu^2 + 2\mu - q)$. Finally, $n = m + k + 1 = (\mu^2 + 3\mu - q + 1)^2$.

The Paley graph P(9) [1, p.34] provides an illustration of Theorem 3.1 with $\mu = -2, q = 2, k = 4$ and $G - \overline{X}$ a 4-cycle. Indeed, we have the following characterization.

Corollary 3.3 If G is a graph which satisfies the hypotheses of Theorem 3.2 with q=2 and $\mu=-2$ then $G\cong P(9)$.

Proof: By Theorem 3.2, we have k=4, m=4, n=9 and $G-\overline{X}\cong C_4$. Let $\Delta(v)=\{6,7,8,9\}$ where $6\sim 7$ and $8\sim 9$. By condition (\star) the possible sets $\overline{\Gamma}(u)$ $(u\in X)$ are $\{6,8\},\{6,9\},\{7,8\},\{7,9\}$, and each of these occurs exactly once because \overline{X} is a location-dominating set. Only two graphs can now arise, according as $G-\overline{X}$ does or does not have adjacent vertices u_1,u_2 such that $\overline{\Gamma}(u_1)\cap\overline{\Gamma}(u_2)=\emptyset$. In the first case, the graph in question does not have -2 as an eigenvalue of multiplicity 4, and so P(9) is the sole candidate.

Any strongly regular graph which satisfies the hypotheses of Theorem 3.1 is of type $NL_{\mu}(\mu^2+3\mu-q+1)$. Indeed, two further examples arise as rank 3 graphs [1, p.36] associated with the group $O_4^-(I\!\!K)$ acting on a 4-dimensional vector space over a finite field $I\!\!K$ (see [2, Chapter 1]). The graphs in question are of type $C12^-$ in Hubaut's list [7] of strongly regular graphs. If $I\!\!K = GF(3)$ then we have an example with parameters (81, 20, 1, 6) and eigenvalues 20, 2, -7 of multiplicities 1, 60, 20 respectively: here $\mu=2$ and q=2. If $I\!\!K = GF(4)$ then we have an example with parameters (256, 51, 2, 12) and eigenvalues 51, 3, -13 of multiplicities 1, 204, 51 respectively: here $\mu=3$ and q=3. In both cases, G-X has the required structure, and condition (*) holds for all vertices of X, because adjacent vertices are points of an isotropic line.

4 An alternative configuration

In the previous two sections, the star set X was taken to be the set of non-neighbours of a single vertex. Here we explore a situation in which X is the set of non-neighbours of two adjacent vertices.

Lemma 4.1 Let G be a k-regular graph (k > 1) with an eigenvalue μ of multiplicity m. Suppose that G has a star set X corresponding to μ such that $G - X \cong S_{k,k}$. Then the following hold:

- (i) $\mu \neq 0$,
- (ii) if $\mu = k$ then k = 2, m = 1 and G is a 5-cycle,
- (iii) if $\mu \neq k$ then $G \overline{X}$ is regular of degree d, where $d = \mu + \frac{(k-1)(\mu-1)}{\mu}$.

Proof: Let v, w be the adjacent vertices of degree k in G - X, and let $\Delta = \Delta_1 \cup \Delta_2$, where $\Delta_1 = \Delta(v) \setminus \{w\}$ and $\Delta_2 = \Delta(w) \setminus \{v\}$. Thus each vertex of Δ is adjacent to k-1 vertices of X. If $\mu = k$ then m=1 because G is connected, and so k=2, G is a 5-cycle. Accordingly, suppose that $\mu \neq k$. Then

$$P\mathbf{e}_v + P\mathbf{e}_w = -\sum_{u \in X} P\mathbf{e}_u - \sum_{j \in \Delta} P\mathbf{e}_j \tag{10}$$

and the basic relation (2) affords the following three equations:

$$\mu P \mathbf{e}_v = \sum_{j \in \Delta_1} P \mathbf{e}_j + P \mathbf{e}_w , \qquad (11)$$

$$\mu P \mathbf{e}_w = \sum_{j \in \Delta_2} P \mathbf{e}_j + P \mathbf{e}_v , \qquad (12)$$

$$\mu \sum_{u \in X} P \mathbf{e}_u = \sum_{u \in X} d_u P \mathbf{e}_u + (k-1) \sum_{j \in \Delta} P \mathbf{e}_j , \qquad (13)$$

where d_u is the degree of u in $G - \overline{X}$. From equations (11) and (12) we have

$$(\mu - 1)(P\mathbf{e}_v + P\mathbf{e}_w) = \sum_{j \in \Delta} P\mathbf{e}_j. \tag{14}$$

From equations (10) and (14) we have

$$\mu \sum_{j \in \Delta} P \mathbf{e}_j = -(\mu - 1) \sum_{u \in X} P \mathbf{e}_u.$$

Since the vectors Pe_u $(u \in X)$ are linearly independent we have $\mu \neq 0$. We may now substitute for $\sum_{j \in \Delta} Pe_j$ in equation (13) to obtain

$$\sum_{u \in X} \left\{ d_u - \mu - \frac{(k-1)(\mu-1)}{\mu} \right\} P \mathbf{e}_u = \mathbf{0} ,$$

from which (iii) follows.

Now suppose that, in the notation of Lemma 4.1, G has an automorphism which interchanges v and w. We shall go on to determine the graphs G which arise when this symmetry condition is imposed. We shall need the following result, for which the author is indebted to F. K. Bell.

Lemma 4.2 If x and y are positive integers such that $x^2 - x = 3y^2 - 3y$ then there exists an integer $n \ge 0$ such that $(x, y) = (x_n, y_n)$, where $x_0 = 1, y_0 = 1$ and

$$x_{n+1} = 2x_n + 3y_n - 2$$
, $y_{n+1} = x_n + 2y_n - 1$ $(n \ge 0)$.

Proof: If we write p=2x-1 and q=2y-1 then the original equation becomes: $p^2-3q^2=-2$. If we now define non-negative integers X,Y by p=X+3Y, q=X+Y then we obtain the Pell equation $X^2-3Y^2=1$, whose smallest solution in positive integers is (X,Y)=(2,1). Hence (by [8, Theorem 11.11]) the solutions with $X,Y\in\mathbb{N}$ are $(X,Y)=(X_n,Y_n)$ $(n\geq 0)$ where $X_n+\sqrt{3}Y_n=(2+\sqrt{3})^n$. Thus (for $n\geq 0$)

$$X_n = \frac{1}{2} \left\{ (2 + \sqrt{3})^n + (2 - \sqrt{3})^n \right\} , \quad Y_n = \frac{1}{2\sqrt{3}} \left\{ (2 + \sqrt{3})^n - (2 - \sqrt{3})^n \right\},$$

from which it follows that $(p,q) = (p_n, q_n)$, where

$$p_n = X_n + 3Y_n = \frac{1}{2} \{ (1 + \sqrt{3})(2 + \sqrt{3})^n + (1 - \sqrt{3})(2 - \sqrt{3})^n \ (n \ge 0),$$

$$q_n = X_n + Y_n = \frac{1}{2\sqrt{3}} \{ (1 + \sqrt{3})(2 + \sqrt{3})^n - (1 - \sqrt{3})(2 - \sqrt{3})^n \} \ (n \ge 0).$$

Thus $p_0 = q_0 = 1$ and $p_{n+1} + \sqrt{3}q_{n+1} = (1 + \sqrt{3})(2 + \sqrt{3})^{n+1} = (2 + \sqrt{3})(p_n + \sqrt{3}q_n)$ $(n \ge 0)$. We deduce that $p_{n+1} = 2p_n + 3q_n$ and $q_{n+1} = p_n + 2q_n$ $(n \ge 0)$. The recurrence relation for (x_n, y_n) now follows.

Thoerem 4.3 Let G be a k-regular graph (k > 1) with an eigenvalue μ of multiplicity m. Suppose that G has a star set X corresponding to μ such that $G - X \cong S_{k,k}$; and suppose also that G has an automorphism which interchanges the central vertices of G - X. Then k = 2 and either (a) $\mu = 2, m = 1$ and G is a 5-cycle, or (b) $\mu = \pm 1, m = 2$ and G is a 6-cycle.

Proof: We assume that conclusion (a) does not hold, so that by Lemma 4.1, $G - \overline{X}$ is regular of degree d, where $d = \mu + (k-1)(\mu-1)/\mu$ and $\mu \notin \{0, k\}$. Thus each vertex of X is adjacent to a vertices of \overline{X} , where $a = k - d = (k - \mu^2 + \mu - 1)/\mu$. Suppose, by way of contradiction, that μ is not an integer. Then μ has an algebraic conjugate which is also an eigenvalue of G of multiplicity m. Hence 2m < |V(G)| and so $m \le 2k - 1$. Counting in two ways the edges between X and \overline{X} , we have $ma = 2(k-1)^2$,

and so $m \neq 2k-1$. Moreover, if m < 2k-2 then a > k-1, whence a = k; but then k = 2, m = 1, G is a 5-cycle and $\mu = 2$, a contradiction. It remains to consider the case m = 2k-2: here we have $k-1 = a = (k-\mu^2 + \mu - 1)/\mu$, whence $(\mu - 1)(\mu + k - 1) = 0$ and $\mu \in \{1, 1 - k\}$, a contradiction. Hence $\mu \in \mathbb{Z}$.

We label the vertices of \overline{X} so that the adjacency matrix C of G-X has the form

$$\begin{bmatrix} O & \mathbf{j} & \mathbf{0} & O \\ \mathbf{j}^{T} & 0 & 1 & \mathbf{0}^{T} \\ \mathbf{0}^{T} & 1 & 0 & \mathbf{j}^{T} \\ O & \mathbf{0} & \mathbf{j} & O \end{bmatrix} \cdot \text{Then } C^{2} = \begin{bmatrix} J & \mathbf{0} & \mathbf{j} & O \\ \mathbf{0}^{T} & k & 0 & \mathbf{j}^{T} \\ \mathbf{j}^{T} & 0 & k & \mathbf{0}^{T} \\ O & \mathbf{j} & \mathbf{0} & J \end{bmatrix},$$

$$C^{3} = \begin{bmatrix} O & k\mathbf{j} & \mathbf{0} & J \\ k\mathbf{j}^{T} & 0 & 2k-1 & \mathbf{0}^{T} \\ \mathbf{0}^{T} & 2k-1 & 0 & k\mathbf{j}^{T} \\ J & \mathbf{0} & k\mathbf{j} & O \end{bmatrix}$$

and

$$C^{4} = \begin{bmatrix} kJ & \mathbf{0} & (2k-1)\mathbf{j} & 0\\ \mathbf{0}^{T} & k^{2}+k-1 & 0 & (2k-1)\mathbf{j}^{T}\\ (2k-1)\mathbf{j}^{T} & 0 & k^{2}+k-1 & \mathbf{0}^{T}\\ O & (2k-1)\mathbf{j} & \mathbf{0} & kJ \end{bmatrix}.$$

By a formula of Heilbronner [4, Theorem 2.12], C has characteristic polynomial $\{(x^2 - k + 1)x^{k-2}\}^2 - (x^{k-1})^2$. The minimal polynomial of C is therefore f(x), where

$$f(x) = xg(x)g(-x)$$
, $g(x) = x^2 + x - k + 1$.

Accordingly, $(\mu I - C)^{-1}$ is a quartic in C, and we find that $f(\mu)(\mu I - C)^{-1} = C^4 + \alpha C^3 + \beta C^2 + \gamma C + \delta I$, where

$$\begin{array}{l} \alpha = \mu \; , \;\; \beta = \mu^2 - 2k + 1 \; , \;\; \gamma = \mu(\mu^2 - 2k + 1), \\ \delta = f(\mu)/\mu = \mu^2(\mu^2 - 2k + 1) + (k - 1)^2. \end{array}$$

Hence $f(\mu)(\mu I - C)^{-1} - \delta I =$

$$\begin{bmatrix} (k+\beta)J & (\alpha k+\gamma)\mathbf{j} & (2k-1+\beta)\mathbf{j} & \alpha J \\ (\alpha k+\gamma)\mathbf{j}^T & k^2+k-1+\beta k & \alpha(2k-1)+\gamma & (2k-1+\beta)\mathbf{j}^T \\ (2k-1+\beta)\mathbf{j}^T & \alpha(2k-1)+\gamma & k^2+k-1+\beta k & (\alpha k+\gamma)\mathbf{j}^T \\ \alpha J & (2k-1+\beta)\mathbf{j} & (\alpha k+\gamma)\mathbf{j} & (k+\beta)J \end{bmatrix}.$$

Now let $u \in X$ and (in the notation of Lemma 4.1) let $a_i = |\overline{\Gamma}(u) \cap \Delta_i|$ (i = 1, 2), so that our graph has the form depicted in Fig.2. Then $a_1 + a_2 =$

Fig.2

 $a = -g(-\mu)/\mu > 0$ and the *u*-th row of B^T has the form $(\mathbf{x}_1^T, 0, 0, \mathbf{x}_2^T)$ where \mathbf{x}_i has weight a_i (i = 1, 2). On equating (u, u) - entries in equation (7) we have

 $\mu f(\mu) = \delta(\mathbf{x}_1^T \mathbf{x}_1 + \mathbf{x}_2^T \mathbf{x}_2) + (k + \beta)(\mathbf{x}_1^T J \mathbf{x}_1 + \mathbf{x}_2^T J \mathbf{x}_2) + \alpha(\mathbf{x}_1^T J \mathbf{x}_2 + \mathbf{x}_2^T J \mathbf{x}_1),$ equivalently,

$$\mu f(\mu) = \delta a + (k+\beta)(a_1^2 + a_2^2) + 2\alpha a_1 a_2. \tag{15}$$

We can now show that $a_1 \neq a_2$. For if $a_1 = a_2 = \frac{1}{2}a$ and we express α, β, δ, a in terms of k and μ , we find that equation (15) becomes

$$2\mu^4 g(\mu)g(-\mu) = g(\mu)g(-\mu)^2(-2\mu+1).$$

Since μ is not an eigenvalue of G-X we may divide by $g(\mu)g(-\mu)$ to obtain

$$2\mu^4 = (\mu^2 - \mu - k + 1)(-2\mu + 1).$$

Since $2\mu^4$ and $2\mu - 1$ are coprime the only possibility is that $\mu = 1$ and k = 3; but this is a contradiction since g(1) = 0.

Next, let $t = \tau(u)$ where τ is an automorphism of G which interchanges v and w, and let t, u be the columns of B corresponding to the vertices t, u.

Since $\tau(X) = X$ while τ interchanges \triangle_1 and \triangle_2 , we have $|\overline{\Gamma}(t) \cap \triangle_1| = a_2$ and $|\overline{\Gamma}(t) \cap \triangle_2| = a_1$. Since $a_1 \neq a_2$ we have $t \neq u$. Thus τ is fixed-point-free on X and |X| is even.

On equating (t, u)-entries in equation (7) we have

$$-f(\mu)a_{tu} = \delta \mathbf{t}^T \mathbf{u} + (k+\beta)2a_1a_2 + \alpha(a_1^2 + a_2^2), \tag{16}$$

where a_{tu} is the (t,u)-entry of A. We can now show that if $a_1a_2=0$ then G is a 6-cycle. For if $\{a_1,a_2\}=\{a,0\}$ then $\overline{\Gamma}(t)$ and $\overline{\Gamma}(u)$ are disjoint; thus $\mathbf{t}^T\mathbf{u}=0$ and from equation (16) we have $a_{tu}f(\mu)+\mu a^2=0$. Hence $t\sim u$ and $a=-\mu^2(a-2)$. It follows that $a=1,\mu=\pm 1$ and hence that k=2,m=2. Then G is a 6-cycle and we have case (b) of the theorem. Accordingly, we assume from now on that $a_1a_2>0$ for every choice of the vertex $u\in X$. We shall eliminate in turn the cases $\mu<0,\mu>1,\mu=1$.

If we add equations (15) and (16) we obtain

$$(\mu - a_{tu})f(\mu) = \delta(a + \mathbf{t}^T\mathbf{u}) + (k + \beta + \alpha)a^2.$$

On expressing α, β, δ and a in terms of k and μ , this equation simplifies to

$$\mu^{3}(\mu - a_{tu}) = \mu^{2} \mathbf{t}^{T} \mathbf{u} + (1 - \mu)(\mu^{2} - \mu - k + 1). \tag{17}$$

Now suppose that μ is negative, say $\mu = -\lambda$, $\lambda > 0$. Equation (17) becomes

$$k = \frac{-\lambda^3(\lambda + a_{tu})}{\lambda + 1} + \frac{\lambda^2}{\lambda + 1} \mathbf{t}^T \mathbf{u} + \lambda^2 + \lambda + 1.$$
 (18)

Since $0 \le \lambda \mathbf{t}^T \mathbf{u} \le \lambda a = \lambda^2 + \lambda - k + 1$, we have

$$k \leq -\lambda^4/(\lambda+1) - k + 2(\lambda^2 + \lambda + 1),$$

whence $\lambda^4 \leq 2(\lambda+1)(\lambda^2+\lambda+1-k)$.

If $k \geq 3$ then $\lambda^4 \leq 2(\lambda+1)(\lambda+2)(\lambda-1)$, whence $\lambda=2$ and $k \leq 4$. Equation (18) cannot be satisfied when k=4 and $\lambda=2$; while if k=3 we have a contradiction because f(-2)=0. If k=2 then G is a cycle and (since |X| is even) the only possible value for λ is 1; but then a=1 and $a_1a_2=0$, contrary to assumption.

We now know that the integer μ cannot be negative. Next, suppose by way of contradiction that $\mu > 1$. From the expression for μ in Lemma 4.1, we know that μ divides k-1, say $k=s\mu+1$, where $s\in I\!N$. Then $a=a_1+a_2=s-\mu+1$. From equation (15) we have

$$\mu(\mu+1-s)(\mu^2+\mu-1-s)=(\mu-s)(\mu-1-s)-2a_1a_2,$$

whence

$$2a_1a_2 = -\mu^4 + (s-2)\mu^3 + (2s+1)\mu^2 - (2s+s^2)\mu + s^2 + s.$$

To simplify the arithmetic we write $b_i=a_i-1$ (i=1,2) and $b=b_1+b_2$: note that b_1 and b_2 are non-negative because $a_1,a_2>0$; and $b_1\neq b_2$ because $a_1\neq a_2$. We have $b=s-\mu-1$ and we find that $2b_1b_2=b(-s+\mu^2+2\mu)(\mu-1)$. Note that b>0 for otherwise $k=\mu^2+\mu+1$ and $f(\mu)=0$. Note also that since $\mu>1$ and $b_1b_2\geq 0$ we have $\mu^2+2\mu\geq s$, say $s=\mu^2+2\mu-\varepsilon$, where $\varepsilon\geq 0$. Now b_1,b_2 are roots of a quadratic with discriminant θ , where $\theta=b^2-4b_1b_2$. We find that $\theta=b\{s(2\mu-1)-2\mu^3-2\mu^2+3\mu-1\}$, and since $\theta>0$ we have

$$s > \frac{2\mu^3 + 2\mu^2 - 3\mu + 1}{2\mu - 1} = \mu^2 + 2\mu - \frac{\mu^2 + \mu - 1}{2\mu - 1}.$$

It follows that $\varepsilon < \frac{1}{2}\mu + 1$. For future reference we note here that if we express θ in terms of μ and ε we find that $\theta = \alpha_1^2 - \alpha_2^2$, where

$$\alpha_1 = \mu^2 + \mu - 1 - \mu \varepsilon$$
 and $\alpha_2 = (\mu - 1)\varepsilon$. (19)

Counting $X-\overline{X}$ edges in two ways, we find that $|X|a=2(k-1)^2$. Since |X| is even, this tells us that a divides $\mu^2 s^2$. Since $a=s-\mu+1$ we deduce that a divides $\mu^2(\mu-1)^2$. Now consider the greatest common divisors $g=(a,\mu^2)$ and $h=(a,(\mu-1)^2)$. We have (g,h)=1 and a=gh; moreover, $g=(a,\mu+1-\varepsilon)$ and $h=(a,3\mu-\varepsilon)$ because $a=\mu^2+\mu+1-\varepsilon$. Now $a>\frac{1}{3}(\mu+1-\varepsilon)(3\mu-\varepsilon)$ for otherwise $3(\mu^2+\mu+1-\varepsilon)\leq (\mu+1-\varepsilon)(3\mu-\varepsilon)$, whence $\varepsilon(\varepsilon-4\mu+2)\geq 3$, a contradiction.

It follows that $a=\rho(\mu+1-\varepsilon)(3\mu-\varepsilon)$ where $\rho\in\{1,\frac{1}{2}\}$. If $\rho=1$ then $\mu^2+\mu+1-\varepsilon=3\mu^2+3\mu-4\mu\varepsilon-\varepsilon+\varepsilon^2$, equivalently $(2\mu-\varepsilon)^2=\mu^2+(\mu-1)^2$. Hence $\{\mu,\mu-1\}=\{e^2-f^2,2ef\}$ and $2\mu-\varepsilon=e^2+f^2$, where e and f are positive integers. If $\mu=e^2-f^2$ then $2f^2=\mu-\varepsilon>\frac{1}{2}\mu-1=ef-\frac{1}{2}$, whence $2f\geq e$ and $\mu=2ef+1\geq e^2+1$, a contradiction. If $\mu=2ef$ then $2f^2=\mu-\varepsilon+1>\frac{1}{2}\mu$, whence $2f^2>ef$ and $\mu>e^2$, a contradiction.

Now suppose that $\rho = \frac{1}{2}$. In this case we have $2(\mu^2 + \mu + 1 - \epsilon) = 3\mu^2 + 3\mu - 4\mu\epsilon - \epsilon + \epsilon^2$, which may be written:

$$(4\mu - 1 - 2\varepsilon)^2 = 2(2\mu)^2 + (2\mu - 3)^2.$$

Since $\varepsilon < \frac{1}{2}\mu + 1$, we have

$$4\mu - 1 - 2\varepsilon = \sqrt{12\mu^2 - 12\mu + 9}.$$

Hence $12\mu^2 - 12\mu + 9 = 9(2\nu - 1)^2$ for some positive integer ν . Thus $\mu^2 - \mu = 3\nu^2 - 3\nu$ and $\varepsilon = 2\mu - 3\nu + 1$. We now use the fact that $\theta = \alpha_1^2 - \alpha_2^2$,

where the integers α_1,α_2 are given by equation (19), while θ is itself a nonzero square. To exploit the form of the corresponding Pythagorean triple, we need some information on the greatest common divisor σ of α_1 and α_2 . Let p be a prime which divides σ , and note that $3\nu^2\equiv 2$ mod p because $\alpha_1+\alpha_2=3\nu^2-2$. We show first that p does not divide ε ; for otherwise we have $3\nu^2\equiv 2, \mu^2+\mu-1\equiv 0$ and $2\mu-3\nu+1\equiv 0$ mod p, whence $0\equiv (2\mu+3\nu)(2\mu-3\nu+1)\equiv 4\mu^2-9\nu^2+2\mu+3\nu\equiv 4\mu^2-9\nu^2+2\mu+3\nu^2-\mu^2+\mu\equiv 3\mu^2-6\nu^2+3\mu\equiv 3(\mu^2+\mu)-6\nu^2\equiv 3-4$ mod p, a contradiction. Hence p does not divide ε ; but p divides $(\mu-1)\varepsilon$ and so $\mu\equiv 1$ mod p. It follows that $0\equiv \mu^2-\mu\equiv 3\nu^2-3\nu$ and hence that $3\nu\equiv 2$ mod p. Now $0\equiv 3\nu^2-3\nu-\nu(3\nu-2)$, whence $\nu\equiv 0$ mod p and necessarily p=2. Thus σ is a power of 2.

Now, since $\alpha_1^2 - \alpha_2^2$ is a non-zero square, there exist coprime positive integers e, f of opposite parity such that either (i) $\alpha_1 = \sigma(e^2 + f^2)$ and $\alpha_2 = \sigma(e^2 - f^2)$ or (ii) $\alpha = \sigma(e^2 + f^2)$ and $\alpha_2 = 2\sigma ef$. In case (i) we have $3\nu^2 - 2 = \alpha_1 + \alpha_2 = 2\sigma e^2$ whence ν is even, say $\nu = 2\lambda$. But then $6\lambda^2 - 1 = \sigma e^2$ and so $\sigma = 1, e^2 \equiv -1 \mod 3$, a contradiction. In case (ii) we have $3\nu^2 - 2 = \alpha_1 + \alpha_2 = \sigma(e + f)^2$, where e + f is odd. If ν is even, say $\nu = 2\lambda$, we have $12\lambda^2 - 2 = \sigma(e + f)^2$, whence $\sigma = 2$ and $(e + f)^2 \equiv -1 \mod 3$, a contradiction. If ν is odd then $\sigma = 1$; and if we write $\nu = 2\lambda - 1, e + f = 2\chi - 1$ then we obtain $3\lambda^2 - 3\lambda = \chi^2 - \chi$. In the notation of Lemma 4.2, we now have $\nu = y_m$ and $\lambda = y_n$ for some non-negative integers m, n; moreover $\nu = 2\lambda - 1$, and so n > 0 (for otherwise $y_m = y_n = 1$ and $\mu \in \{0,1\}$). Hence $y_n < 2y_n - 1$; and since also $y_{n+1} = x_n + 2y_n - 1$ we have $y_n < y_m < y_{n+1}$. This contradiction eliminates the possibility that $\mu > 1$.

It remains to deal with the case $\mu=1$. In this case $G-\overline{X}\cong (k-1)K_2$ by Lemma 4.1. Moreover the equation obtained by equating diagonal entries in (7) is

$$(k-1)(k-3) = (k-1)^2(k-3) + (2-k)(a_1^2 + a_2^2) + 2a_1a_2$$

where $a_1+a_2=a=k-1$. It follows that $a_1a_2=k-2$ and hence that $\{a_1,a_2\}=\{1,k-2\}$. Note that $k\geq 4$ because $a_1\neq a_2$ and $a_1a_2\neq 0$. Accordingly $X=T\ \dot\cup\ U$ where τ interchanges T and U, and $a_1=1,a_2=k-2$ for each vertex in T, while $a_1=k-2,a_2=1$ for each vertex in U. For $t\in T,\ u\in U$ let t, u denote the corresponding columns of B. On equating (t,u)-entries in equation (7) we find that $\mathbf{t}^T\mathbf{u}=1-a_{tu}$, i.e. $|\overline{\Gamma}(t)_{\cap}\overline{\Gamma}(u)|=1$ if $t\not\sim u$, 0 if $t\sim u$. If $u,u'\in U$ and we equate (u,u')-entries then we find that $\mathbf{u}^T\mathbf{u}'=k-2-a_{uu'}$, i.e.

$$|\overline{\Gamma}(u) \cap \overline{\Gamma}(u')| = \begin{cases} k - 2 \text{ if } u \not\sim u' \\ k - 3 \text{ if } u \sim u' \end{cases} . \tag{20}$$

Similarly, if $t, t' \in T$ then

$$|\overline{\Gamma}(t) \cap \overline{\Gamma}(t')| = \begin{cases} k - 2 \text{ if } t \not\sim t' \\ k - 3 \text{ if } t \sim t'. \end{cases}$$
 (21)

For $y \in X$, we write $\Delta_i(y)$ for $\overline{\Gamma}(y)_{\cap}\Delta_i$ (i=1,2); thus for $t \in T$, $u \in U$ we have $|\Delta_1(t)| = |\Delta_2(u)| = 1$ and $|\Delta_2(t)| = |\Delta_1(u)| = k-2$. We show first that the set of subsets $\Delta_1(u)$ $(u \in U)$ does not coincide with the set of all (k-2)-element subsets of Δ_1 . For otherwise by symmetry the set of subsets $\Delta_2(t)$ $(t \in T)$ coincides with the set of all (k-2)-element subsets of Δ_2 and in this situation each vertex of Δ_1 is adjacent to precisely one vertex of T, while each vertex of Δ_2 is adjacent to precisely one vertex of T. It follows that the T = T edges are independent. In particular $|T(u)|_{T} = T$ for every pair of distinct vertices T in T. It follows from equation (20) that T induces a complete subgraph, a contradiction.

We now know that U has at least two vertices u_1,u_2 with a common neighbourhood in Δ_1 , say $\Delta_1(u_1) = \Delta_1(u_2) = \Delta_1'$. Suppose that there is a third vertex $u_3 \in U$ such that $\Delta_1(u_3) = \Delta_1'$, and let $\Delta_2(u_i) = \{v_i\}$ (i = 1,2,3). Note that v_1,v_2,v_3 are distinct because \overline{X} is a location-dominating set. If u is a vertex in U such that $\Delta_1(u) \neq \Delta_1'$ then u is adjacent to at most one of v_1,v_2,v_3 ; say $u \not\sim v_2$, $u \not\sim v_3$. Then $|\overline{\Gamma}(u) \cap \overline{\Gamma}(u_2)| = |\overline{\Gamma}(u) \cap \overline{\Gamma}(u_3)| = k-3$, and so by equation (20) we have $u \sim u_2$ and $u \sim u_3$, a contradiction.

We conclude that either (1) $\triangle_1(u) = \triangle_1'$ for every $u \in U$, or (2) $\triangle_1(u) \neq \triangle_1'$ for all $u \in U \setminus \{u_1, u_2\}$. In case (1), \triangle_1 has a vertex adjacent to every vertex in T, and by symmetry, \triangle_2 has a vertex adjacent to every vertex in U. Thus $\overline{\Gamma}(t) \cap \overline{\Gamma}(u) = \emptyset$ for every $t \in T$ and every $u \in U$. By equation (17), every vertex in T is adjacent to every vertex in U; but then |T| = |U| = 1 and k = 2, contrary to assumption. Thus case (1) does not arise. In case (2), consider a vertex $u \in U \setminus \{u_1, u_2\}$, and let $\triangle_2(u_i) = \{v_i\}$ (i = 1, 2). At most one of v_1, v_2 is a neighbour of u and so by equation (20), u is adjacent to one of u_1, u_2 . Since u_1, u_2 have degree 1 in $G - \overline{X}$, there are at most two such vertices u and so $|X| \leq 4$, $k \in \{4, 5\}$. We eliminate the cases k = 4, k = 5 in turn.

In the case k=4, let $U=\{u_1,u_2,u_3\}$, $\triangle_2(u_i)=\{v_i\}$ (i=1,2), $\triangle_1(u_1)=\triangle_1(u_2)=\{w_1,w_2\}$, $\triangle_1(u_3)=\{w_2,w_3\}$, $\triangle_2=\{v_1,v_2,v_3\}$. Since u_3 is not adjacent to both u_1 and u_2 , it is adjacent to one of v_1,v_2 , and there are two possibilities: (a) $u_1\sim u_3\sim v_2$, (b) $u_2\sim u_3\sim v_1$. Note that v_3 is the unique vertex in \triangle_2 adjacent to every vertex in T; hence $v_3=\tau(w_2)$. Now consider case (a). Since v_2 is adjacent to two vertices in U, we also have $v_2=\tau(w_3)$ and hence $v_1=\tau(w_1)$. Let $\tau(u_i)=t_i$ (i=1,2,3). Then $t_1\sim t_3$ and $u_2\sim t_2$. By considering the images of $U-\triangle_1$ edges under τ we see that $t_1\sim v_1$, $t_2\sim v_1$, $t_3\sim v_2$. Now since $t_2\not\sim t_3$ we have $|\overline{\Gamma}(t_2)\cap\overline{\Gamma}(t_3)|=2$

and so $\triangle_1(t_2) = \triangle_1(t_3)$. Necessarily $\triangle_1(t_2) = \triangle_1(t_3) = \{w_3\}$, and so the graph is completed by the edge t_1w_1 . But now $\overline{\Gamma}(u_3) \cap \overline{\Gamma}(t_1) = \emptyset$, a contradiction because $t_1 \not\sim u_3$.

Now consider case (b), where $v_3=\tau(w_2), v_2=\tau(w_1), v_1=\tau(w_3)$. If $t_i=\tau(u_i)$ (i=1,2,3) then $t_2\sim t_3,\ t_1\sim u_1$ and the images under τ of the $U-\Delta_1$ edges are $t_1v_2,\ t_1v_3,\ t_2v_2,\ t_2v_3,\ t_3v_1,\ t_3v_3$. Now by equation (21), $|\overline{\Gamma}(t_1)\cap\overline{\Gamma}(t_3)|=2$ because $t_1\not\sim t_3$, and so t_1,t_3 have a common neighbour in Δ_1 . This vertex is necessarily w_3 and the graph is completed by the edge t_2w_1 . Now $|\overline{\Gamma}(u_2)\cap\overline{\Gamma}(t_2)|=2$, a contradiction.

For the last step in the proof, suppose that k = 5, and let U = $\{u_1, u_2, u_3, u_4\}, \Delta_1(u_1) = \Delta_1(u_2) = \{w_1, w_2, w_3\}, \Delta_1(u_3) = \{w_2, w_3, w_4\},$ $\triangle_2(u_1) = \{v_1\}, \triangle_2(u_2) = \{v_2\}.$ (Recall that $v_1 \neq v_2$ because \overline{X} is a location-dominating set.) Again, there are two possibilities: (a) $v_1 \sim u_3 \sim$ u_2 , (b) $v_2 \sim u_3 \sim u_1$. Consider case (a). The vertex u_4 , like u_3 , is adjacent to exactly one of v_1, v_2 ; but since $u_2 \not\sim u_4$ we have $v_2 \sim u_4 \sim u_1$. Now $u_3 \not\sim u_4$ and so $|\overline{\Gamma}(u_3) \cap \overline{\Gamma}(u_4)| = 2$ whence $\Delta_1(u_4) = \Delta_1(u_3)$. In case (b), we have similarly $v_1 \sim u_4 \sim u_2$ and $\Delta_1(u_4) = \Delta_1(u_3)$. Accordingly we may interchange u_3 and u_4 if necessary and consider only case (a). Let Δ_2 = $\{v_1, v_2, v_3, v_4\}$. By considering the number of $w_i - U$ edges (i = 1, 2, 3, 4) we see that τ maps $\{w_2, w_3\}$ to $\{v_3, v_4\}$ and v_3, v_4 are adjacent to each vertex in T. Since $\{w_2, w_3\} = \triangle_1(u_2) \cap \triangle_1(u_3), u_2 \sim u_3 \text{ and } u_1 \sim u_4, \text{ we may let }$ $T = \{t_1, t_2, t_3, t_4\}$ where $\Delta_2(t_3) \cap \Delta_2(t_4) = \{v_3, v_4\}, t_3 \sim t_4 \text{ and } t_1 \sim t_2.$ The \triangle_2 -neighbourhoods of vertices in T are $\{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}$ (each arising twice). Accordingly we may label t_1, t_2 so that $t_1 \sim v_1$ and $t_2 \sim v_2$. We can now obtain a contradiction: $t_2 \not\sim w_1$ since v_2 is already a common neighbour of t_2 and u_2 , and $t_2 \not\sim w_4$ because v_2 is already a common neighbour of t_2 and u_4 . Since w_2 and w_4 have no neighbours in T, it follows that t_2 has no neighbours in Δ_1 . This final contradiction completes the proof of the theorem.

References

- [1] P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and their Links, Cambridge University Press, 1991.
- [2] R. W. Carter, Simple Groups of Lie type, Wiley (London), 1971.
- [3] D. Cvetković, Star partitions and the graph isomorphism problem, Linear and Multilinear Algebra 39 (1995), 109-132.
- [4] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, 3rd edition, Johann Ambrosius Barth Verlag (Heidelberg), 1995.

- [5] D. Cvetković, P. Rowlinson and S. Simić, A study of eigenspaces of graphs, Linear Algebra and Appl. 182 (1993), 45-66.
- [6] D. Cvetković, P. Rowlinson and S. Simić, Eigenspaces of Graphs, Cambridge University Press, 1997.
- [7] X. L. Hubaut, Strongly regular graphs, Discrete Math. 13 (1975), 357-381.
- [8] K. H. Rosen, Elementary Number Theory, 2nd edition, Addison-Wesley (Reading, Mass.), 1988.
- [9] P. Rowlinson, Eutactic stars and graph spectra, in: Combinatorial and Graph-Theoretic Problems in Linear Algebra (eds. R. A. Brualdi, S. Friedland and V. Klee; Springer-Verlag, New York, 1993), 153-164.
- [10] P. Rowlinson, Dominating sets and eigenvalues of graphs, Bull. London Math. Soc. 26 (1994), 248-254.
- [11] P. Rowlinson, Star partitions and regularity in graphs, Linear Algebra and Appl., 226-228 (1995), 247-265.
- [12] J. J. Seidel, Eutactic stars, in: Combinatorics (eds. A. Hajnal and V.T.Sós; North-Holland, Amsterdam, 1978), 983-999
- [13] E. Witt, Uber Steinischer Systeme, Abh. Math. Sem. Hamburg 12 (1938), 265-275.