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Abstract

We apply a lattice point counting method due to Blass and Sagan [2]
to compute the characteristic polynomials for the subspace arrangements
interpolated between the Coxeter hyperplane arrangements. Our proofs
provide combinatorial interpretations for the characteristic polynomials of
such subspace arrangements. In the process of doing this, we explore some
interesting properties of these polynomials.

1 Introduction

A central subspace arrangement
A={K1,K,,...,K;}

in the Euclidean space R" is a finite collection of linear subspaces K; of
R". We assume that, for simplicity, there are no containments among the
K;. Then A is a hyperplane arrangement if codim K; = 1 for all <. Also, we
write (JA for the set-theoretic union of the subspaces in A, i.e., Ui, Ki.

Let z1,Z2,...,2, be the coordinate functions in R". The coordinate
hyperplane arrangement Q,, is defined by

Qn={z;=0:1<i<n}.

The Cozeter arrangements of type B, D and A are defined, respectively, by

B, = {zi==z;:1<i<j<n}U{z;=0:1<i<n},
D, = {z.-::l::cj:lgi<j5n},
Ancr = {zi==z;:1<i<j<n}

It is clear that @, C B, and A,-1 C Dn C B;.
For a fixed integer k, L < k< m,let I={1< ¢ <ia<---<i <n}
and
I(]:{XGR"Z:t,'1=z,',=~-~=z,-h=0},

Let Qn.x be the set of all such subspaces K;. Then Q. was defined in (7]
as the k-equal subspace arrangement and studied further in [8].
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The intersection lattice L(A) (or £ ) of a subspace arrangement A is
the poset of nonempty intersections of these subspaces ordered by reverse
inclusion. Thus in £, a unique minimal element  corresponds to R® and a
unique maximal element 1 corresponds to [\ ea K. If A and B are subspace
arrangements such that A C £(B), then we say that A is embedded in B.
Since Qn:x C L(2n), the arrangement_ Qn.k is embedded in Q,, and B,.
Given an arrangement A, let u(x) = p(0,x) denote the Mébius function of
L(A),i.e.,

1 ifx=0
= . ) 1
#(X) { - Zy<x l‘(y) if x> 0. ( )
Then the characteristic polynomial of L (or of A) is defined by
x(£,8) = 3 ) tdim=, (@)

x€L

The characteristic polynomial of an arrangement is one of its most im-
portant combinatorial invariants. Zaslavsky [5, 6] has related the charac-
teristic polynomials of certain arrangements to the chromatic polynomials
of signed graphs. Blass and Sagan [2] have generalized one of Zaslavsky’s
results by showing that these two polynomials both count a certain set of
lattice points in Z™, where Z represents the integers.

Theorem 1.1 (Blass-Sagan) Let A be a subspace arrangement such that
A C L(B,), and let t = 25 + 1 be a positive odd integer. Define

[~s,8]={-s,-(s-1),...,-1,0,1,...,s}
and C; = [—s, s|", the cube of side t in Z" centered at 0. Then

x40 =lc\ 4l

The significance of Theorem 1.1 is that it provides an efficient way to
determine certain characteristic polynomials without even computing any
Mobius functions. It is the only known purely combinatorial technique to
obtain such a result. In an earlier work [8], we applied Theorem 1.1 to the
k-equal subspace arrangements and obtained the following theorem.

Theorem 1.2 The characteristic polynomial of Qn.x has the following two

forms: _
X(Qnik,t) E( ) t-1" ®3)

i=0

X(Qn k;t) — (t _ l n-k41 Z ( -k + 2)tk—z- (4)

1
i=0
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Our aim in this paper is to apply Theorem 1.1 to compute the charac-
teristic polynomials of the subarrangements which are interpolated between
the three families of the Coxeter hyperplane arrangements of type B,, Dn
and A,_,. Jézefiak and Sagan [3] introduced these subarrangements. Also,
they used the Saito-Terao method to obtain these characteristic polynomi-
als. Their proofs, however, employ a purely algebraic method which gives
no combinatorial insight into these characteristic polynomials. By Theo-
rem 1.1, we are able to obtain the same characteristic polynomials in a
combinatorial way, i.e., by counting the lattice points in certain sets. As
a result, not only are our proofs much easier in most cases but they also
provide combinatorial interpretations for the characteristic polynomials of
these interpolations.

The following results are well-known about the characteristic polynomi-
als of the coordinate hyperplane arrangements and the Coxeter hyperplane
arrangements (also, they can be easily proved by Theorem 1.1):

x(@a,t) = (E-1)%

x(Bart) = (t=1)(t=3)-(t—2n+1),

X(Dn,t) = (t-1)(E-3)---t—2n+3)(t—-n+1),
X(An-1,t) = tt-1)(t-2)---t—n+1).

2 Unordered Interpolations

In this section, we consider so-called (linear) interpolations between three
pairs of Coxeter arrangements, namely, {An-1, A}, {Bn-1, Bn} and {Dy, B, }.
All of these interpolations have been described in detailed in [3).

We begin by interpolating between A,_; and A,,. An interpolation be-
tween A,_; and A, can be obtained by adding any number of hyperplanes
of A, \ An—1 to An_1 in any given order. If we take an ordered set of such
hyperplanes, say Hy, Ha,..., H,, we obtain an interpolation of the form

Ank = An-1U{H1, Hy, ..., Hi} (5)

between A,_1 and A,, where 1 < k¥ < n. Since the lattices of the corre-
sponding interpolated subarrangements are isomorphic, the order in which
we add the hyperplanes of A, \ An—1 to A, is irrelevant. Because we will
compute the characteristic polynomials for these subspace arrangements
simply by counting the lattice points in certain sets, the fact that A,_,
and A, are of different dimensions plays no role here. That the addition
of hyperplanes of B, \ By_; to B,—1 when interpolating between B,,_; and
By is independent of their order was verified in [3]. Such is also the case
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for {Dy,,, B,}. For this reason, these interpolations are also called unordered
interpolations.

Theorem 2.1  The characteristic polynomial of A, i is
X(Ang,t) =t 1)t =2)---(t —n+1)(t k).
Proof. It is clear that we can assume that
Ank =An1U{zi =2n41:1 < i< k}

and count the points in C: \ |JAn k. Now the first n coordinates of a
point x = (z1,22,...,2n,Znt1) € Ct \ U Anx must distinct. So there are
t = 25 + 1 choices for z;, t — 1 choices for z2, ..., and ¢t — n + 1 choices for
Z,. Then there are t — k choices for £, since z,41 can have any value
except z; where 1 < ¢ < k. This gives

ICAJAnil =t (= 1)t =2) - (t —n+1)(t — k).

-
To proceed from B,_; to By, take any ordering of the hyperplanes of
Ba \ B._1, say Hi,Ha,...,Han_1. Foreach k with1 < k< 2n-1, we
define
Bnx = Bn_1 U{Hy, Ho, ..., Hy}

Theorem 2.2 The characteristic polynomial of By i s
x{(Bn i, t) =t —=1)(t—3)---(t = 2n+3)(t — k).
Proof. It suffices to consider the interpolation of the form
Boy =BaaU{zi=2z,:1<i<k}

If x = (21,%2,..-,2Zn) € C¢ \ UBn .k, then the first n — 1 coordinates of
x must have different nonzero absolute values. So there are t — 1 choices
for z; since 0 is not allowed. Since the second coordinate can be anything
except 0 and =z, there are { — 3 choices for 2. Continuing in this way,
we see that z,,%3,...,2,-1 can be chosen in (t —1)(t —3)---(t —2n +3)
ways, and then z, can be chosen in ¢ — k ways since z, can be anything
except z; where 1 < i < k. Hence

IC A\ Bl =(t=1)(t—3)---(t —2n+3)(t — k).

]
Next, we consider the interpolations between B, and D,. Take an
arbitrary order Hy, Ha, ..., Hy, of the hyperplanes of B, \ D,, and let

DBn,k =D, U {Hl,Hz, .. .,Hk},
where 1 < k <n.
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Theorem 2.3 The characteristic polynomial of DB, s
X(DBpp, ) =(t-1)(t-3)---(t—2n+3)(t—n—k+1).
Proof. Now we consider the interpolation of the form
DBry=DaU{zi=0:1<i<k}

If x = (z1,22,...,2a) € C: \|UDBn k, then all coordinates of x must have
different absolute values. Moreover, the first & coordinates of x are nonzero
and the number of 0’s in the remaining n — k coordinates of x is at most
one. This observation enables us to partition C; \ | JDB, s into n — k + 1
parts, say Ag, A1,..., An—k, such that

Ag={x € C:\| JDBny: =i #£0forall 1<i< n},

Ai'—'{xGCt\U'DBn,kitk-l-i:O}, 1<i<n-—k

It is clear that Ap = C; \ B, and so |Ag| = x(Bn,t). For each fixed
i, 1 < ¢ < n -k, the first k coordinates of x can be chosen in (t —
1)(t — 3)---(t — 2k + 1) ways since they have different nonzero absolute
values. Once z),z3,...,2x have been chosen, then the remaining coordi-
nates Tx41,Tk42,- .., Thti,---,Zn can be chosen in (f — 2k — 1)(t — 2k —
3):--(t — 2n + 3) ways with zx4; being 0. So we have

|4l = (t=1)(t—3)---(t— 2k +1)(t = 2% — 1) .- (¢ — 2n + 3),

which is independent of i. For simplicity, we put 7 equal to 1, and then the
result follows from

ICe \ | DBnxl = 4ol + (n = k)| A4].

3 Ordered Interpolations

When interpolating between D,_; and Dy, or A,_; and By, or A,_; and
Dy, the order in which the hyperplanes are added is important. One can
find counterexamples that explain this point in [3]. So we form these in-
terpolations by adding the hyperplanes between each pair of these arrange-
ments in certain orders.

We first interpolate between D,,_; and D,,. Let Hy, Hs,..., Ha,_2 be
any ordering of the hyperplanes of Dy, \ Dpn_; such that all {z; = z,} come
before all {z; = —z,}. Then let

Dn,k =Dp_1 U {Hl,Hz,. . .,Hk}.
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It is clear that if 1 < k < n — 1, then

Duk =DpaU{zi=z,:1<i<k});
and if n < k < 2n — 2, then
Dpp=DpaU{zi=2z,:1<i<n~1}U{zi=-2,:1<i<k~-n+1}.

Theorem 3.1 The characteristic polynomial of Dy,  ts as follows:
1. If1<k<n-1, then

XDPnp,t) =t —1)t—3)---(t =2n+5)(t —n+2)(t — k).
2. Ifn<k<2n-2, then
XPnk,t) =t —-1)t—-3)---(t-2n+5)t ~k+1)({t—n+1).

Proof. First, we suppose that 1 < k¥ < n — 1. Then a point x =
(z1,...,2n) € Ct \|UDnk has the following properties:

1. z; #tzj foralli,jwithl<i<j<n-1,
2. z; # —z, for all i with 1 <i<k.

Note that any point of C; \ |J D & has at most one zero coordinate. So we
partition C; \ |JDn k into Ag, Ay, ..., A,, where

Ap = {x € Ce\|JDny: all z; #0},

Ai={x€Ct\U'Dn,kixi=0}, 1<i<n. (6)

It is clear that AgU Ap = Ci\ |JBn s and then |AoU An| = X(Bn ,t). For
1 < i< n—1, an argument similar to the one in the case A = By x shows

that the number of choices for 2;,2,,...,2;,...,%, with z; being zero is
(t—=1)(t—3)---(t — 2n+ 5)(t — k) which is independent of i. This gives

IC\UDnil = |40V An|+(n—1)|A4l
= (t-1)(t-3)---(t—2n+5)(t—n+2)(t-k).

Secondly, we suppose that n < k < 2n — 2. Then x = (z4,...,2za) €
C¢ \ U Dni has the following properties:

1. z2;# xzjforalli,jwithl1<i<j<n-1,
2. zi#zpforalliwith1<i<n-—1,

3. zi# -z, foralliwithl<i<k-n+1,
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We also partition C; \ |JDn i into Ao, Ay,...,A, as in (6) and obtain
[Ao U Ayl = x(Bak,t). For the remaining parts, there are always (¢ —
1)(t —3)---(t — 2n + 5) choices for 1,%2,...,2,—1. Then by (3}, z,, can
bechosenint—(n—1)—(k—n)=t—k+1waysif1<i<k—n+1, and
int—(n—1)—(k—n+1)=t—kwaysifk—n+2<i<n—1.So we see
that if 1 <i< k—n+1, then

[Af| =@ —-1)(t—=3)---(t—2n+5)(t —k+ 1),
andifk—n+4+2<i<n-1,then
[Ail= (@ -1)t—3)---(t—2n+5)(t — k).
This produces

ICAUDnkl = 140U Anl+ (k—n+1)|A] + (2n — k — 2)|An]

(t—1)(t—3)---(t=2n+5)(t—k+1)({t—n+1).

[

Next, we interpolate between A,_; and By, or A,_; and D,,. Also since

in these cases the order in which the hyperplanes are added is important,
we will add the hyperplanes of B, \An~1 (or of D\ An_1) to A,—; in some
special orders. First, we require some notation. We follow the notation in

[3].

Consider the following sets of ordered pairs

T={(ij): 1<i<j<n},
T.=TUu{(0,l):2<1<n+1},
T, =TU{(k,n+1):1<k<n}.

We place a total order on T, and T, respectively, by defining
(3,7) <c (k,1) ifandonlyif j <!, or j=1andi<k; (7

and
(3,7) <r (k,!) ifandonly if i <k, ori=k and j <I. (8)

Now we consider the interpolations between A4,_; and B,. We define
ABS = AniU{zi =0:1<i<n}U{z; =z; :i < jand (3,5) <c (K1)},
where <. is as in (7), and
ABj 1= An1U{zi =0:1<i<n}U{zi=z;:i<jand (i) < (K,1)}

where <, is as in (8). Note that we always assume that ¢ < j.
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For the interpolations between A, _; and D,, we let
AD} oy = Anc1 U{zi = z; :i < j and (¢, 5) <c (k,1)},
where <. is defined by (7), and
AD} i1 = An1 U{zi = 25 : i < jand (4,5) < (K, 1)},

where <, is defined by (8).
Since the remaining results in this section can be verified in a manner
similar to those obtained above, we omit the proofs.

Theorem 3.2  The characteristic polynomials of AB;, ;. ; and ABy, ., are
X(ABfl,k,ht)

E=1)(t=3) - (t—2A+3)({t—k=1(t-1=1)--(t—n),

X(AB, ) = (1—=1)(t=3)-(t—2ut 1)t —k—D)
(t—2k—2)(t— 2% —4)---(t — 2w),

where u = ["2—""‘—’1] and w = I_k—’*"z'—'lj
Theorem 3.3 The characteristic polynomial of AD;, ;. , and ADy, , ; are

XADS 1) = (E—=1)(t—3)---(t—2A+5)(t—k—1+2)
E=l+1)(t=1)---(t—n+1),

X(AD,  1,0) = (E—1)(t—3)---(t —2u+5)(t —2u+3)
(t—1—k+2)(t —2k) (t — 2k — 2)(t — 2k — 4)
e t—2w+2)(t—n+1),

where u = [%] and w = lﬁ-'zl'—lj
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