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ABSTRACT. We give counterexamples for two theorems given
for the integrity of prisms and ladders in [2] (Theorem 2.17 and
Theorem 2.18 in [1]). We also compute the integrity of several
special graphs.

1 Introduction

In an analysis of the vulnerability of a communication network to disrup-
tion, two quantities (there may be others) that come to mind are (i) the
number of elements that are not functioning and (ii) the size of the largest
remaining group within which mutual communication can still occur. In
particular, in an adversarial relationship, it would be desirable for an op-
ponent’s network to be such that the two quantities can be made to be
simultaneously small.

The concept of integrity was introduced as a measure of a graph vulner-
ability in this sense. Formally, the vertez-integrity (frequently called just
integrity) is

1(G)= Xgl‘g?c){lX |+m(G - X)},

where m(H) denotes the order of a largest component of H. This concept
was introduced by Barefoot, Entringer and Swart [4], who discovered many
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of the early results on the subject. In his thesis (8], Goddard added many
results and developed some generalizations. There is also nice survey given
by Bagga et al. [1].

A few further comments on notation are appropriate here. The order of
a graph G (that is, the number of vertices) will generally be denoted by =,
but may also be denoted by |G|. As usual, V and E will denote respectively
the set of vertices and edges of G, and X will denote a proper subset of V.
As noted earlier, m(G) equals the largest order among the components of
G. K, denotes star graph with n 4 1 vertices, P,, denotes path with n
vertices. C, denotes cycle of order n. Most of the notations used in this
paper are same as in [5].

In the Section 2, we review known results on the subject. Section 3 gives
two counterexamples for the theorems in [2] (Theorem 2.17 and Theorem
2.18 in [1]). In the Section 4, we compute the integrity of some special

graphs.

2 Some of the Results on Integrity

In this section we will review some of the known results. In the following
theorems, the integrity of families of graphs are given

Theorem 2.1. [1,3] The integrity of
(a) the complete graph K, is n;
(b) the null graph K, is 1;
(c) the star Ky, is 2;
(d) the path P, is [2y/n+1] —2;
(e) the cycle Cy, is [2¢/n] - 1;
(f) the complete bipartite graph Ky m is 1+ min{m,n};

(g) any complete multipartite graph of order n and largest partite set of
orderr isn—r+1;

(h) the comet Cp_ry is I(P,), if 7 < /n+1— 5; [2y/n=7] — 1, other-
wise, where comet is a special graph (see e.g., [1]).

The following two theorems [1] (also from [2]) give the integrity of ladders
and prisms.

Theorem 2.2. [1,2) For n > 2, if n=r%+k with0 <k < 2r, then

2I(P) -1, if0<k<forr<k<?,

I(Ky x Pp) = {21(13"), otherwise.
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Theorem 2.3. [1,2]
(a) For n=3or 4, I(Ks x C,) =2I(C,) — 1 =35.
(b) For n>5, if n=r2+k with 0 < k < 2r, then

2I(Cp) -1, if1Sk<jorr<k<i,

I(K. n) =
(K2 x Cn) {ZI(Cn), otherwise.

Another successful effort yield the integrity of products of stars [7]
Theorem 2.4. (7] If r < s, then

2r—1, ifr=s,

I(Kyr Ki) = {27‘ otherwise

Even the integrity of the product of complete graphs is complicated. The
expression in the next formulation in fact involves the solution of an integer
optimization problem.

Theorem 2.5. (1] Let 2 < m < n. Then

— i 7lm —5)
I(Km x Kp) =mn lgnjtxmj[ — .

Corollary 2.1. [1]
(a) I(Kam x Kap) = 3mn.
(b) if 2m +1 < n?, then I(Kap x Komy1) = 3mn + 2n.
(c) Let m=2r+1,n>r? and n=t (mod m) with0 < ¢t < m. Then

mn — (r+1)| 22}, ift is odd,

I(Km x Kp) = -
(B x Kn) {mn—r[nglE_], if t is even.

3 Counterexamples

In this section we give two counterexamples for Theorem 2.2 and Theorem
2.3, respectively.
Example 1. Consider the ladder K3 x Pyo.

Figure 1
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Claim:
I(Kz X PIO) >9.

Proof of Claim: Suppose I(K2 x Pig) = 9. Hence there is a subset S
of V(Ko x Pyg) such that |S| + m(Kz x Pio—S) =9. Let |S| = s and
m(Ka x Pyg — S) = r. In order to have this equality, we have the following
cases:

() s=8andr=1,
(b) s=7and r=2,
(¢) s=6and r=3,
(d) s=5and r =4,
(e) s=4andr =5,
(f) s=3and r =6,
(g) s=2andr=7,
(h) s=1andr=8.

¢ It is obvious that cases (a), (f), (g), and (h) are not possible, that is,
there is no such subset S that is satisfying any of (a), (f), (g), or (h).

o If s = 7. Removing seven vertices from K2 x Pjp can produce seven,
six, five, four, three, two, or one components. If we have seven com-
ponents, observe that at least five of these components will each have
exactly one vertices. Therefore one of the remaining components will
have more than two vertices. Similarly if there are six or five compo-
nents, then there is at least one component that has more than two
vertices. If we have four components, then it can be observed that
at most three components will each have exactly two vertices. Hence
one of the remaining component will have more that two vertices. If
we have three, or two, or one component, it is obvious that condition
(b) cannot be true. Hence there is no such S that s =7 and r =2
can be satisfied.

o Similar argument can be done for other cases.

Hence I(Ka x Pyg) > 9. It is easy to find a § C V(K3 x Pyo) such that
|S| = 4 and m(K32 x Pyo — S) = 6. Therefore I(Kz x P1o) = 10. On the
other hand 10 =32+ 1 and 1 < % Therefore according to Theorem 2.2
I(K3 x Pyg) = 9. But this is not true as we see above. a

We now we give the second example.
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Example 2. Consider the prism K2 x Cs.

4 6

Laa
L

Figure 2

According to Theorem 2.3, we have I(K, x Cg) = 8 sincen = 6 = 2242,
But we can easily find a set S C V(K2 x Cg) such that |S| = 6 and
m(Kz x Cg — S) = 1. Hence |S| + m(K2 x Cs — S) = 7. This contradicts
with Theorem 2.3. Such a set is S = {1,2,3,4, 5, 6}. (m]

We restate Theorem 2.2 and Theorem 2.3.

Theorem 3.1. Let n > 3 be an integer and let a = |/n+ 1] and b =
[2v/n + 1] be two integers. Then

21(Pp) -1, ifn+1$a(b—a—%),

I(Kz x Pp) = {2 I(P,), otherwise.

Proof: Suppose S C V(K3 x P,) such that I(Kzx P,) = |S|+m(Kex P, —
S). Let r be number of components after removing |S| vertices. With an
argument given for I(P,), we can conclude that r < /n+ 1+ 1. In order
to have r components we have to remove at least » and at most 2(r — 1)
vertices. Therefore if we remove r + k vertices then there are r — (k + 2)
components that have exactly one vertex and k + 2 components that have
more than one vertices, where 0 < k < r — 2. Hence

2n—-r+1)

I(KgxPn)=r£‘lrn{r+k+ P

}

Claim. For any k=0,1,2,...,7r — 3 we have

2(n-r+4+1)

2n-r+1)
k+2 24—

r+ k4 > 2r —

Proof of Claim:

2(n—r+1)
k+2

2in—r+1)2>r(k+2) &

rk+2) <P < (VR+14+1)2<2n—va+l)<2n-r+1) &

n > 21.

An —
r+k+ 22r—2+w©
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For remaining n = 3,4, ...,20 one can show that claim is true. Hence

I(Kex P)=f(r)= min_ {2r-2+

2n—-r+ 1)}
0<r<VRFi+1 T ’

f(r) takes its minimum value at r=vn+1and f(Vr+1)=4(Vn+1+
1). One can easily show 2I(P,) —1=2[2v/n+1] -5 < 4(Vn+1-1) for
all n > 3. Therefore lower bound of I(K2 x Py) is 2I(P,) — 1. It is obvious
that upper bound is 2I(P,).

Now remove 2(a—1) vertices in such way that each of the a—1 components
will have 2(b—a—1)—1 vertices. The last component has 2n—(a—1)(2(b—
a—1)+1) vertices. If 2n—(a—1)(2(b—a—1)+1) < 2(b—a—1)—1, that is,
n+1 < a(b—a—3) then the integrity of K2 x Py is 2(a—1)+2(b—a-1)-1=
2(b — 2) = 2I(P,) — 1. This proves the theorem. O

Theorem 3.2. Let n > 3 be an integer and let a = |/n] and b = [2y/n]
be two integers. Then

(i) forn=3 orn=4, I(Ky x Cp) =2I(Cy) —1=5.

(ii) for n > 5,

— i < —a—1
I(Ky x Cy) = 21(Cy,) -1, )f'n.+1._a(b a-—3),
21(Cy), otherwise.
Proof: With a similar argument given in the previous proof we can show

the following
2I(Cn) -1< I(K2 x Cp) £ ZI(Cn)

Observe that I(Ka x Cp) = 2+ I(Ka X Pp—1). Use the fact 1+ I(Pp—y) =
I(Cy) to conclude the proof. O

4 Integrity of Special Graphs

In this section we give integrity of some special graphs. These graphs
are binomial tree B,, full k-array tree HY with % vertices and full
binary tree H,z,. The binomial tree B,, is defined recursively. As shown in
Figure 3(a), the binomial tree Bp consists of single vertex. The binomial
trec B, consists of two binomial trees B,_; that are linked together: the
root of one is the leftmost child of the root of the other. Figure 3(b)
shows binomial trees By through Bs. Figure 3(c) shows another way of
representing the binomial tree B,. We call the vertex u top vertez of By.

Ior more information one can refer to [6, pages 96 and 401}.
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We first give the integrity of binomial tree B,,.

Theorem 4.1. Let n be a positive integer. Then

1(B,) = 2%, if n is odd,
" 13x 2%, ifnis even.

Proof:

Step 1: Il we remove any vertex other than top vertex u of B, then remain-
ing graph will have a component with at least 2"~! + 1 vertices. When we
remove the top vertex then B,_y, Bn_2,..., Bo are the components. Then
the largest component has 27! vertices.

Slep 2: Removing the top vertices of B,,_; will produce two of the each
binomial tree By as components where k = 0,1,2,...,n — 2. Hence the
largest component will have 2"~2 vertices. But removing any vertex other
than the top vertex will produce a component that has at least 2*~2 + 1
vertices.

Slep 3: Similarly removing the top vertex of cach B, _2 leaves four of the
cach binomial trece By as components, where k = 0,1,...,n — 3. So the
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number of vertices of largest component is 2"~3.
Step 4: Iteratively at each step we remove top vertex.

If we remove = top vertices where 2 <r < 2t! and 0 < i <n—1, then
one of the remaining connected components which is a binomial tree has
on—(i+1) vertices. Therefore

= : r n—(r+1)
1(Ba) = jmin {27 +2 ).

Function 27 + 2"~ ("+1) takes its minimum value at r = 251 when = is odd
and r = 3 when n is even. n}

In view of proof given above, we can state the following theorems.
Theorem 4.2. Let n and k > 2 be two integers. Then

I(HE) kR (et 1)-2 :'_*'11 =2 if n is even,
== ntl n-1
MR T 22 ifp s odd.
Corollary 4.1. Let n be an integer. Then

3x 2% —2 ifn is even
2y ) )
I(Hn) = {2"%ﬂ +2%F 2, ifn is odd.

Remaining theorems are about Cartesian product of some special graphs.
Theorem 4.3. Let m and n > 5 be two integers. Then

(a) I(Pm x Bn) = mlI(Bn) — |3];

(b) I(Ksm x Ba) = (1 +m)I(By) - |152;

(c) I(Cm % Bn) =mI(Bn) — | Z};

(d) I(Wm x B,) = (1+m)I(Ba) - | 142],

where W,,, is a graph that contains an m-cycle and one additional vertex
that is adjacent to all the vertices of the cycle.

Theorem 4.4. Let m and n > 4 be two integers. Then

m(2% - 1) +m2™# - 1), ifn is odd,
2m(2% — 1), if n is even.

I(Pm x H2) = {

Corollary 4.2. Let n be an positive integer. Then

3x2°H —4, ifnisodd
I(Pyx H2) = ’ :
(P2 x Hy) {4(25\ -1), if n is even.
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