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Abstract: A (v, k,t) trade T = Ty — T of volume m consists of two
disjoint collections T; and T3 each containing m blocks (k-subsets)
such that every t-subset is contained in the same number of blocks
in 71 and T;. If each {-subset occurs at most once in Ty, then T
is called a Steiner (k,t) trade. In this paper the spectrum (that
is, the set of allowable volumes) of Steiner trades is discussed, with
particular reference to the case £ = 2. It is shown that the volume
of a Steiner (£, 2) trade is at least 2k — 2 and cannot equal 2k — 1.
We show how to construct a Steiner (k,2) trade of volume m when
m>3k—3,ormiseven and 2k —2 < m < 3k —4. Fork =5
or 6, the non-existence of Steiner (k,2) trades of volume 2k + 1 is
demonstrated, and for k¥ = 7, we exhibit a Steiner (k,2) trade of
volume 2k 4 1. In addition, the structure of Steiner (k,2) trades
of volumes 2k — 2 and 2k (k # 3,4) is shown to be unique. A
generalisation of our constructions to trades with blocks based on
arbitrary simple graphs is also presented.

1 Introduction

A (v, k,t) trade T of volume m consists of two disjoint collections T} and
T3, each containing m k-subsets (blocks) of some set V, such that every
t-subset of V is contained in the same number of blocks in 77 and T3. The
single collection Tj is often referred to as a trade. The pair 7} and T3 is
sometimes said to be mutually {-balanced. When m = 0, T is called the
null trade. Note that there may exist elements of V which occur in no block
of T. The set of elements of V' contained in a set of blocks X is called the
foundation of X, denoted by F(X). Let m(T) = m and f(T) = |F(T)|;
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whence f(T) < v < |V|. The trade T is often written as Ty — T2, where the
following example illustrates this notation.

Example 1.1 T =TT, = +z12+234+y13+y24— 13— 224 —y12—y34
is a (6,3,2) trade, with F(T) = {1,2,3,4,z,y}, f(T) = 6 and m(T) = 4.

Trades have many uses in the theory of designs. They can be used to
construct -designs with different support sizes [3], and are related to the
problem of finding defining sets of designs [5] and to the design intersection
problem [1). As we are not concerned in this paper with the value of v, we
write (k,t) trade instead of (v, k,t) trade. Throughout, it is assumed that
k and t satisfy the conditions k£ > ¢ > 0.

Definition 1.2 A (k,t) trade T = Ty — To with any t-subset occurring at
most once in Ty is said to be a Steiner (k,t) trade.

Notation For a collection A of s-subsets and an element z ¢ F(4), zA
denotes the set of (s + 1)-subsets formed by adjoining = to each of the
s-subsets in A.

Example 1.3 Let A! = {12,34}, A2 = {13,24} and z,y be distinct ele-
ments not equal to 1,2, 3 or 4. Then the trade T = Ty — T3 in Example 1.1
could be written as T' = zA' 4+ yA? — zA% — yAl. Note that T is a Steiner
(3,2) trade as no pair of elements occurs more than once in the blocks of
Ty.

Definition 1.4 The spectrum S(k,t) of Steiner (k,t) trades is

S(k,t) = {m | there ezists a Steiner (k,t) trade of volume m}.

The problem of determining S(k,t) is intimately related to the intersec-
tion problem for Steiner systems. Adapting the notation used by Billing-
ton [1], let I(v,k,t) denote the set of integers y for which there exist
two t — (v, k,1) Steiner systems (V,B1) and (V,B;) with |By N Bz| = y.
The ezpected value of |J,{|B| —i | i € I(v,k,t)} is S(k,t). It is well
known [1] that S(3,2) = {0,4,6,7,8,...}, S(4,2) = {0,6,8,9,10,...} and
S(4,3) = {0,8,12,14,15,16,...}. It is the primary purpose of this paper
to prove the following result concerning S(k, 2).

Theorem 1.5
(1) If0 < m <2k —2 or m =2k — 1, then m ¢ S(k,2);
(2) If m > 3k —3, or m is even and 2k —2 < m < 3k -4, then m € S(k,2);
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(3) A Steiner (k,2) trade withm = 2k — 2, or m = 2k (k # 3,4), has a
unique structure.

We fully determine the spectrum S(k,2) for k = 5, 6, and leave one unre-
solved case for k = 7. A generalisation of these results to trades with blocks
based on arbitrary simple graphs is presented. Finally, the case t > 2 is
briefly discussed.

2 Preliminary Results

For completeness, we determine S(k, 1).

Theorem 2.1 S(k,1) = {0,2,3,4,...}. Further, if T =T, —T» is a (k,1)
Steiner trade of volume m, then Ty consists of m disjoint k-subsets.

Proof Clearly, the volume of a (k,t) trade cannot equal one. If T} is
a Steiner (k,1) trade, then the blocks of T3 must be disjoint or else a 1-
subset is repeated. Let Ty be any collection of m (> 2) mutually disjoint
k-subsets {A1, As,...,Am} and choose z; € A4; for i = 1,2,...,m. Let
B,' = A,' \ {:L'.'} fori = l,?,,. sy, m. Then T1 = {:clBl,:cng,. ..,:thm}
trades with T, = {2,, By, #1B;,z2B3,...,Zp-1By} and T} — T3 is a Steiner
(k, 1) trade of volume m. o

As the spectrum problem for ¢ = 1 is completely solved, for the remainder
of this paper, we assume that ¢ > 1.

Lemma 2.2 Suppose T® = T{ — T§ and T® = T} — T¢ are (k,t) trades.
Then T =T+ T =T{ + T} — T§ — T? is a (k,t) trade (not necessarily
Steiner) of volume

m(T®) + m(T®) — |TE N T2 - [T§ N TY).

Proof That T is a trade is easily proved, or see, for instance, Hwang [4].
The volume of T equals m(7°) + m(T®) minus the number of blocks in
TENTS and T§ NTY. a

Lemma 2.3 Suppose m;,my € S(k,t), where m, and my may be equal.
Then:

(1) my 4+ mz — 1€ S(k,¢);

(2) my 4+ mg € S(k,t). That is, S(k,t) is closed under addition.
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Proof Let T® = T{ — T§ and T® = T} — T} be Steiner (k, 2) trades such
that m(7?) = m; and m(T?%) = m..

(1) We first show that m; + m2 — 1 € S(k,t). Choose a block B of T}.
Relabel the elements of any block C of T} so that C = B. Now relabel
the elements of F(T°) \ B so that F(T*) N (F(T%)\ B) = 0. To show that
T?+T? is Steiner we need only consider t-subsets of B because of the choice
of F(T®). However, since T® and T* are Steiner, any t-subset S of B occurs
precisely once in each of T¢, T¢, T? and T}. Since B is common to T{ and
T, B ¢ T¢ —T¢ and so S occurs precisely once in 7% +T*. In fact, B is the
only block common to 7% and T° and hence m(T° + T%) = m; + mp — L.

(2) To show that m; + my € S(k,t), relabel the elements of F(T®) so
that F(T°) N F(T%) = @. Then T® + T® is a Steiner (k,t) trade of volume
my + ma. (m]

We illustrate the construction method of Lemma 2.3(1) with the following
example.
Example 2.4 Two Steiner (3,2) trades of volume six are
T° = T -T§
= +1344 156 + 178 + 235 + 247 4 268
—135 — 147 — 168 — 234 — 256 — 278,

and

T = T°-13
= 41344 156 + 235 4 246 + 036 4 045
—135 — 146 — 236 — 245 — 034 — 056.
We show how to construct a Steiner (3,2) trade of volume eleven. Let
B = +134 € Tf and C = —135 € Tf. We first transpose the elements
4,5 € F(T®) so that B = C. Next relabel the elements of F(T?)\ B to
{0,2,5,6} so that F(T*)n{0,2,5,6} = 0. Now,
T = T°-T1°
= +135+ 146 + 234 + 356 + 036 + 045
—134 — 156 — 336 — 245 — 035 — 046.
It is simple to check that T + T? is a Steiner (3,2) trade of volume eleven
which completes the example.
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If a single non-null Steiner (k,¢) trade exists, we can obtain a surprisingly
strong result concerning S(k,t). Let S(k,t) = {n | n >0 and n ¢ S(k,t)}.

Theorem 2.5 Ezactly one of the following is true:

(1) S(k,8) = {0);
(2) S(k,1) is finite.

Proof If S(k,t) = {0}, then (1) is true and (2) is obviously false. If
S(k,t) # {0}, then m € S(k,t) for some m > 0. By Part (1) of Lemma 2.3,
2m— 1€ S(k,t). As m and 2m — 1 are coprime and S(k,¢) is closed under
addition, S(k,) is finite. o

Corollary 2.6 S(t + 1,t) is finite.

Proof 1t is easily seen that the (f + 1,¢) trades of volume 2* constructed
in Theorem 2 of [4] are Steiner. o

3 The spectrum of Steiner (k,2) trades

In this section, we determine S(k,2) for all k, except for a finite number
of values for each k. Qur main tool for constructing Steiner (k,2) trades is
solely 1-balanced families.

Definition 3.1 Let A! and A? be collections of s-subsets of V. If A1 — A? is
a Steiner (s,1) trade and A' and A? contain no common 2-subset, then A!
and A? are said to be solely 1-balanced. A set {Al,..., A"} of collections
A* of s-subsets such that A* and A7 are solely 1-balanced for each i # j is
said to be a solely 1-balanced family.

The construction of the trade in Example 1.3 illustrates the use of solely
1-balanced families and generalises to give the following lemma.

Lemma 3.2 Let A! and A% be collections of (k — 1)-subsets such that
{A?, A?} is a solely 1-balanced family. Choose distinct x,y ¢ F(A'), and
let Ty = zA' + yA? and T, = 2A? + yAl. Then T = Ty — Ty is a Steiner
(k,2) trade.

Proof Clearly, there are no k-subsets common to T} and T3, and T is a
(k,2) trade. It remains to show that T is Steiner. Let {a, 3} be a pair of
elements in a block of Tj. It suffices to show that {a, 3} is contained in
precisely one k-subset in each of T} and T;. There are two cases to consider.
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Case 1: Suppose {a, B} N{z,y} = 0. Without loss of generality, suppose
{a, B} is contained in A'. As A! — A% is a Steiner (k — 1, 1) trade, o and
{a, B} are contained precisely once in the (k — 1)-subsets of Al. As A!
and A? are solely 1-balanced, {c, 8} does not occur in A2. Hence {a, 8} is
contained exactly once in each of T and T5.

Case 2: Suppose {a, B}N{z, y} # @. In this case, without loss of generality,
suppose that a = z and y # 8 € F(A?!). But 3 is contained precisely once
in each of A! and A% as A! — A? is a Steiner (k — 1,1) trade. Thus {«, 8}
is contained precisely once in each of 77 and T5. ]

To prove our non-existence results, we will need some technical lemmas
regarding the multiplicity of a set of elements in the blocks of a trade.

Definition 3.3 For an s-subset S and trade T = Ty — T, let rs(T1) equal
the number of blocks in T\ which contain S. We say that S has multiplic-
ity rs(T1) in Ty and note that if s < t, then rs(Th) = rs(T2) (= rs(T)).
If S = {z}, we write ry for r(z}(T1). Define

r(T) = min{r; | z € F(T1)}.
Lemma 3.4 IfS is an s-subset, 1 < s <t, and T is a (k,t) trade, then

rs(T) # 1, m(T) - 1.

Proof See, for example, the proof by Hwang of Lemma 3 in [4]. a
Corollary 3.5 If T is a (k,t) trade and t > 1, then r(T) > 2. o
Lemma 3.6 If T is a Steiner (k,2) trade and z € F(T), then

km(T)
2 S Tz S m.

Proof If z has multiplicity r,, then the r.(k — 1) elements occurring with
z in Ty must all be distinct, since the trade is Steiner. Since »(T) > 2
by Corollary 3.5, each of these elements must appear at least once more.
Thus, k m(T) > rz + 27,(k — 1) and so 7 < km(T)/(2k — 1). a

Lemma 3.7 If T =T, — T is a Steiner (k,2) trade with r(T) > 2, then
m(T) > 2k + 1.
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Proof If aja;z...a; is a block of T3, then the elements a;,a2...,ax each
occur at least two more times in the blocks of 7} since #(T) > 2. As no
pair of these elements can occur in more than one block of T}, there are at
least 2k + 1 blocks in T;. 0

Lemma 3.8 Suppose T =T, — T is a Steiner (k,2) trade, with ro =2 for
some a € F(T) and either (1) m(T) < 4k—10; or (2) m(T) < 2k—-1. If
By and B; are the two blocks of Ty containing a, then there exist (distinct)
elements x € By and y € Bz such that at least k — 1 blocks of Ty contain z
but not y, and at least k — 1 blocks of Ty contain y but not z.

Proof For a € F(T) with r, = 2, without loss of generality, let B; =
aay...ax_1 and By = ab;y...b;_, represent the two distinct blocks in Ty
containing a. Let Cy and C represent the two blocks in 75 also containing
a. As T and T contain precisely the same pairs involving «, each of
ay,...,8k—-1,01,...,bk_1 is contained in exactly one of C;,Cs. Let j, =
[(BiNCi)\{a}l|,s0 1 < ja < k—2. Relabel Cy, C; and the elements of By
and B; as necessary so that, without loss of generality,

Ci=aa;...a;,b;...b;, Ce=aaj 41...ax-1bj,41-. b1,

where js +j» = k— 1 and j, > j, > 1. Note that, subject to these
constraints, the minimum of the product j,j, occurs when (jq, js) = (1, k—
2).

Let 116 {11"".7.0}1 i2 € {1)°-'jb}1 i3 € {ja + 11---,k - 1}, 7:4 € {]b +
1,...,k —1}. The pairs {a;,,b;,} and {a;,, b;,} occur in T> and thus must
also occur in T). Moreover, each of these pairs must occur in a separate
block of 71 as T is a Steiner trade. This implies m(T) > 2 + jajo + (k —
1—ja)(k =1 = js) = 2+ 2jajs-

If (ja,Jdo) # (1,k — 2), then jzj» > 2(k — 3) which implies that m(T) >
2+ 4(k — 3) = 4k — 10. So if (1) is true, then (ja,jbo) = (1, &k — 2). If (2)
is true (and (1) is not), then 4k — 10 < m < 2k — 1 which implies ¥ < 4.
For k = 3,4, j, and j, are uniquely determined as 1 and k — 2 respectively.
Thus (ja,js) = (1, k — 2) in all cases and the element a, occurs in blocks
with by, b, ..., bx—2. As B € T} and T is Steiner, each of these k —2 blocks
in T3 is distinct and cannot contain bx-;. However block B; also contains
a; and does not contain bx_j, and thus there are at least £ — 1 blocks in T}
containing a; and not b;_,;. By symmetry, there are at least & — 1 blocks
containing bx_; and not a; in T). Letting 2 = a; and y = bx_, yields the
result. a
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Lemma 3.9 Suppose T =Ty — T is a Steiner (k,2) trade and there exist
distinct elements z,y € F(T) such that either

(N k=3, r:+ry=m(T) and r{; ) =0; or

(2) k>3, rz +ry >m(T).

Then Ty = zA' + yA? and Tp = 2A? + yA! where A and A? are solely
1-balanced and z,y ¢ F(A!). Thus r, =r, = m(T)/2.

Proof The proof of (1) when & = 3 is simple and thus omitted. Assume
that k > 3. We first show that r(, ,} = 0. Suppose not; then r(; ,} =1 as
T is Steiner and B, say, is the unique block in 7 containing both z and y.
There is at most one block in T; which contains neither  nor y. Thus any
two elements distinct from z and y which occur in B cannot both occur
again in Ty without repeating a pair. Hence r(, ,} = 0.

It is now obvious that r-+ry = m(T’) and the blocks of T; can be written as
{zA', yA?} for some collections A, A% of disjoint (k — 1)-subsets. However,
as each element in A! must occur at least twice in the blocks of T} by
Lemma 3.4, it follows that F(A!) = F(A2) and {A!, A?} is a solely 1-
balanced family.

It is easy but tedious to show that any block ((k — 1)-subset) S of A! must
also occur in Ty. It then follows that T, = zA% + yA! as claimed. ]

Lemma 3.8 allows us to prove the following two non-existence results for
the volumes of Steiner (k,2) trades. Additionally, using Lemma 3.9, the
structure of Steiner (k,2) trades of certain volumes can be determined.

Theorem 3.10 IfT = 11T is a Steiner (k, 2) trade, then m(T) > 2k-2.
Ifm(T) = 2k—2, then Ty = zA' + yA? and T, = zA% + yA! where A' and
A? are solely 1-balanced and =,y ¢ F(AY).

Proof If m(T) < 2k — 2, then by Lemma 3.7 »(T) = 2. By Lemma 3.8,
there exist at least & — 1 blocks which contain z but not y and at least k —1
blocks which contain y but not . Thus m(T) > 2(k — 1), a contradiction.
When m(T) = 2(k — 1), then the structure of T follows from Lemmas 3.7,
3.8 and 3.9. n]

Note how, in the previous theorem, the transposition (zy) applied to T}
yields T5. We call a trade with this property a transposition trade. Many
of the trades constructed in this section will be transposition trades, or
variants thereof.
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Theorem 3.11 IfT = T, —T; is a Steiner (k, 2) trade, then m(T) # 2k—1.

Proof Assume T is a Steiner (k,2) trade and m(T) = 2k — 1. Then
r(T) =2 by Lemma 3.7. By Lemma 3.8 there exists two elements a and b
each occurring in at least (& — 1) blocks of T} in which the other element
does not occur. We show that a and b are contained in precisely k—1 blocks
each. Suppose there is a block in T that contains both a and b. Any other
element of this block must occur in at least one other block by Lemma. 3.4
but all the remaining blocks contain either a or b which contradicts the
fact that T is Steiner. Also, one of @ or b is not contained in k blocks by
Lemma 3.9. Thus there is a block B € T} containing neither a nor b, and
a and b are each contained in precisely ¥ — 1 blocks.

Consider any element o other than a or b; we show that for k& > 4, if a
occurs in a block with a, then it must also occur in a block with b. For if not,
then r, = 2 and & € B. By Lemma 3.8 there exists element ¢ contained in
B such that ¢ is contained in at least (X — 1) blocks. We have shown that
c cannot equal a or b and so there are three distinct elements a, b, ¢ each
occurring in at least k£ — 1 blocks. Further, there is no block containing both
@ and b and so the number of blocks in T is at least 3(k — 1) — 2 > 2k — 1
for £ > 4. This is a contradiction and so we conclude that any element
occurring in a block with a occurs in a block with b and conversely.

Now, consider the k elements of the block B. Each of these elements occurs
in at least one more block of 77 and so each of these elements occurs in a
block with a. But a is contained in exactly & — 1 blocks and so one of the
pairs of elements in B is repeated in T} contradicting the fact that 73 is a
Steiner (k,2) trade.

That the result holds when & = 3 or 4 is known [1] which completes the
proof. a

Lemma 3.12 Suppose k = 3,4 or 5 and let T = Ty — T be a Steiner (k,2)
trade with m(T) = 2k.

(1) If k = 3, then either Ty = zA® + yA? and Ty = zA? + yA!, or T} =
zA'+yA?+24% and Ty = c A +yA3 +zAY, where A' and A? (respectively
Al, A? and A3) are solely 1-balanced and z,y,z ¢ F(A!);

(2) If k = 4, then there are at least two structures for T. One of these has
Ty = zA'+yA? and Tp = 2 A% +yA?, where A' and A? are solely 1-balanced
and z,y ¢ F(AY);

141



(8) If k =5, then Ty = zA' + yA? and Ty = zA? + yA?, where A' and A?
are solely 1-balanced and z,y ¢ F(A%).

Proof If k =3 and m(T) = 6, then all the elements of F(T) have multi-
plicity two or three, by Lemma 3.6, and it is straightforward to check that
T must be as claimed. The trades T® and T® in Example 2.4 illustrate
these two structures.

For k = 4, it is easy to construct the trade based on solely 1-balanced
families. For another structure, consider the fact that no element in

T = +045a+ 0695+ 167a + 158b + 289 + 247b + 3468 + 3579
—046a — 059b — 158a — 167b — 279a — 248b — 3457 — 3689

has multiplicity four.

See Appendix A for a proof of the case where £ = 5. ]

Theorem 3.13 Suppose k > 5, T =Ty — T3 is a Steiner (k,2) trade, and
m(T) = 2k. Then Ty = 2 A' + yA? and T> = 2 A% 4 yA', where A! and A?
are solely 1-balanced and z,y ¢ F(A!).

Proof If m(T) = 2k then, by Lemma 3.7, »(T) = 2. For k > 5, m(T) =
2k < 4k — 10 and by Lemma 3.8 there exist at least £ — 1 blocks in T}
which contain z but not y and at least £ — 1 blocks which contain y but
not . Suppose there is a block B in T which contains both z and y. The
remaining k — 2 elements of B must occur at least twice in T3. All except
possibly one block of T} contain either z or y and so the remaining & — 2
elements cannot occur again in T; without repeating a pair. Thus z and y
do not occur in a block together.

Suppose that B is a block in Ty which contains neither  nor y. We show
that the multiplicity of any element ¢ which is contained in B is at least
three. Suppose r, = 2. Then by Lemma 3.8, there exists a distinct element,
say z, such that 2 is in B and z is contained in at least k — 1 blocks of T}.
This would imply that m(T") > 3(k — 1) — 2 = 3k — 5. Thus m(T) > 2k for
k > 5 which is a contradiction, so r. > 3 (*).

The only possible values for (rz,ry) are (k — 1,k —=1), (k,k=1), (k= 1,k)
or (k, k), and we consider each of these cases separately.

Case (k—1,k—1): Consider the two blocks C and D which contain neither
z nor y. One of the k elements of C, say @, is not contained in any of the
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& — 1 blocks in which y occurs (or else a pair is repeated in the blocks of
T1). But ro > 3 by (*). This implies that a € D and in a block containing
z. Similarly, one of the elements of C, say b, is not contained in any of the
k — 1 blocks in which = occurs. But also 75 > 3 which implies b € D. The
case a = b is disallowed by our construction and the pair {a, b} is repeated
in the blocks C and D which is a contradiction.

Case (k,k — 1) or (k — 1,k): Without loss of generality, we show only
that the case (k, k — 1) is impossible. Consider the block C' which contains
neither z nor y. One of the k elements of C, say a, is not contained in any
of the k —1 blocks in which y occurs (or else a pair is repeated in the blocks
of Ty). However, by (*), rq > 3. This would imply that a is contained in
two blocks which contain z and the pair {a,z} is repeated, a contradiction.

Case (k,k): This case must hold. Now r; + ry, = m(T) and the structure
of T follows from Lemma 3.9. a

In the remainder of this section, we construct Steiner (k,2) trades using
solely 1-balanced families.

Notation Let A(k)equal the (k—1)x (k—1) array with entries (positions)
aij=(i—1)(k-1)+3j fori,j=1,2,...,(k=1).

Write R, C and F for the collections of elements of each of the rows, columns
and forward diagonals of A(k) respectively, suppressing k, since it will be
fixed. Define A(k,r) to be the (k — 1) x (k — 1) array with each of the
elements a;; of the first r rows of A(k) replaced by &;;, where

dGijfapfor 1<i,k<r, 1<jl<k-1.

R, and C, are the sets of elements of eag'h of the rows and columns of
A(k, ) respectively. It is easy to see that {R.,C,} and {R, C, F} are solely
1-balanced families.

Example 3.14 Let k = 4. Then,
R = {123,456,789}, C

{147, 258, 369},

Ry = {123,456,789}, C = {i47,358,369),
F = {159,267, 348}.
Now let
T = +zR+yF —zF - yR,
Tb = —$R1—Zél+.’l!él+2kl,
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where 2,y,2 ¢ F(RU R3). Then

T+ T = +z2123+ y159 + y267 + y348
+2147 + 2258 + 2369 + 2123 + 2456 + 2789
—2159 — 2267 — 2348 — y123 — y456 — y789
—z193 — 2147 — 2358 — 2369,

is a Steiner (4, 2) trade of volume ten. Note how +2456 and +z789 are in
T5 and —2456 and —z789 are in 7° and that these blocks cancel in 7% + T,

The straightforward construction of Example 3.14 will be modified to pro-
vide our existence results. In Lemmas 3.15 and 3.16 we choose the foun-
dations of T° and T? so that T° 4+ T® is a Steiner trade of the required
volume.

Lemma 3.15 There exists a Steiner (k,2) trade of volume 2(k — 1) + 2r
foreachr =0,1,...k - 1.

Proof Let T =T —T§ = +zR+yF—zF —yRand T* =T} - T} =
+zC, +yR, — =R, — yC, with distinct z,y ¢ F(RUR,). That 7%, T® and
T® 4 T® are trades follows from Lemmas 2.2 and 3.2. It remains to show
that T° 4 T® is a Steiner trade of the required volume.

Any pair of elements in 2R that occurs more than once in 77 + T? must
occur in yR, or zC,. Any pair of elements in yF that occurs more than
once in T} + T{’ must occur in yfi,.. However, the blocks containing such
pairs cancel in the addition of T¢ and T®; either in the & — 1 — r blocks in
2R which cancel with R, or in the ¥ — 1 — r blocks in er which cancel
with yR. Thus T° 4 T? is a Steiner (k,2) trade of volume

m(T®+T% = 4(k—1)—-|zRNzR,| - |yRNyR,|
4k-1)=2k—-1-r)
= 2(k-1)+2n

as required. (]

Lemma 3.16 There exists a Steiner (k,2) trade of volume 3(k - 1) +r for
eachr=0,1,...k— 1.

Proof Let T® = +zR+yF—zF—yRand T} = +2C+2R, —z R, —zCr with
distinct z,y, = ¢ F(RUR,). Then, as in the proof of Lemma 3.15, T* +T? is
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a Steiner (k, 2) trade of volume 4(k—1)— |z RNz R,| = 4(k—1)— (k-1 —-r)=
3(k=1)+r o

Lemma 3.17 There exists a Steiner (k,2) trade of volume 4(k —1) +r for
eachr=10,1,...k—1.

Proof First note that by Lemma 3.15, 2(k — 1) € S(k,2), as are even
values between 2(k — 1) and 3(k — 1) inclusive. Thus all values between
4(k—1) and 5(k —1) inclusive are in S(k,2) by Lemma 2.3. This completes
the proof. u}

Theorem 3.18 If m > 3(k—1), then there ezxists a Steiner (k,2) trade of
volume m.

Proof We have shown that 2(k — 1) € S(k,2) and that {3k — 3,3k —
2,...,5k -~ 5} C S(k,2). As S(k,2) is closed under addition, the result
follows. o

It only remains to determine whether the odd integers between 2k + 1 and
3k — 4 inclusive are in S(k,2), for k¥ > 5. We complete the cases k = 5 and
6, and leave one volume unresolved for the case k = 7.

Theorem 3.19 5(5,2) = {0, 8,10, 12,13, 14,...}.

Proof By the results of this section, the only unresolved volume for S(5, 2)
is eleven. A proof that 11 ¢ S(5,2) is given in Appendix A. m]

Theorem 3.20 5(6,2) = {0, 10, 12,14, 15,16,...}.

Proof By the results of this section, the only unresolved volume for S(6, 2)
is thirteen. A computer-assisted proof that 13 ¢ 5(6,2) is given in Ap-
pendix A. o

Theorem 3.21 5(7,2) 2 {0,12, 14,15, 16, 18,19,20,...} and 5(7,2) D {1,
2,...,11,13}. The existence of a Steiner (7,2) trade of volume seventeen
s unresolved.

Proof By the results of this section, the only unresolved volumes for
5(7,2) are fifteen and seventeen. A Steiner (7,2) trade T = T} — T} of
volume fifteen is given in Figure 1. T} and T are isomorphic to the dual of
the 2 — (15,3, 1) design constructed from the points and lines of PG(3,2).
(m]
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T Tx

0 1 2 3 4 5 6 0 1 2 7 8 13 14
o 7 8 9 10 11 12 0 3 4 9 10 15 16
0 13 14 15 16 17 18 0 5 6 11 12 17 18
1 7 13 19 20 21 22 1 3 5 19 20 23 24
1 8 14 23 24 25 26 1 4 6 21 22 25 26
2 7 14 27 28 29 30 2 3 6 27 28 31 32
2 8 13 31 32 33 34 2 4 5 29 30 33 34
3 9 15 19 23 27 31 7 9 11 19 21 27 29
3 10 16 20 24 28 32 7 10 12 20 22 28 30
4 9 16 21 25 29 33 8 9 12 23 25 31 33
4 10 15 22 26 30 34 8 10 11 24 26 32 34
5 11 17 19 24 29 34 13 15 17 19 22 31 34
5 12 18 20 23 30 33 13 16 18 20 21 32 33
6 11 18 21 26 27 32 14 15 18 23 26 27 30
6 12 17 22 25 28 31 14 16 17 24 25 28 29
Figure 1: A Steiner (7,2) trade of volume 15
4 G-trades

A block of size & in a trade can be viewed as a complete graph of order k.
Billington and Hoffman [2] generalise the trade spectrum problem to trades
based on arbitary simple graphs. We keep this section as brief as possible
and the reader is advised to consult [2] for a more detailed discussion of
G-trades. As far as possible, our notation is consistent with that in [2]. Let
G be a simple (cf., Steiner property) graph with v(G) vertices. We call a
graph isomorphic to G a block based on G.

Definition 4.1 Let Ty = {G1,G2,...,Gm} and T, = {G},G5,...,G..}
each be collections of m blocks based on G. If Ui=, Gi = U=, G is a
simple graph and G; # G}, 1 <i,j < m, then T =Ty — T, is a G-trade of
volume m.

Example 4.2 In this ezample, G is a path of length three and Ty and T
are disjoint decompositions of K4 into blocks based on G.
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1 2 3 4 2 3 4 1
® ® *—0 1 2 ® ® ® ®
2 4 1 3 g 3 1 2 4
® *——o ® 4 3 ® ® *——o

The construction method of Lemma 2.3(1) fails for general G-trades. For
instance, in Example 4.2, relabelling all the elements of any block of T
relabels all the elements of the trade.

For the remainder of this section, the minimum degree of G, §(G), is at
least two. Let §(G) = k—1. For this value of k, the collections R, C, F and
R.,C, are defined as in Section 3 with the understanding that the rows
((k — 1)-subsets) will be used to label vertices of blocks based on G.

We use triples of the form (z, N, D) to represent k& — 1 blocks based on
G constructed as follows. Here, z represents a (fixed) vertex of minimum
degree k — 1, N € {R,C, F, R,,C,} and D is a collection of k — 1 disjoint
sets (rows) each of ¥(G) — k vertices. The k — 1 blocks based on G are
formed by placing a copy of G on z and the (ordered) ith rows of N and D
in a consistent manner; ensuring, for instance, that the neighbourhood of
equals the ith row of N for each i =1,...,k— 1, and two vertices from the
same positions of N and D in different blocks are either always adjacent or
non-adjacent depending on how the first copy of G was placed.

Example 4.3 In this ezample, our notation is illustrated for a graph G
with §(G) = 3. So k = 4 and R = {{123}, {456}, {789}}. Choose D =
{{a,d},{c,d}, {e, f}} so that the three blocks based on G shown can be writ-
ten as (z, R, D).

1 4 7
z z (‘ z (‘
b v d v
We will now show how our constructions in Section 3 can be applied to
G-trades. The following result is analogous to Lemma 3.16. Recall that A,

e
f
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represents A with the elements a;; of the first r rows of A relabelled to a;;.
D, is defined similarly.

Lemma 4.4 There exists a G-trade of volume 3(k — 1) + r for each r =
0,1,...,k-1.

Proof Let

o= +(£,R,D1)+(y,F,D2)—(z,F,DZ)—(y,R,Ql),_
Tb = +(a:,C,,D3)+(z,R,,D})—(z,C,,D"‘)—(:c,R,,D}),

where the F(D') are mutually disjoint, F(D' U Di) N F(RU R,) = 0 for
i=1,2,3and z,y,z ¢ F(D'UD! UD?UD3*URUR,).

Then T° + T® is a G-trade if each edge in the positive half of T¢ + T
occurs precisely once. Suppose that there exists an edge e in the positive
half of T® + T® occurring twice. It is immediate that e is not incident with
¥, z or any vertices of D? or D3. Additionally e is not in F. Therefore, e is
necessarily in (z, R, D) and (z, C,, D%)U(z, R, D!). However, this implies
that e is in one of the blocks of (z, R, D!) that cancels. Hence T° + T is
a G-trade of the required volume. o

Lemmas for G-trades analogous to Lemmas 3.15 and Lemma 2.3(2) are
similarly proved. Although there is no general analogue to Lemma 2.3(1),
our choice for blocks based on G utilising the solely 1-balanced families and
mutually disjoint D' allows us to apply a restricted version of Lemma 2.3(1).
So we can also prove an analogue to Lemma 3.17. Combining these results
we obtain the following.

Theorem 4.5 Let G be a simple graph with minimum degree 6(G) > 2
If s > 36(G), or s > 26(G) and s is even, then there erists a G-trade of
volume s.

5 Conclusions

Given two distinct 2-(v, k, 1) designs, D; = (V, B1) and D; = (V, By), let
T =B NB; Then T = (B1\Z) — (B2\7) is a Steiner (k,2) trade.
Non-exhaustive computer searches based on this observation, and using
distinct 2-(v, k, 1) designs with ¥ < 100 and 7 < k < 10, failed to find
any Steiner (k,2) trades of odd volumes less than 3k — 3. We suspect that
determining the remaining values of S(k,2) will be difficult. For instance,
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2k+ 1€ S(k,2) for k = 3,4,7 but 2k + 1 ¢ S(k,2) for k = 5,6. Observe
also the high degree of structure of the Steiner (7, 2) trade of volume fifteen
in Figure 1; for instance, each pair of blocks in 7} intersects in exactly
one point. We intend to address linked trades and their relationship to
(r, A)-designs in a sequel to this paper.

Finally, the problem of determining S(k,t) for ¢ > 2 appears even more
difficult. Hwang has shown that the volume of a (k,t) trade is at least 2°.
However, the volume of a smallest Steiner (k,¢) trade grows rapidly with
k, as the following result demonstrates.

Theorem 5.1 If T =T, — T; is a Steiner (k,t) trade, t > 1, then
m(T)> 1+ k
- t—1/°

Proof Let B be ablock in 7). By Lemma 3.4, each (¢t—1)-subset of B must
occur at least twice in T}. If any two of these (¢ — 1)-subsets occur together
in a block other than B, then a {-subset is repeated in 7} contradicting the
fact that T is a Steiner trade. The number of (¢ — 1)-subsets in B is (t'_‘l)
and the result follows. o
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A Appendix

A.1 The swap matrix technique

The proofs in this appendix use what we term the swap matriz technique.
Suppose that an element x has multiplicity r, in a Steiner (k,2) trade
T =Ty — T;. The idea is to list the possible ways elements differ in the
blocks containing z in 7} and T.

Recall that the r,(k — 1) elements with which x occurs must all be distinct.
Since Ty NT; = @, the 27, blocks in T3 UT: containing  must all be distinct.
Label the blocks of each of T} and T; containing z with 1,2,...,7,. Let

S= [Sij], 1<4,j<rs,
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be an r; X 7, matrix where s;; is the number of elements, other than z,
from block j of T} that appear in block i of T>. S is called a swap matrix
and it is simple to see that 0 < s;; < k — 2 and the row and column sums
of S equal k£ — 1. Thus, each row and column of S is a partition of k¥ — 1
into r; parts, at least two of which are non-zero.

Any swap matrix can occur in many distinct but equivalent forms. Permu-
tations of rows and columns lead to equivalent swap matrices. Permuting
rows is equivalent to reordering the blocks of T> and permuting columns
to reordering the blocks of T;. Transposing S is equivalent to exchanging
T, and T;. We will always use a form where s1; > s;; and s12 > s21, and
where the first row and the first column are non-increasing. Note that this
is not sufficient to eliminate all equivalences but suffices for our purposes.

A pair of elements that occur together with z in a block of 71 but do not
occur together in any block with z in T3 is called a broken pair. A swap
matrix is said to be feasible if all the broken pairs can be contained, as
partial blocks, in the m(T) — r, remaining blocks of T; without violating
the Steiner property. Given a feasible swap matrix, an apportioning of the
broken pairs to the remaining blocks of T3 is called a viable template.
Note that a feasible swap matrix may yield more than one viable template,
and that a viable template is not necessarily extendable to a Steiner trade.

We will determine possible swap matrices for Steiner (k, 2) trades of volume
m for specific values of k£ and m. In the next two sections of this appendix,
these are used to prove non-existence for the cases where k = 5, m = 11
and k = 6, m = 13. In the final section, they are used to show structural
uniqueness for the case where k =5, m = 10.

A.2 Steiner (5,2) trades of volume 11

For Steiner (5,2) trades, the only volume where existence is not settled is
eleven. We will assume that such a trade, T = T} — T3, exists and obtain a
contradiction. Including repetitions, there are 11 x 5 = 55 elements in Tj
and hence there must be an element in F(T') with odd multiplicity. Since
each element must occur at least twice and no more than six times, by
Lemma 3.6, there must be an element with multiplicity three or five. We
will show that both cases are impossible.

Lemma A.1 If T is a Steiner (5,2) trade with m(T) < 12, then there is
no element with multiplicity three.
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Swap Matrix | No. T, T Broken Pairs
310 1 1234 1235 14, 24, 34"
121 5678 | 24679 56,57, 58,68, 78
013 z9abc | z8abec 9a, 9b, 9c*
310 2 z1234 21235 14,24, 34"
112 r 5678 z2469a 56,57, 58, 67,68
022 £9abc | 278bc¢ 9b, 9c, ab, ac”
310 3 1234 1235 14, 24, 34°
103 25678 249cb 56,57, 58"°
031 z9abec z678c¢c 9¢, ac, bc*
220 4 1234 1256 13,14, 23,24
202 5678 | £349a 57, 58, 67,68”
022 z9abc z78bc 9b, 9c, ab, ac®
220 5 z 1234 21256 13,14, 23,24, 34
112 5678 | 379a 57, 58, 67,68, 78
112 A z9abc | x48bc 9b, 9c, ab, ac*
211 6 1234 21259 13,14, 23,24,34
121 z 5678 r367a 56, 57, 58,68,78
112 r9abec z48bc¢ 9a, 9b, 9¢, ab, ac

Table 1: The swap matrices for Steiner (5,2) trades with r; = 3

Proof Let z € F(T) and r; = 3. The possible partitions in a swap matrix
for z are {3,1,0}, {2,2,0} and {2,1,1}. It is easy to see that, up to equiva-
lence, there are only six possible swap matrices. These are shown in the first
column of Table 1. Let the elements occurring with x be 1,2,...,9,qa, b, c.
The column headed T3 is obtained by applying the swap matrix to 7). The
broken pairs are listed in the final column. Each row of broken pairs comes
from the corresponding block of 73. We will show that none of these swap
matrices is feasible in less than 12 blocks.

For a given swap matrix, any two broken pairs from two different rows
contain four distinct elements. Since there are only three rows containing
z, the two broken pairs cannot appear together in a block in 75 without
duplicating a pair already in the blocks of T5.

The rows of broken pairs labelled with a star are generated by columns of
the swap matrix with a partition of {3,1,0} or {2,2,0}. These rows have
the property that no two broken pairs in the same row can occur in the
same block of T, without violating the Steiner propery. Thus we see that
the third and fourth swap matrices imply that there are at least twelve and
fifteen blocks in T3 respectively. Similarly, to generate a trade in less than
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twelve sets from the second swap matrix would require that all of the pairs
in the second row occurred in the same set, which would repeat the pair 78
in Tz.

The remaining three swap matrices all contain rows of five broken pairs
derived from the partition {2,1,1}. All these sets of five broken pairs are
isomorphic to the set {56, 57, 58, 68, 78}. The pair 67 already appears in
T, so the pairs 56 and 57 must occur in different blocks in T3, as must the
pairs 68 and 78. If we used the two partial blocks 568 and 578 to cover all
broken pairs, the pair 58 would occur twice. Thus each row of broken pairs
without a star requires at least three blocks in T5.

The first, fifth and sixth swap matrices would require an additional nine,
ten and nine blocks respectively in T3. Thus the total number of blocks in
T; is greater than eleven. )

Lemma A.2 IfT is a Steiner (5,2) trade of volume eleven, then there is
no element with multiplicity siz.

Proof Suppose y € F(T) and ry = 6. Then y is paired with 6(k — 1) =
24 distinct elements. Each of these elements must occur at least once
in the five blocks not containing y, leaving exactly one position of these
blocks unaccounted for. This cannot be a new element since it would have
multiplicity one. Thus one of the elements occurring with y must have
multiplicity three, contradicting Lemma A.1. 0

As the number of elements with odd multiplicity is necessarily odd and
there is no element with multiplicity three, there must be an odd number
of elements with multiplicity five. It is easy to see that three or more ele-
ments with multiplicity five cannot be contained in eleven blocks without
duplicating a pair. Thus there must be exactly one element with multiplic-
ity five.

For 2 < i < 6, let n; denote the number of elements of F(T) that have
multiplicity i. We have shown that ng = ng = 0 and that ns = 1. Thus
2n9+4n4+5 = 55; that is, na +2n4 = 25. Given that ns = 1, it is straight-
forward to check that there are at most four elements with multiplicity four;
that is, nq < 4.

To complete our analysis, we will need the following lemma analogous to
Lemma 3.8.
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Lemma A.3 Let T = Ty — T be a Steiner (5,2) trade with ro = 2 for
some a € F(T), and suppose that 3 ;s,n; < 7. If By and B, are the two
blocks of Ty containing a, then there exist (distinet) elements z € B, and
y € By such that at least four blocks of Ty contain x but not y and at least
four blocks contain y but not z.

Proof The possible partitions are {3,1} and {2,2} and there are only two
inequivalent swap matrices for a,

3 1 2 2
Sl_[l 3]’ S"[z 2]'
Without loss of generality, let By = «1234 and B, = a5678. We first prove
that S, is not feasible.

If S, is feasible, then without loss of generality a1256 and a3478 are in 7.
This yields the set of broken pairs {13, 14, 23, 24, 57, 58, 67, 68}. Now,
no two of these pairs can occur together in T3, since the trade is Steiner.
Thus each of the elements 1,...,8 must occur at least three times in T3,
contradicting Y, .n; < 7.

We now show S, is feasible and yields a single viable template. We can
assume, without loss of generality, that 1235 and a4678 are in T5. This
yields the set of broken pairs {14, 24, 34, 56, 57, 58}. Now, no two of
these pairs can occur together in T3, since the trade is Steiner. Thus both
z = 4 and y = 5 occur in at least four blocks that do not contain the other
element. )

Theorem A.4 IfT is a Steiner (5,2) trade, then m(T) # 11.

Proof Assume that T = T} — T3 is a Steiner (5, 2) trade of volume eleven.
We will derive a contradiction.

The only integral solutions (n2,n4) to ns + 2ny = 25 satisfying the nec-
essary condition ng4 < 4 are (17,4), (19,3), (21,2), (23,1) and (25,0). The
case (25,0) is eliminated immediately by Lemma A.3. Recall that ns = 1
and note that ngy > 0 in all remaining cases. Let z be the element with
multiplicity five. Since n4 < 4, there must be at least one block, say B,
which contains z and none of the multiplicity four elements.

First, suppose that each of the elements of multiplicity four occurs in some
(but not necessarily the same) block in which & occurs. The four elements
that occur with z in B must be multiplicity two elements. Thus the ele-
ments of multiplicity at least four that these elements are paired with must
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be z and one of the multiplicity four elements. But all multiplicity four
elements are paired with z, contradicting Lemma A.3.

Thus there exists an element, say y, with multiplicity four which does not
occur in a block with z. Let U and V be the two blocks containing neither
z nor y. Consider the 5(k — 1) = 20 distinct elements contained in a block
with z. Since ngy < 4, at least 17 of these have multiplicity two. Now
at most 4(k — 1) = 16 of these can occur in blocks containing y. Thus
one of them, say z, occurs in one of U or V, say U. By Lemma A.3, 2
occurs with two elements, say a and 3, each of which occurs in four blocks
not containing the other. Now, at least one of « or 3, say «, must have
multiplicity four and be contained in U. The other three occurrences of o
must be in V, in a block with y, and a block with z (not that containing
z). Now consider 3. We cannot have 3 = z, since we already have the pair
az, contradicting Lemma A.3. Thus rg = 4, and it must occur in the block
containing zz, in a block with y, and in both U and V. But the pair af is
repeated and this completes the proof. m]

A.3 Steiner (6,2) trades of volume 13

The only volume for Steiner (6,2) trades whose existence is unresolved is
thirteen. Such a trade would have a total of 78 elements in T}, with possible
element multiplicities of » = 2,...,7. Exhaustive searches by computer
programmes based on the swap matrix method yielded a single equivalence
class of feasible swap matrices for each of » = 2, 5 and 6, and showed
that none existed for r = 3 or 4. Each feasible swap matrix yielded a single
viable template. The matrices, with T} and the templates for T, are shown
in Table 2. Note that all three of the swap matrices are symmetric, so the
templates for T) are isomorphic to those for T>. Using these templates,
we will show that it is not possible to construct a Steiner (6,2) trades of
volume thirteen.

Lemma A.5 IfT = T} — T is a Steiner (6,2) trade of volume thirteen,
then there is no element with multiplicity seven.

Proof Suppose there exists an element of multiplicity seven in T7. Such
an element is paired with 7(k — 1) = 35 distinct other elements. Each of
these 35 elements must occur at least once more which leaves one position
of the trade unaccounted for. This remaining position must be filled by
an element of multiplicity one or three. However, multiplicity one is not
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Table 2: The swap matrices and templates for Steiner (6,2) trades
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possible and there are no viable templates for » = 3. This completes the
proof. D

Theorem A.6 If T is a Steiner (6,2) trade, then m(T) # 13.

Proof Let ng, ns and ne denote the number of elements of F(T) that
have multiplicity 2, 5 and 6 respectively. Then 2n; 4+ 5n5 + 6ng = 78.
Now it is easy to see that ns < 3 and ng < 2, else the Steiner property is
violated. Further, the feasible template for r = 2 shows that, if ny > 1, then
ns + ng > 2. Considering all these equations and inequalities, and noting
that ns must be even, we see that the only integral solutions (nq, ns, ng) are
(28,2,2), (31,2,1), (33,0,2) and (34,2,0). Note that f(T) = nz+ns+ns, and
that the templates use 11, 26 and 31 distinct elements respectively. The
last three, three and one blocks of these templates respectively are said to
be wholly undetermined.

Case (28,2,2): Clearly this contradicts the Steiner property.

Case (31,2,1): Three distinct new elements must be added to the multi-
plicity six template to reach the final foundation size of 34. At most two
of the existing elements could occur again (as multiplicity five elements).
There are thus at most five distinct elements unplaced to fill the six places
of the wholly undetermined block in the template.

Case (33,0,2): Four distinct new elements must be added to the multiplicity
six template to reach the final foundation size of 35. At most one of the
existing elements could occur again (as a multiplicity six element). There
are thus at most five distinct elements unplaced to fill the six places of the
wholly undetermined block in the template.

Case (34,2,0): The template for multiplicity two shows that the two el-
ements that occur five times each do not occur together. Thus, in the
template for multiplicity five the element other than x of multiplicity five,
say g, is distinct from 1,..., P. Now at least two of the five occurrences of
y must be in the partially filled sets of 7. By the symmetry of the swap
matrix, it is easy to see that the second occurrences of the five elements
distinct from y of such a set are in separate sets in Ty. Thus, to balance
pairs, all five occurrences of y in Ty and in 7> must be with the partial sets
in the templates for T; and T>. But now the ten sets containing & or y
in Ty and in T, form a Steiner (6, 2)-trade of volume ten. Thus the three
remaining sets in 73 and in 7> must form a Steiner (6, 2)-trade of volume
3 < 2(k — 1) = 10, which is impossible by Theorem 3.10. o
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A.4 Steiner (5,2) trades of volume 10

Throughout this section of the appendix, suppose that T = T3 — T is a
Steiner (5,2) trade of volume ten. We will prove that T has a uniquely
determined structure as in Lemma 3.12(3). By Lemma 3.6, 2 < r, < 5 for
all z € F(T). For 2 <i <5, let n; denote the number of elements in F(T)
that have multiplicity i. Then 2n;+3n3+4n4+5n5 = 50. By Lemma A.1,
n3 = 0, and it is easy to see that ns > 3 is not possible, since T is Steiner.
So, since nz must be even, we need only consider the cases ns = 0 or 2.

Lemma A.7 Ifns =2, then Ty = z A’ + yA? and T, = 2A? + yA?, where
A and A? are solely 1-balanced and z,y ¢ F(AY).

Proof This follows immediately from Lemma 3.9, a
Lemma A.8 Ifng =0, then T does not ezist.

Proof Since n3 = ns = 0, then ny + 2n4 = 25. It is straightforward to
check that nq < 5, and that ny = 4 and n4 = 5 both require that any two
multiplicity four elements occur together in a block. Since n > 0 in all the
remaining cases, Lemma A.3 implies that ny > 2 and that the ny =4 or 5
cases are not possible. So ny = 2 or 3. We now use the unique multiplicity
two template for T, given in the proof of Lemma A.3, with foundation size
nine and elements 4 and 5 of multiplicity four. Since m(T) = 10, there are
two blocks, say U and V, which do not yet have any determined elements.

Case ny = 21, nqy = 2: Here f(T) = 23, so fourteen new elements are to
be added to the multiplicity two template. By Lemma A.3, each of these
multiplicity two elements has to occur with both of the multiplicity four
elements, which is impossible.

Case n; = 19, ny = 3: Here f(T) = 22, so thirteen new elements are
required. If each of these has multiplicity two, then the argument of the
previous case applies. So one of these elements, say «, has multiplicity four.
Now o must occur in both U and V, in a block with 4, and a block with
5. Suppose S is a new multiplicity two element that occurs in the block U.
One of the multiplicity four elements that 8 occurs with must be a. But
a occurs with both of the other multiplicity four elements, contradicting
Lemma A.3. D
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