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ABSTRACT. In this paper, we survey some recent bounds on
domination parameters. A characterisation of connected graphs
with minimum degree at least 2 and domination number exceed-
ing a third their size is obtained. Upper bounds on the total
domination number, v:(G), of a graph G in terms of its order
and size are established. If G is a connected graph of order
n with minimum degree at least 2, then either v,(G) < 4n/7
or G € {C3,C5,C6,C10}. A characterisation of those graphs
of order n which are edge-minimal with respect to satisfying
G connected, §(G) > 2, and v (G) > 4n/7 is obtained. We
establish that if G is a connected graph of size ¢ with mini-
mum degree at least 2, then v1:.(G) < (g + 2)/2. Connected
graphs G of size ¢ with minimum degree at least 2 satisfying
~7:(G) > q/2 are characterised. Upper bounds on other dom-
ination parameters, including the strong domination number
and the restrained domination number are presented. We pro-
vide a constructive characterisation of those trees with equal
domination and restrained domination numbers. A construc-
tive characterisation of those trees with equal domination and
weak domination numbers is also obtained.

1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V, E)
be a graph with vertex set V' of order n and edge set £, and let v be a
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vertex in V. The open neighbourhood of v is N(v) = {u € V|uv € E}
and the closed neighbourhood of v is N{v] = {v} U N(v). For a set S of
vertices, the open neighborhood of S is defined by N(S) = U,ecsN (), and
the closed neighborhood of S by N[S] = N(S)U S. The subgraph of G
induced by the vertices in S is denoted by (S). The minimum (maximum)
degree among the vertices of G is denoted by §(G) (respectively, A(G)). A
cycle of length n is an n-cycle. A graph of order » that is a path or a cycle
is denoted by P, or C,, respectively. We refer to a vertex that is adjacent
to an end-vertex as a remote vertex.

A set 8 C V is a dorninating set if every vertex not in S is adjacent to a
vertex in S. (That is, N[S] = V.) The domination number of G, denoted
by v(G), is the minimum cardinality of a dominating set. A dominating
set S is called an independent dominating set of G if S is also independent.
The independent domination number of a graph G, denoted by #(G), is the
minimum cardinality of an independent dominating set of G. The concept
of domination in graphs, with its many variations, is now well studied in
graph theory. The book by Chartrand and Lesniak [2] includes a chapter
on domination. For a more thorough study of domination in graphs, see
Haynes, Hedetniemi and Slater {12, 13].

A set S C V is a tolul dominating set if every vertex in V is adjacent
to a vertex in S. (That is, N(S) = V.) Every graph without isolated
vertices has a total dominating set, since S = V is such a set. The total
domination number of C, denoted by ~(G), is the minimum cardinality
of a total dominating sel. Total domination in graphs was introduced by
Cockayne, Dawes, and Hedetniemi [3] and is now well studied in graph
theory (see {12, 13]).

A set S C V is a restiuined dominaling set il every vertex not in S is
adjacent to a vertex in S and to a vertex in V — S. Every graph has
a restrained dominating set, since S = V is such a set. The restrained
domination number of ¢, denoted by +,(G), is the minimum cardinality
of a restrained dominating set of G. Clearly, v-(G) = ¥(G). The concept
of restrained domination was introduced by Telle and Proskurowski [24],
albeit indirectly, as a vertex partitioning problem and further studied in
[, 5, 6,7, 16).

A set S C V is a weak dominating set of G if for every u in V — S, there
exists a v € S such that uwv € E and degu > degv. The weak domination
number of G, denoted by 74, (G), is the minimum cardinality of a weak
dominating set of G. A set S C V is a strong dominating set of G if for
every u in V — S, there exists a v € S such that uwv € E and degu < degw.
The strong domination number of GG, denoted by v, (G), is the minimum
cardinality of a strong dominating sel of G. The concept of weak and
strong domination was introduced by Sampathkumar and Pushpa Latha
in [22} and further studicd in [10, 11, 20}.
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An end-dominating set of G is a dominating set of G that contains all
end-vertices of G. The end-domination number of G, denoted by v.(G), is
the minimum cardinality of an end-dominating set of G. We call an end-
dominating set of G of minimum cardinality a ~y.-set of G. The concept of
an end-dominating set was introduced in [11] and further studied in [8].

A 2-packing in a graph C is a set of vertices that are pairwise at distance
at least 3 apart, i.e., if S is a 2-packing of G, then d(u,v) > 3 forallu,v € S.

In this paper, we survey recent bounds on domination parameters, includ-
ing the domination number, the total domination number, the restrained
domination number, the weak domination number, and the strong domina-
tion numbers.

2 Bounds on the domination number

The decision problem to determine the domination number of a graph is
known to be NP-complete. Hence it is of interest to determine upper bounds
on the domination number of a graph. Various authors have investigated
upper bounds on the domination number of a connected graph in terms of
the minimum degree and order of the graph. The earliest such result is due
to Ore [18].

Theorem 1 (Ore) IJ G is a graph of order n with 6(CG) > 1, then v(C) <
n/2.

A large family of graphs attaining the bound in Theorem 1 can be estab-
lished using the following transformation of a graph. The corona of a graph
G, denoted by G, is the graph obtained from G by adding an adjacent
end-vertex to each vertex of G. Payan and Xuong {19] characterised thosc
graphs with no isolated vertex and with domination number exactly half
their order.

Theorem 2 (Payan, Xuong) If G is a connected graph of order ., then
“G) = n/2 if and only of C = Cy or G = H™ for some connecled graph
H.

MecCraig and Shepherd [17] investigated upper bounds on the domination
number of a connected graph with minimum degree at least 2.

Theorem 3 (McCraig, Shepherd) If G is a connected gruph of order
n with 6(C) > 2, and if €' is nol one of seven exceplional graphs (onc of
order 4 and six of order ), then v(G) < 2n/5.

McCraig and Shepherd {17] also characterised those graphs G of order =

which are edge-minimal with respect to satisfving G connected, 8(() > 2,
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and v(G) > 2n/5. This characterisation may be found in [12]. Reed [21)
investigated upper bounds on the domination number of a connected graph
with minimum degree at least 3.

Theorem 4 (Reed) If G is a connected graph of order n with §(G) > 3,
then v(G) < 3n/8.

Sanchis [23] investigated upper bounds on the domination number of a
connected graph in terms of the minimum degree and size of the graph.

Theorem 5 (Sanchis) [f G is a connected graph of size q with §(G) > 2,
then v(C) < (g + 2)/3 with equality if and only if G is a cycle of length n
where n =1 (mod 3).

We refer to a graph G as a -graph if G is a connected graph of size q
with minimum degree at least 2 satisfying ¥(G) > ¢/3. In [14], -graphs
are characterised. To describe this characterisation, we introduce a family
G of 4-graphs and a collection H of five 1-graphs. Let H be the collection
of five Z-graphs shown in Figure 1.

PRI

Figure 1. Graphs in the collection H

We define a unit o be cither a 4-cycle with a path of length 1 avtached
to a vertex of the 4-cycle, which we call a type-1 unit, or a 3-cyele, which
we call o type-2 unil. 1f v is a vertex of a graph, then by attaching « type-1
unit to v we mean adding a 4-cycle and joining v with an edge to one vertex
of the cycle (see IMigure 2.(a)). By attaching a type-2 unit to v we mean
adding a (disjoint) 5-cycie to the graph and identifying one of its vertices
with » (see Figure 2.(b)). We now introduce a family G of -graphs.

v
v

&

(a) (6)

Figure 2. (a) type-1 unit and (b) type-2 unit
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Let £ be a forest that consists of k > 1 nontrivial components Iy, ... , Fk.
For 7 € {1,...,k}, we let S; be a distinguished set of vertices of [;; that
satisfies the following two conditions: (i) every end-vertex of F; belongs to
S; (but not every vertex of S; is necessarily an end-vertex of [3); (4i) if
V(F;) # S;, then I — S; is a forest whose vertex set can be partitioned
into € > 1 sets each of which induce a path Ps, the central vertex of which
has degree 2 in F;. We refer to the partition in (i) as the path-purtition of
V(F:) — S;. Let Sp = Uk _| S;.

If & > 2, then we construct a tree T from the forest ' by adding k-1 edges
€1, ... ,€Ck--1 Lo [' where both ends of e; belong to Sp fori=1,... ,k—1.
Let E* = {ey,...,ex—1} and let S} denote the vertices incident with some
edge of £*. (Thus, S}, C Sr.) Let Sp = Spif k =1 and let S} = S, - S}
ifk>2 Ifk=1, then welet T = F.

We now construct a graph G from T as follows. Notice that each com-
ponent of the subgraph (£*) induced by E* is a nontrivial tree. Each
component of (£*) of order ¢ we replace with a (3¢ — 1)-cycle in which
the £ vertices in the component are the £ vertices on the (3¢ — 1)-cycle in
positions 1,3,6,...,3(¢ -- 1). (In particular, each component of {/7*} that
is a path Py is replaced with a 5-cycle in which the two vertices of the path
are non-adjacent vertices on the cycle.) For example, il {I£*) 2 % U K3,
then {f2*) is replaced by the graph shown in Figure 3.

u v u v w X Yy z

(E?): oo - m I—o—o—o—o—o—oo—g

g
L]

<@
1

Figure 3. A graph replacing the subgraph (£*)

Finally, we attach a type-1 unit or a type-2 unit to each vertex of 5. Let
G denote the resulting giaph. We refer to the forest [ as the underlying
forest ol ¢ and the trec 77 as the underlying tree of G. The collection
of all such graphs & we denote by G.

It I = Ky, for example, then T = [” and ¢ is one of the three graphs
shown in IPigure 4 (where u and v denote the two vertices of I).

D, D, Ds

Figure 4. Three grophs in the family G constructed from 7 = Ky
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As a further example of our construction, consider the graph G in the
family G that is shown in Figure 5.

Figure 5. A graph G in the family G

The underlying forest [ of the graph G of Figure 5 is shown in Figure 6
with a set of distinguished (darkened) vertices Sp. In this example, the
forest F° consists of two components, namely a component F containing
the vertex named v and a component [ containing the vertex named .
The underlying tree T of G is constructed from I by adding the edge uv.
The graph G is constructed from T by replacing the edge uv with a 5-cycle
in which » and v are non-adjacent vertices on the 5-cycle, and by attaching
a type-1 unit or a type-2 unit to each vertex of S}, = Sp — {u,v}.

oo}

Figure 6. The underlying forest F of the graph G of Figure 5

The final two examples of our construction are shown in Iligure 7 and
IFigure 8. These examples serve to illustrate two graphs G in the family G
with different underlying trees T but with the same underlying forest F.
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SIS IS SIS B on JIF2

Figure 7.
A graph G in G with underlying tree T and underlying forest F’

SIS I

Figure 8.
A graph G in G with underlying tree T" and underlying forest [

Let G be a nonempty graph. We define an elementary 3-subdivision of
G as a graph obtained from G by subdividing some edge three times. A 3-
subdivision of G is a graph obtained from G by a succession of elementary 3-
subdivisions (including the possibility of none). We denote the family of all
3-subdivisions of G by (*; that is, G* = {H | H is a 3-subdivision of G}.
Let

g = JG andH =] H"
Geg HeM

For i =0,1,2, let C; = {C, | n = i(vnod3) }. Notice that H{ = C; and

H3 = C,. In [14], the following characterisation of %-graphs is obtained.

Theorem 6 (Henning) If G is a -graph, then G € G* UH*.
As a consequence of Theorem 6, we have the {ollowing result.
Theorem 7 (Henning) IfG is a connected graph of size q with rinimurn

degree at least 2, then -\ C) < ¢/3 unless either C € Cq, in which casc
+(G)=(q+2)/3, or G € G*U(H" —Cy), in which case v(G) = (g+1)/3.
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3 Bounds on the total domination number

The decision problem associated with the total domination number of a
graph is known to be NP-complete. Hence it is of interest to detcrmine up-
per bounds on the total domination number of a graph. Cockayne, Dawes,
and Hedetniemi [3] obtained the following upper bound on the total domi-
nation number of a connected graph in terms of the order of the graph.

Theorem 8 (Cockayne, Dawes, Hedetniemi) IfG is a connecled graph
of order n > 3, then v(C) < 2n/3.

A large family of graphs attaining the bound in Theorem 8 can be es-
tablished using the following transformation of a graph. The 2-corone of
a graph H is the graph of order 3|V (H)| obtained from H by attaching a
path of length 2 to each vertex of H so that the resulting paths are vertex
disjoint. The 2-corona of a connected graph has total domination number
2/3 its order. The following characterisation of connected graphs of order
at least 3 with total domination number exactly 2/3 their order is obtained
in [1].

“Theorem 9 (Brigham, Carrington, Vitray) LetG be a connccied graph
of order o > 3. Then %(G) = 2n/3 if und only if &' is Cs, Cg or the 2-
corona of some connecled graph.

The following property of minimal total dominating sets is established
in [3].

Proposition 10 (Cockayne, Dawes, Hedetniemi) If S is o winimal
total dominating set of « connected graph G = (V, £}, then euch v € S
has al least one of the following two properties:

Py : There exists a verlex w € V — S such that N(w) NS = {v};

Py : (S — {v}) conlains an isoluted vertex.

The lollowing result in [15) guarantees the existence of a minimum total
dominating set satisfying certain desirable propertics.

Theorem 11 (Henning) If G is a connected graph of order n > 3, and
G % K, then G has a minimum total dominating set S in which every
vertex has property Py or is adjacent to a vertex of degree 1 in (S) thal has
property Py.

Using Theorem 11, the result of Theorem 9 follows readily. Next we ex-
arnine the total domination number of connected graphs G of order n > 3
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with minimum degree 6(G) > 2. We will refer to a graph & as an %-
minimal graph if G is edge-minimal with respect to satisfying the follow-
ing three conditions:

(i) 8(C) 2 2,

(it) G is connected, and

(i) 1(C) 2 4n/7,
where 7 is the order of ¢&. We shall characterise %-minimal graphs. Tor
this purpose, we introduce a family H of %—minimal graphs. Let H be the
collection of graphs that can be obtained from a nontrivial tree T as follows.
Tor each vertex v of T, add a 6-cycle C, and join v to one vertex ol C,. The
subgraph induced by v and C, we call a unit of H. We refer to the tree T
as the underlying tree of the resulting graph. A graph in the family H
with four units and with underlying tree T = P, is shown in IMigure 9.

SRRl

Figure 9. A graph in the family ch of 2-minimal graphs
2 Bri . 7

Let (= {C4,C5, Cs, Cr, Cro, Cra}. Let Hy be the graph obtained rom
a O-cyele by adding a new vertex and joining this vertex to two vertices at
distance 2 apart on the cycle. The graph H; is shown in Figure 10.

Hlt

tigure 10. The graph //;

The following result in [13] characterises 2-minimal graphs.
7 g

Theorem 12 (Henning) If G is a %-minimu,l graph, then G € CUH U
{Ih}.

An immediate consequence of Theorem 12 now follows.

Corollary 13 (Henuing) If C is a connected graph of order n with min-
s degree at least 2 and G @ {Cs, Cs,Cq,Cro}, then w(C) < An/7.
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In [15], an upper bound on the total domination number in terms of the
size of the graph is established. We will refer to a graph G as an -graph
if G is a connected graph of size g satisfying 6(G) = 2 and v,(G) > ¢/2.
In [15], f-graphs are characterised. To describe this characterisation, we
introduce some families of 2-graphs. For i =0,1,2,3,let C; = {Cs [ n =
i(mod4) }. Let F be the collection of four -graphs shown in Figure 11.

A LB

Figue 11. The collection F of four Z-graphs

Next we construct a family G of graphs G as follows. Let T be a nontrivial
tree with a distinguished set Sy of vertices that satisfies the following two
conditions: (i) every end-vertex of T belongs to Sy (but not every vertex
of S is necessarily an end-vertex of T'); (i¢) if V(T') # Sy, then T — Sy is
a forest whose vertex set can be partitioned into £ > 1 sets each of which
induce a path on four vertices with the two central vertices having degree 2
in T. We refer to the partition in (iz) as the path-partition of V(T) — S
For each vertex v in S, add a 6-cycle C, and join v to one vertex of C,,.
Let G denote the resulting graph. We refer to the tree T as the underlying
tree of G. The family of all such graphs G we denote by G. A graph & in
the family G with underlying tree T is shown in Figure 12 (here S consists
of the four darkened vertices in T').

T (tree)

Figure 12. A graph G in the family ¢ with underlying tree T

We define an elementary 4-subdivision of & nonempty graph G as a graph
obtained from G by subdividing some edge four times. A 4-subdivision of ¢/
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is a graph obtained from G by a succession of elementary 4-subdivisions (in-
cluding the possibility of none). We denote the family of all 4-subdivisions
of a graph G by G*. Let

¢=JG and 7= |J F.
Geg FeM
For i = 0,1,2,3, let C; = {C, | »n = i(mod4)}. Notice that F} = Cs,
F3 = Cy, and F§ = C,. In [15], the following characterisation of %-graphs
is obtained.

Theorem 14 (Henning) If G is a 2-graph, then G € F* U G*.
As a consequence of Theorem 14, we have the following result.

Theorem 15 (Henning) If G is a connected graph of size q with mini-
mumn degree at least 2, then either G € Ca, in which case v(G) = (¢+2)/2,
or G € (F* —C) UG*, in which case v,(G) = (g +1)/2, or v(G) < q/2.

4 Bounds on the restrained domination number

If G = (V, E) is a connected graph of order n, then V is a restrained domi-
nating set, so v-(G) < n. The family of stars K ,_; shows that this bound
can be attained. Domke, Hattingh, Henning, and Markus [6] investigated
upper bounds on the restrained domination number of a connected graph
with minimum degree at least two. Let B be the collection of graphs shown
in Figure 13.

:3:::":"&%?'@@

L
13 By B, s B

Figure 13. The collection B ol graphs

Theorem 16 (Domke, Hattingh, Henning, Markus) Let G be a con-
nected graph of order n > 3 with §(G) > 2. If G & B, then +.(G) <
(n—1)/2.

We will refer to a graph G of order » as an (%i)-minimal graph if ¢
is edge-minimal with respect to satisfying the following three conditions:

(1) 8(C) =2 2,

(i7) G is connected, and

(i) %(C) > (n - 1)/2.
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A characterisation of (%7})-minimal graphs was obtained in [16]. To
describe this characterisation, we let B* = {B;, Bs,... ,Bs} and we let
F = {[,F,,..., Fs} be the collection of graphs shown in Figures 14
and 15.

A 4 BT 00
oRtnireRoe

Fio i Fyp Fi3

Figure 14. The collection {I%, Iy, ..., I13} of graphs

We now construct a collection H of graphs as follows. Let £, be
constructed from m disjoint 5-cycles by identilying a set of m vertices,
one from each cycle, into one vertex. Let H; = {Hyn|m > 2}. For
i=2,3,...,7, let H; = {Hjm|m > 1} where H, ,, is the graph shown in
FFigure 16. For i = 8,9,10, let H; = {Hime|m > £ > 1} where ;0 is
the graph shown in Figure 16. Let H = {H;|1 <4 < 10}.

We are now in a position to state the characterisation obtained in [16] of
the collection of all (%5})-minimal graphs.

Theorem 17 (Henning) A graph G is an (252)-minimal graph of or-
dern if and only if G € B*UFUH.
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F?l F22

Figure 15. The collection {#14, s, ..., [y} of graphs
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Figure 16. The collection H of graphs
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5 Trees with equal domination and restrained domination num-

Since every restrained dormninating set is a dominating set, ¥(G) < v(G)
for every graph . Hattingh and Rautenbach [11] have shown that i(T) <




~e(T) for every tree T. Since every independent dominating set is a dom-
inating set, y(T") < i(T'), and since every restrained dominating set is an

end-dominating set, v.(T) < v-(T). Hence we have the following inequality
chain.

Theorem 18 For any lree T, v(T) < ((T") < 7(T) < (7).

A constructive characterisation of trees with equal domination and re-
strained domination numbers was obtained by Domke, Hattingh, Laskar,
and Markus in {5]. To state this characterization, we need to define two
types of operations on a tree T'.

Type-A operation: Attach a P, to a vertex v of T where v is a vertex
such that y(T — v) = 4(T) and does not belong to some ~y,-set of T}
Type-B operation: Attach a P to a vertex v of T which is in some ~,-set
of T.

We now define the family F) as ] = {T | T is obtained from P; by a
finite sequence of operations of type-A or type-B }.

Theorem 19 (Domke, Hattingh, Laskar, Markus) For any tree T,
Y(T) = %(T) if and only of T € F,.

Hattingh and Henning [8] characterized trees with equal independent
domination and restrained domination numbers. To state this characteri-
zation, we introduce two types of operations that we use to construct trees
with equal independent domination and restrained domination numbers.
Type-1 operation: Attach a path P» to a vertex of a tree T which is in
no ve-set of T (a type-1 operation is illustrated in Figure 17);

type-1
OO0 — O—E:;—Q

Figure 17. A type-1 operation

‘Type-2 operation: Attach a path Pj to a vertex ol a tree T which is in
a ve-set of T (a Lype-2 operation is illustrated in Figure 18).
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type-2
oo b oo

Figure 18. A type-2 operalion

We now define the family 7, as F. = {T| T is obtained from P; by a finitc
sequence of operations of type-1 or type-2 }. In [8], a constructive charac-
terisation of those trees with equal independent domination and restrained
domination numbers is obtained.

Theorem 20 (Hattingh, Henning) For a trec T, the following state-
ments are equivalent:

(@) Y(T) = ¥(T).

(b) Buery «y.-set of T is a 2-packing.

() i(T) = 7%(T).

(d) i(T) = 7(T).

(e) T € F+.

()T eF.

6 Trees with equal domination and weak domination numbers

every graph G. In this section, we present a constructive characterization,
due to Hatting and Henning [8], of the family of trees T satisfying (T) =
Yo (T).

If T % K, is a tree, then every weak dominating set of T is an end-
dominating set of T, and 30 7.(T) < v(T). Hence as a consequence of
Theoremn 18, we have the following inequality chain.

Since every weak dorninating set is a dominating set, 7(G) < . (G) for

Corollary 21 If T % K is a tree, then y(T) < «(T) € ve(T) < %u(T).

We now introduce the following type of operation that we use Lo construct
trees with equal domination and weak domination number:
Type-3 operation: Let ¢ be a vertex of a tree T which is in a ve-set of
T and with deg y > deg v for all neighbors y of v in T. Attach a path
v, w, w,x to v, and then attach at least degp v — 1 (disjoint) £’s to w.
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v type-3 r w uv
<g;, =

Figure 19. A type-3 operation

Next we define the family F,, as Fo, = {T' | T is obtained from /; by a
finite sequence of operations of type-1 or type-3 }. The following result is
established in {8].

Theorem 22 (Hattingh, Henning) For a tree T, the following state-
ments are equivalent:

(@) YT) = 7u(T).

(b)) T= Ky or Tz Fy.

(¢) iT) = 7u(T).

7 Bounds on the strong domination number

In this section, we investigate upper bounds on the strong domination nun-
ber of a connected graph. Let G = (V, E) be a graph, and let u,v € V.
We say that v is ‘a strong neighbour of u if uv € [ and degu < dege.
Recall (see Theorem 1) that the domination number of a connected graph
is at most half its order. However, the strong dornination number of a con-
nected graph ol order p may exceed half its order as the following result in
[9] shows.

Theoremn 23 (Hattingh, Henning) Lel G be a connccled graph of or-
der n, and let W be the sel of all vertices of G thal have no strong neigh-
bours; that s, W = {v € V' |degv > degu for all verlices u adjaceni to v}.
Then, v5(C) < (n+ |Wi)/2.

An immediate consequence of Theorern 23 now follows.

Corollary 24 Let G is o connected graph of order n. If every vertex of G
has a strong neighbour, then v(G) < nf2.

The following result in [9] establishes a sharp upper bound on the strong
domination number of a =onnected graph.
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Theorem 25 (Hattingh, Henning) For any connected graph C of or-
dern > 3, 75:(G) < 2(n —1)/3, and this bound is sharp.

That the upper bound in Theorem 25 is sharp, may be seen by taking a
complete bipartite graph K (k, k4 2) and adding an adjacent end-vertex to
each vertex of the partite set of cardinality k£ + 2, i.e., for each vertex v in
the partite set of cardinality k+2 we add a new vertex v’ and the edge vv’.
Let G denote the resulting graph. Then G is a connected graph of order
n = 3k + 4 with v(G) =2(k+ 1) = 2(n - 1)/3.

Next, we establish a sharp upper bound on the strong domination number
of a tree. Let T* be the tree obtained from a star K 3 by subdividing each
edge once. {The tree T* is shown in Figure 20. The darkened vertices form
a minimum strong dominating set of 7*.) Then T* is a tree of order n =7
with v, (T*) =4 = 4n/7.

Figure 20. The tree T of order n = 7 with v (T*) =4 = An/7
/e close with the following result in [9].

Theorem 26 (Hattingh, Henning) For any tree T of order n > 2 thal
is different from the lree T* of Figure 20, vs:(T) < (dn — 1)/7, and this
bound is sharp.

That the upper bound in Theorem 26 is sharp, may be seen as (ollows.
Let I} be the treec obtained from a star K4 by subdividing cach edge
once, and, for k > 2, let [, ..., Fi, be k — 1 disjoint copies of the tree T
shown in Figure 20. For ¢ = 1,2,... ,k, let v; denote the central vertex of
F;, and let w; be a vertex adjacent to v; in I5. Let W = {v,v0,... vk}
For k > 2, let Ty be the tree obtained from the disjoint union Uk F; of
Fy, Fy, ..., Fi by the addition of the edges wyv;pq fori=1,..., k-1
(The tree Ty is shown in I"igure 21. The darkened vertices form a minimum
strong dominating sct of Ty.) Then Ty is a tree of order n = 7k + 2 with
Ysu(T) = |W|+ |[IN(W)| =4k + 1 = (4n - 1)/7.
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vy 2 Us t'y

iy W wy Wy

Figure 21. The tree Ty of order n with v, (T) = (4n - 1)/7
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