All V(3,t)’s Exist for 3t + 1 a Prime Power
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ABSTRACT. In this paper, we prove that a V' (3, ) exists for any
prime power 3t + 1, except when ¢ =5, as no V(3, 5) exists.

1 Introduction

For the background on V/(m, t), we mention [8], [4] and [1]. Let g=mt +1
be a prime power and let w be a primitive element of GF(q). Suppose that
a vector (ay,... , am+1) exists for which, for each 1 < k < m, the differences

{asrk—ail <i<m+1i+k#m+2}

represent the m cyclotomic classes of GF(g) (compute subscripts modulo
m + 2 as needed). In other words, for a fixed k, if a;1x — a; = w™*+* and
ajtk — a; = w™+8 we find that o # B (mod m). Such a vector is termed
as a V(m,t) vector in [4] and [1].

The recent known results about V(m,t)’s can be summarized as follows.

Theorem 1.1 [1, 3, 2, 6, 5] A V(m,t) ezists if m and t are not both even,
whenever

(1) m =2 and mt+ 1 is a prime or prime power; or
(2) m =3 and mt + 1 is a prime; or

(3) mt+1<5000, m—1<t m <10 and mt + 1 is a prime, except
when m =9 and t = 8, as no V(9,8) exists; or

(4) mt+1 <5000, m—1<t, m <6 and mt+1 is a prime power, ezcept
when m =3 and t =5, as no V(3,5) exzists; or

(5) mt+1>m™™t) for mt+ 1 is a prime power.
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The restriction that m and ¢ are not both even is necessary [2]. In Section
2, we give a recursive construction for V(m,t). In Section 3, we prove that
a V(3,t) exists for any prime power 3¢+ 1, except when ¢ = 5, as no V(3,t)
exists.

2 A recursive construction for V(m,t)

In this section, we present a recursive construction for V(m,t).

Theorem 2.1 Let g = mt + 1 be a prime power. Suppose there exists a
V(m,t) in GF(q). If (n,m) =1, then there ezists a V(m,t) in GF(q").

Proof: Suppose (a,... ,am+1) is a V(m,t) in GF(q). Let w and £ be the
primitive root of GF(q) and GF(q™) respectively. We have w = £*, where
z = (¢"—1)/(g—1). Suppose w’ and w* belong to different cyclotomic class
of GF(q). Write w’ = £I* and w* = ¢**. Then, j and k are not congruent
modulo m. Since jz —kz = (f—=k)(g" 1+ ¢"2+...4+1) = (G- k)n

(mod m), from (n,m) = 1 we know that jz and kz are not congruent
modulo m. Then it is not difficult to see that (ay,...,am+1) is also a
V(m,t) in GF(g™). The proof is completed. m}

3 Existence of V(3,t)’s
First, from Theorem 1.1 (4) and (5), we have the following lemma.

Lemma 3.1 Suppose 3t+1 is a prime power. If 3t+1 < 5000 or 3t+1 >
312, then there eists a V/(3,t).

So, we should only deal with the case when 5000 < 3t + 1 < 312, Denote
E; = {214,218}, E; = {p®|19 < p < 79, for prime p = 1 (mod 6)}, E5 =

{p?71 < p < 719, for prime p =5 (mod 6)}, E = E; |J E2|J E5. Applying
Theorems 1.1 and 2.1, we have the following.

Theorem 3.2 Let g = 3t + 1 be a prime power. If 5000 < ¢ < 3'2 and
q & E, there erists a V(3,t) in GF(q).

Proof: Apply Theorems 1.1 and 2.1 with suitable g and » shown in Table
1, where (3,n) =1. o

Theorem 3.3 If g € E, then there exists a V(3,t) in GF(q).
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q q n
216 2° 2
5% 54 2
7° 7° 2
11* 11% 2
134 13 4
13° 13 5
17% 174 2
194 19¢ 2
23% 23% 2
Table 1

Proof: Suppose (0,1,1+ £,1 4 £ + £2) is the desired V/(3,t), where £ €
GF(q)*. Let Hy, Hy, Hs be the cosets of the subgroup of index 3 of GF(g)*.
It is easy to see that the above vector is a V/(3,t) if and only if z ¢ Hy,
and 1+ £,£€ + €2 and —(1 + £ + £2) belong to different cosets. By a simple
computer search, we find the suitable £ and the primitive polynomial for
the corresponding q, whirh are listed in the Appendix. m]

Theorem 3.4 Let q = 3t+1 be a prime power. Then there exists a V(3,1)
in GF(q) except when t =5, as no V(3,5) exists.

Proof: Combine Lemma 3.1, Theorems 3.2 and 3.3. ]
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Appendix

A Simple computer progam has readily checked that the polynomials listed
below are primitive polynomials except when ¢ = 214 and 2!8, which come
from [7] and [9) respectively. We take £ = z*, where k is shown in the third
column.
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q primitive polynomial =z
214 i+ P+ +z+1
218 2P+ 41 1
19° z° —6z° + 122 — 10 1
31° z° —6z° + 122 — 11 2
37° >+ Tz + 4z + 32 1
43° z° — 92 + 27z — 30 2
61° z° —6z°+ 12z - 10 2
67° x> — 48x% 4 31z 4 56 5
73° % — 17z° 4 72z + 68 1
79° z° —9z° 4+ 27z - 30 2
714 % — 14z + 42 1
832 -4z 42 4
89¢ 2 —6x+6 1
101° ¢ —4zx+2 2
1074 T —~4z+ 2 1
1134 T4 —-6z+6 2
1314 z°—4z+2 4
1374 T —6z+6 5
1494 ¢ —4z 42 4
1674 z¢ — 10z + 20 7
173 Tt -4z 4+ 2 4
1794 z° — 20z + 98 1
191¢ z* — 38z + 151 5
197 z* — 20z + 98 1
2274 z? -8z + 14 14
233 x> —6x+6 1
239° z* — 14z + 42 13
2514 % — 144z + 158 1
2574 z° —6z+6 2
2634 z* — 30z + 220 2
269 ¢ — 20z 4+ 98 4
281“ % — 60z + 54 2
293° T4 — 12z + 34 2
311¢ z? — 170z + 55 1
3174 -4z 42 1
347 -4z +2 2
353 ¢ — 12z + 33 8
359 % — 56z + 59 4
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q primitive polynomial =zF
383“ x4 — 10z + 20 4
389° ¢ -122+ 34 1
401“ ¢ — 6z + 6 2
4194 2% — 36z + 322 1
431° z° — 14z + 42 5
443° z* — 20z + 98 2
449° ¢ - 12z + 33 4
461¢ ¢ — 4z + 2 2
4674 z° -4z + 2 5
4794 z* — 208z + 265 5
4914 T2 -4z + 2 2
503° % — 10z + 20 8
509 ¢ — 4z + 2 1
5214 z% — 18z + 78 13
557° 2 — 4z + 2 1
563 2% —4x 4+ 2 1
5694 ¢ — T2z + 155 4
587¢ ¢ — 4z + 2 5
593 Té -6z +6 2
599 % — 14z + 42 1
6174 % — 30z + 222 1
6414 22 —6z+6 2
647° z¢ — 10z + 20 4
653 x4 —4x +2 4
6594 z° -4z +2 2
677% z% — 20z + 98 7
683 z? — 10z + 20 5
701¢ z° -4z +2 4
7194 z¢ — 110z + 138 1
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