All V(3,t)'s Exist for 3t+1 a Prime Power

Gennian Ge

Institute of Economics Suzhou University Suzhou 215006, China

ABSTRACT. In this paper, we prove that a V(3,t) exists for any prime power 3t+1, except when t=5, as no V(3,5) exists.

1 Introduction

For the background on V(m,t), we mention [8], [4] and [1]. Let q=mt+1 be a prime power and let ω be a primitive element of GF(q). Suppose that a vector (a_1, \ldots, a_{m+1}) exists for which, for each $1 \le k \le m$, the differences

$${a_{i+k} - a_i | 1 \le i \le m+1, i+k \ne m+2}$$

represent the m cyclotomic classes of GF(q) (compute subscripts modulo m+2 as needed). In other words, for a fixed k, if $a_{i+k}-a_i=\omega^{mx+\alpha}$ and $a_{j+k}-a_j=\omega^{my+\beta}$, we find that $\alpha \not\equiv \beta \pmod{m}$. Such a vector is termed as a V(m,t) vector in [4] and [1].

The recent known results about V(m,t)'s can be summarized as follows.

Theorem 1.1 [1, 3, 2, 6, 5] A V(m,t) exists if m and t are not both even, whenever

- (1) m = 2 and mt + 1 is a prime or prime power; or
- (2) m = 3 and mt + 1 is a prime; or
- (3) $mt + 1 \le 5000$, $m 1 \le t$, $m \le 10$ and mt + 1 is a prime, except when m = 9 and t = 8, as no V(9,8) exists; or
- (4) $mt+1 \le 5000$, $m-1 \le t$, $m \le 6$ and mt+1 is a prime power, except when m=3 and t=5, as no V(3,5) exists; or
- (5) $mt+1 > m^{m(m+1)}$ for mt+1 is a prime power.

The restriction that m and t are not both even is necessary [2]. In Section 2, we give a recursive construction for V(m,t). In Section 3, we prove that a V(3,t) exists for any prime power 3t+1, except when t=5, as no V(3,t) exists.

2 A recursive construction for V(m,t)

In this section, we present a recursive construction for V(m, t).

Theorem 2.1 Let q = mt + 1 be a prime power. Suppose there exists a V(m,t) in GF(q). If (n,m) = 1, then there exists a V(m,t) in $GF(q^n)$.

Proof: Suppose (a_1, \ldots, a_{m+1}) is a V(m, t) in GF(q). Let ω and ξ be the primitive root of GF(q) and $GF(q^n)$ respectively. We have $\omega = \xi^x$, where $x = (q^n - 1)/(q - 1)$. Suppose ω^j and ω^k belong to different cyclotomic class of GF(q). Write $\omega^j = \xi^{jx}$ and $\omega^k = \xi^{kx}$. Then, j and k are not congruent modulo m. Since $jx - kx = (j - k)(q^{n-1} + q^{n-2} + \ldots + 1) \equiv (j - k)n$ (mod m), from (n, m) = 1 we know that jx and kx are not congruent modulo m. Then it is not difficult to see that (a_1, \ldots, a_{m+1}) is also a V(m, t) in $GF(q^n)$. The proof is completed.

3 Existence of V(3,t)'s

First, from Theorem 1.1 (4) and (5), we have the following lemma.

Lemma 3.1 Suppose 3t+1 is a prime power. If 3t+1 < 5000 or $3t+1 > 3^{12}$, then there exists a V(3,t).

So, we should only deal with the case when $5000 < 3t + 1 < 3^{12}$. Denote $E_1 = \{2^{14}, 2^{18}\}$, $E_2 = \{p^3 | 19 \le p \le 79$, for prime $p \equiv 1 \pmod 6$, $E_3 = \{p^2 | 71 \le p \le 719$, for prime $p \equiv 5 \pmod 6$, $E = E_1 \bigcup E_2 \bigcup E_3$. Applying Theorems 1.1 and 2.1, we have the following.

Theorem 3.2 Let q = 3t + 1 be a prime power. If $5000 < q < 3^{12}$ and $q \notin E$, there exists a V(3,t) in GF(q).

Proof: Apply Theorems 1.1 and 2.1 with suitable q and n shown in Table 1, where (3, n) = 1.

Theorem 3.3 If $q \in E$, then there exists a V(3, t) in GF(q).

q^n	q	n
216	28	2
58	54	2
76	73	2
114	11 ²	2
134	13	4
135	13	5
174	17 ²	2
194	19 ²	2
234	23 ²	2

Table 1

Proof: Suppose $(0, 1, 1 + \xi, 1 + \xi + \xi^2)$ is the desired V(3, t), where $\xi \in GF(q)^*$. Let H_0, H_1, H_2 be the cosets of the subgroup of index 3 of $GF(q)^*$. It is easy to see that the above vector is a V(3, t) if and only if $x \notin H_0$, and $1 + \xi, \xi + \xi^2$ and $-(1 + \xi + \xi^2)$ belong to different cosets. By a simple computer search, we find the suitable ξ and the primitive polynomial for the corresponding q, which are listed in the Appendix.

Theorem 3.4 Let q = 3t+1 be a prime power. Then there exists a V(3,t) in GF(q) except when t = 5, as no V(3,5) exists.

Proof: Combine Lemma 3.1, Theorems 3.2 and 3.3.

Acknowledgement. The author is thankful to Professor L. Zhu for .his kind help.

Appendix

A Simple computer progam has readily checked that the polynomials listed below are primitive polynomials except when $q=2^{14}$ and 2^{18} , which come from [7] and [9] respectively. We take $\xi=x^k$, where k is shown in the third column.

q	primitive polynomial	$=x^k$
$\frac{4}{2^{14}}$	$x^{14} + x^5 + x^3 + x + 1$	
218	$x^{18} + x^7 + 1$	1
193	$x^3 - 6x^2 + 12x - 10$	1 1
313	$\frac{x^3 - 6x^2 + 12x - 10}{x^3 - 6x^2 + 12x - 11}$	2
373	$x^3 + 7x^2 + 4x + 32$	$\frac{-}{1}$
433	$x^3 - 9x^2 + 27x - 30$	2
613	$x^3 - 6x^2 + 12x - 10$	2
67 ³	$x^3 - 48x^2 + 31x + 56$	5
733	$x^3 - 17x^2 + 72x + 68$	1
79 ³	$x^3 - 9x^2 + 27x - 30$	2
71^{2}	$x^2 - 14x + 42$	1
832	$x^2 - 4x + 2$	4
89 ²	$r^2-6r\pm6$	1
101 ²	$x^2 - 4x + 2$	2
107 ²	$x^2 - 4x + 2$	1
113 ²	$x^2 - 6x + 6$	2
131 ²	$x^2 - 4x + 2$	4
137 ²	$x^2 - 6x + 6$	5
149 ²	$x^2 - 4x + 2$	4
167 ²	$x^2 - 10x + 20$	7
173 ²	$x^2 - 4x + 2$	4
179 ²	$x^2 - 20x + 98$	1
191 ²	$x^2 - 38x + 151$	5
197 ²	$x^2 - 20x + 98$	1
227 ²	$x^2 - 8x + 14$	14
233 ²	$x^2 - 6x + 6$	1
239 ²	$x^2 - 14x + 42$	13
251 ²	$x^2 - 144x + 158$	1
257 ²	$x^2 - 6x + 6$	2
263 ²	$x^2 - 30x + 220$	2
269 ²	$x^2 - 20x + 98$	4
281 ²	$x^2 - 60x + 54$	2
293 ²	$x^2 - 12x + 34$	2
311 ²	$x^2 - 170x + 55$	1
317 ²	$x^2 - 4x + 2$	1
347 ²	$x^2 - 4x + 2$	2
353 ²	$x^2 - 12x + 33$	8
359 ²	$x^2 - 56x + 59$	4

q	primitive polynomial	$=x^k$
383 ²	$x^2 - 10x + 20$	4
389 ²	$x^2 - 12x + 34$	1
401 ²	$x^2 - 6x + 6$	2
419 ²	$x^2 - 36x + 322$	1
431 ²	$x^2 - 14x + 42$	5
443 ²	$x^2 - 20x + 98$	2
449 ²	$x^2 - 12x + 33$	4
461 ²	$x^2 - 4x + 2$	2
467 ²	$x^2 - 4x + 2$	5
479 ²	$x^2 - 208x + 265$	5
491 ²	$x^2 - 4x + 2$	2
503 ²	$x^2 - 10x + 20$	8
509 ²	$x^2 - 4x + 2$	1
521 ²	$x^2 - 18x + 78$	13
557 ²	x^2-4x+2	1
563 ²	$x^2 - 4x + 2$	1
569 ²	$x^2 - 72x + 155$	4
587 ²	$x^2 - 4x + 2$	5
593 ²	$x^2 - 6x + 6$	2
599 ²	$x^2 - 14x + 42$	1
617 ²	$x^2 - 30x + 222$	1
641 ²	$x^2 - 6x + 6$	2
647 ²	$x^2 - 10x + 20$	4
653 ²	$x^2 - 4x + 2$	4
659^{2}	$x^2 - 4x + 2$	2
677 ²	$x^2 - 20x + 98$	7
683 ²	$x^2 - 10x + 20$	5
701 ²	$x^2 - 4x + 2$	4
719^{2}	$x^2 - 110x + 138$	1

References

- [1] A.E. Brouwer and G.H.J. van Rees, More mutually orthorgnal latin squares, *Discrete Math.* 39 (1982), 263–281.
- [2] C.J. Colbourn, Construction techniques for mutually orthognal latin squares, in: Combinatorics Advances (C.J. Colbourn and E.S. Mahmodian, eds.), Kluwer Academic Press, 1995, pp. 27-48.
- [3] C.J. Colbourn, Some direct constructions for incomplete transversal designs, J. Stat. Plan. Infer., to appear.

- [4] R.C. Mullin, P.J. Schellenberg, D.R. Stinson and S.A. Vanstone, Some results on the existence of squares, Ann. Discrete Math. 6 (1980), 257– 274.
- [5] Y. Miao and S. Yang, Concerning the vector V(m,t), J. Stat. Plan. Infer. 51 (1996), 223-227.
- [6] G.H.J. van Rees, All V(3,t)'s exist for 3t+1 a prime, J. Combin. Designs 3 (1995), 399-403.
- [7] E.J. Watson, Primitive polynomials (mod 2), Math. of Comp. 16 (1962), 368–369.
- [8] R.M. Wilson, A few more squares, Proc. Fifth Southeastern Conf. Combin. Graph Theory Computing (1974), pp. 675-680.
- [9] N. Zierler, J. Brillhart, On primitive Trinomials (mod 2), Information and Control 13 (1968), 541-554.