Analysis of Cascading Compression Algorithms

Gilbert H. Young and Kwok-Shing Cheng

Department of Computing
The Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong
csyoung@comp.polyu.edu.hk
csscheng@comp.polyu.edu.hk

ABSTRACT. Huffman coding scheme is a character-based algo-
rithm in which every leaf node represents a character only. In
this paper, we study three variations of the Huffman coding
scheme for compressing 16-bit Chinese language. Although it
is observed IDC can generate the shortest code length among
the three variations, but its empirical compression ratio is be-
low 1.8, which is unsatisfactory. In order to achieve higher
compression performance, i.e., compression ratio over 2, word-
based compression algorithms should be employed. A possible
way to develop word-based algorithms is to use the technique
of cascading. Two kinds of algorithms are chosen for cascad-
ing. They are LZ algorithms and the Huffman coding scheme.
LZ algorithms are used for finding repeating phrases while the
Huffman coding scheme is used for encoding the phrases instead
of characters. The experimental results show that the cascading
algorithm of LZSSPDC outperforms a famous UNIX cascading
compressor GZIP by 5% on average.

1 Introduction

Since the compression results for 16-bit languages are not as good as English
when the 8-bit character-based Huffman coding scheme [Huf52] is applied,
some variations of the algorithm are developed in order to model 16-bit
text better [CY97]. In this paper, we study three representative variations
of the Huffman coding scheme for 16-bit languages. They are 16-bit Huff-
man coding scheme (16Huff) [CY97], predictive data coding scheme (PDC)
[HT90] and indicator dependent Huffman coding scheme (IDC) [YC99].

JCMCC 34 (2000), pp. 207-221

For practical text compression, character-based Huffman coding scheme
is seldom used because the compression results are unsatisfactory (see sec-
tion 3). It is expected that word-based compression algorithms can achieve
higher compression performance [HC92, CWY99)]. Therefore, in the paper,
LZ algorithms [Bel86, Wel84] are employed to find repeating phrases and
three variations of Huffman coding scheme are applied to encode the phrases
respectively. The compression results of the three cascading algorithms are
provided and analyzed.

The rest of the paper is organized as follows. Section 2 introduces the
measurement metric and benchmark files. Section 3 describes the com-
pression performance of the three variations of Huffman coding scheme.
The cascading models of LZSS and LZW with the three Huffman coding
schemes are analyzed in Sections 4 and 5, respectively. Finally, Section 6
discusses the conclusions.

2 Measurement Metric and Benchmark Files

In this paper, compression ratio is used as the measurement for the perfor-
mance of a compression algorithm. It is defined as:

fe
CR ==
fsc

where C.R. is the compression ratio, f,, is the original file size and f,, is
the compressed file size. In the measurement, a larger compression ratio
means that a greater portion of the original file is reduced. In other words,
better compression performance is obtained.

In our study, all programs are run on a Pentium 90MHz computer with
16M RAM. The operating system is Linux 2.0.1. Note that all agorithms
presented in this paper can easily be applied to any 16-bit languages, but
Chinese is chosen for testing because it is a 16-bit and widely-used language.
We collect eight Chinese text files, namely cl.gb,c2.gb,...,c8.gb. They are
GB-coded and their sizes range from 236,321 to 15,619,863 bytes. The
files are with different types of content. Table 1 summarizes the detailed
information of the files.

208

| Name [Size (in byte) | Types of content |

cl.gb 236,321 Chinese Classical Issues and Essays
c2.gb 318,591 Chinese Classical Poetry
c3.gb 844,461 Chinese Modern Poetry
cd.gb 742,151 Chinese Miscellaneous

c5.gb 2,318,134 Chinese Classical Novels
c6.gb 2,475,726 Chinese Modern Novels

c7.gb 15,619,863 Chinese Electronic Magazine
c8.gb 8,163,166 Chinese Newspaper

Table 1: Details of the benchmark files

3 Variations of Huffman Coding Scheme

Three variations of Huffman coding scheme are presented in this section.
They are 16-bit Huffman coding scheme (16Huff) [CY97], predictive data
coding scheme (PDC) [HT90] and indicator dependent Huffman coding
scheme (IDC) [YC99].

Name | 16Huff | PDC IDC
(m=5,n=2)
cl.gb 1.57 1.58 1.71
c2.gb 1.36 1.37 1.47
c3.gb 1.67 1.67 1.83
cd.gb 1.54 1.54 1.60
c5.gb 1.72 1.72 1.76
c6.gb 1.67 1.67 1.71
c7.gb 1.69 1.68 . 1.71
c8.gb 1.68 1.68 1.74

Table 2: Compression ratios of 16Huff, PDC and IDC

16Huff can be classified as a single-tree algorithm while IDC is a double-
tree algorithm, and PDC is a multi-tree algorithm. The compression ratios
of the algorithms over the benchmark files are shown in Table 2. In the
table, it is observed that the compression ratios obtained by IDC is highest
since it uses correct 16-bit sampling technique and a tree-splitting method.
Another observation is that PDC and 16Huff achieve similar compression
ratios. For smaller files such as cl.gb, ... c4.gb, PDC compresses better than
16Huff. For larger files such as c5.gb, ...c8.gb, 16Huff outperforms PDC.
If we simply focus on the Huffman code size without considering the size

209

of frequency table (header size), 16Huff is better than PDC over all the
benchmark files since 16Huff use a correct 16-bit sampling technique for
Chinese while PDC still uses a 8-bit sampling technique. The code sizes
and header sizes of the three algorithms are shown in Table 3.

File Name 16Huff PDC IDC
Code | Header | Code | Header Code | Header
cl.gb 133,835 16,662 134,758 14,673 132,020 6,552

c2.gb 200,755 | 24,746 | 210,467 | 21,398 | 207,685 | 0,308
c3.gb 473704 | 32,167 | 478,958 | 27,828 | 449,254 | 12,077
cd.gb 457,957 | 25,336 | 450,171 | 21,883 | 452,703 | 10,768
cb.gb | 1,316,948 | 29,350 | 1,324,350 | 25,248 | 1,301,583 | 13,542
c6.gb | 1,448,577 | 32,466 | 1,455,441 | 27,868 | 1,433,878 | 14,676
c7.gb | 9,232,373 | 34,687 | 9,260,499 | 29,853 | 9,004,897 | 20, 208
c8gb | 4,820,945 | 28,375 | 4,830,093 | 24,398 | 4,670,774 | 14,299

Table 3: Code sizes and header sizes of 16Huff, PDC and IDC

The two compression algorithms, 16Huff and PDC outperform each other
for different ranges of input file size. Although 16Huff achieves smaller
sizes of Huffman codes, it is not suitable for compressing small files because
it would generate relatively larger header than PDC. In general, a header
consists of the count of distinct characters, the distinct characters and their
frequencies. Assume there are d distinct 16-bit characters with f distinct
first bytes where d > f. In 16Huff, the header size is equal to (2+2d+-2d) =
(4d+2) bytes. In PDC, the header size is equal to (f +1) 4 (f +d) + (2f +
2d) = (3d 4+ 4f 4 1) bytes. If the header size of PDC is not greater than
that of 16Huff, the following inequality is observed:

4d+22>3d+4f+1
d+1
ey M
Table 4 shows the values of d and f in the benchmark files. Since the
inequality 1 can be satisfied for all benchmark files, so the header size in
PDC should be smaller than that in 16Huff. The gain in the header size of
PDC would cover the loss in the Huffman code size for smaller files. Thus,
PDC should be used for compressing smaller files, and 16Huff should be
used for compressing larger files.

210

File Name | Number of distinct | Number of distinct | Is inequality 1
16-bit characters (d) first bytes (f) satisfied?
cl.gb 2,775 170 Yes
c2.gb 4,123 175 Yes
c3.gb 5,394 159 Yes
cd.gb 4,221 175 Yes
c5.gb 4,891 160 Yes
cb.gb 5,409 177 Yes
c7.gb 5,810 191 Yes
c8.gb 4,727 77 Yes

Table 4: The values of d and f in the benchmark files

Empirically, IDC is superior than the others because it obtains relatively
higher compression ratios than the other two variations of Huffman coding
scheme. Through the use of indicator splitting technique and the header
reduction technique, both its code size and header size are smaller than
16Huff and PDC.

3.1 Time and Memory Consumption of PDC, 16Huff and IDC

In this part, PDC, 16Huff and IDC are chosen for empirical evaluation.
We measure the time and memory usage consumed by each of the three
algorithms. The information is listed in Table 5. In the table, there are
two values in each entry. The value before a slash (/) is measured for com-
pression while the value after the slash is measured for decompression. For
example, under the columns of time usage, the first value is the compression
time while the second value is the decompression time. Similarly, under the
column of memory usage, the first value is the consumption of memory for
compression while the second value is the consumption of memory for de-
compression. The units of time and memory are second (sec) and kilobyte
(Kb) respectively.

Although the three algorithms share the same time complexity of O(nlogn)
[CLR90], their empirical performances are different. In Table 5, 16Huff uses
less time than PDC and IDC because fewer operations such as comparisons
and calculations are performed in 16Huff. In PDC, a structure of two di-
mensional array is used to store the first byte and second byte of a Chinese
character. As there are multiple Huffman trees used in the scheme, more
time is spent on computing the correct locations of the nodes for updating
the frequencies. In IDC, an extra pass for the input text is used for finding
indicators, and an extra comparison is taken to check whether each input
character is an indicator. All these additional operations make PDC and
IDC consume more time than 16HufT.

211

It is known that the memory consumption is proportional to the potential
size of the Huffman trees. 16Huff uses only one tree for encoding, so the
program size is smallest. PDC reserves one Huffman tree for the first bytes
and a second-byte Huffman tree is built for each first byte. Since the
frequencies of first bytes and second bytes are both kept, more memory is
consumed. Similarly, IDC uses two Huffman trees to store 16-bit characters
with duplication. It would consume more memory than 16Huff.

amo PDC T6Huff iDC
mo (80C, cmory mo (sccC iemory mo (Boc, emory

cl.gb 1.5/1.0 1.0@1.0 0 1.470.9 8167564 2.1/1.1 1,160/612
<2.8 2.5/1.7 1,168/1,068 2.2/1.4 B868/616 3.2/1.7 1,244/696
<3.8b 5.6/3.8 1,304/1,104 5.0/3.2 ©20/664 7.0/3.9 1,312/764
€4.85 5.4/3.8 1,164/1,068 4.6/3.0 873/620 5.5/3.7 1,2-6_64 730 |
<3.8b 16.0/10.8 1,168/1,073 14.2/8.9 0007644 19.0/10.9 1,316/768
c6.q5 17.2/11.4 1,200/1,100 15.3/9.8 920/664 20.8/12.2 1,344/800

(" c7.gb_|_ 107.9/71.1 1,176/1,100 | 96.3/62.0 936/680 138.1/76.8 ,404/856
cB.gb 56.3/36.8 1,164/1,068 $0.1/32.4 892/640 70.7/39.0 1,202/748

Table 5: Time and memory consumption of PDC, 16Huff and IDC

Overall, considering all factors (compression ratio, time and memory con-
sumption), 16Huff is more favoured for practical 16-bit text compression.

4 Cascading LZSS with PDC, 16Huff and IDC

In this section, the cascading models of LZSS [Bel86] with PDC, 16Huff
and IDC are studied. LZSS is one of the practical variations of LZ77[ZL77).
The basic idea of LZSS is that it uses previously seen text as a dictionary,
and replaces phrases in the input text with pointers into the dictionary.
There are two important structures in LZSS: the sliding window and the
lookahead buffer. The input characters pass the buffer firstly, and then go
into the window. Each time the algorithm tries to find a longest match from
the buffer into the window. If a match is found, LZSS will output a bit
0 to indicate there is a match, and output the matched position followed
by the matched length. If a match is not found, it will output a bit 1
and the unmatched character. All output elements, such as the matched
position, the matched length and the unmatched character, are encoded in
fixed length of bits. Figure 1 illustrates an example of LZSS.

The fixed-length bit representation assumes all values in the tokens of
LZSS are in uniform distribution. However, this is not true in general.
It is found out that some values occur very frequently while some occur
rarely. If the frequent values can be represented in relatively smaller number
of bits, and the infrequent values can be represented in relatively larger
number of bits, -the overall usage of bits would be decreased. Therefore,
it would be better if we encode the values by variable-length bits basing
on their frequencies. For this purpose, adaptive Huffman coding scheme is
employed.

212

[nput: This is

<———— Sliding Window-————><‘:......B.u‘ff~e‘T._ >

.
’

(1 »

s .

[{ 34567 89 1011121314

(5]

01 2 3 4567 89 1011121314

() qT|hii s ils
01 23 4567 89 1011121314
Total Output Tokens: (1,T).(1.h).(1.1),(1.8).(1.)

@ [Tin|i|s ils :

01 2 3 45 67 89 1011121314
Total Output Tokens: (1, T).(Lh).(1Li)(1s)(1.).(0.2.2)

Figure 1: An example of LZSS

Two different adaptive Huffman trees are built during the cascading pro-
cess. The PDC, 16Huff and IDC are used to encode the unmatched char-
acters while a 8-bit Huffman coding scheme is used to encode the matched
length. Fixed-length bits are used to represent the matched position be-
cause a wide range of matched position occurs, and the repetition of each
matched position seems to be rare. Under this situation, variable-length
bits would be useless for improving the compression ratios. The generalized
cascading model of LZSS is shown in Figure 2.

LZSS is a one-pass compression algorithm which scans the input text
once. However, 16Huff, PDC and IDC are multi-pass algorithms. In or-
der to make the cascading algorithm suitable for on-line 16-bit text com-
pression, the three semi-adaptive Huffman coding schemes are changed to

adaptive versions, which scan and encode an input text in only one pass
[Mar92].

213

Matched Token
Encoded by 8-bit Huffman Tree

Unchanged —
[: 1
Length With
l 0 I Position ! Length l E—— l 0 | Position Van:fllc Lc:lglhl
[}
Urchanged

Unmatched Token
Unchanged
C ¥
Character With
YNy —_—
| I Character | ! I Variable Length i
T ¥

—

Encoded by PDC. 16Huil or IDC

Figure 2: The generalized cascading model of LZSS

4.1 Compression Results

In LZSS, there are two parameters: sliding window size (2V) and lookahead
buffer size (2F). Before analyzing the cascading model, we have to find the
best setting of the two parameters at first. The compressed file sizes of LZSS
under different settings of N and F are shown in Figure 3. On average,
when N = 18 or 19 and F = 2 or 3, the compression results seem to be
the best. In other words, a large size of sliding window and a small size of
lookahead buffer are favoured for compressing 16-bit text. Since a normal
16-bit passage contains many repeating phrases with length less than four
characters, so a small size of lookahead buffer is enough. On the contrary, a
large size of sliding window should be used for storing and matching more
past phrases.

In the following paragraphs, the performance of different cascading algo-
rithms will be compared. A default setting of LZSS (N = 18 and F = 3)
is adopted for the cascading algorithms since the best compression results
are obtained under this setting.

The cascading algorithms of LZSS with PDC, 16Huff and IDC are called
LZSSPDC, LZSS16Huff and LZSSIDC respectively. The compression re-
sults of these algorithms are shown in Table 6. The value out of brackets
is compressed file size while the value in the brackets is compression ratio.
It is observed that LZSSPDC achieves higher compression ratios than the
other two algorithms, and LZSSIDC performs the worst.

In the cascading model, the three variations of Huffman coding scheme
are applied to unmatched characters only. Normally, the total number of
unmatched characters are relatively small, comparing with the total number
of matched characters. If all the unmatched characters are extracted to
generate a new file, the size of the new file would also be small. In Section 3,
it is explained that PDC is better than 16Huff when compressing small files

214

since PDC can generate relatively smaller header. Undoubtly, LZSSPDC

should outperform LZSS16Huff.

Compression Results of c1.gb

Compression ”
Ratio 1787 o
FE
1es
18
195
15
L T
Window Stre (N}
Compression Results of c.gb
Comprasion 2! Compreasion
Ratio 2 Rato
19
18
(K} 4
16
2
15 - Buffer Size (F)
A :
BT %
Window Size (N)
Compression Results of c5.gb
i
177
Ratio

15 16 1 18

Window Siza (N)

19

Comprassion Results of ¢7.gb

Compression Results of c2.gb

Windaw Size (N)

Compression Results of c4.gb

2 Bufter Suze (F)
16

7
Window Size (N)

Compression Results of c6.gb

Figure 3:
Compression results of LZSS under different settings of N and I

215

Name | LZSSPDC___ | LZSSI6Hul | LZSSIDC | GzIP___]

cl.gb | 122,666 (1.93) | 125,089 (1.89) | 125,311 (1.89) | 117,914 (2.00)
c2.gb | 184,604 (1.73) | 188,247 (1.69) | 188,622 (1.69 194,002 (1.64)
c3.gb | 388,215 (2.18) | 393,081 (2.15) | 393,684 (2.15 392,259 (2.15
cd.gb | 406,684 (1.82) | 410,357 (1.81) | 410,961 (1.81) | 423,183 (1.75)
c5.gb | 1,193,620 (1.94) | 1,197,394 (1.94) | 1,108,983 (1.93) | 1,294,354 (1.79)
c6.gb_| 1,281,925 (1.93) | 1,286,291 (1.92) | 1,288,155 (1.92) | 1,390,110 (1.78)
c7.gb | 7,518,984 (2.08) | 7,520,680 (2.08) | 7,524,368 (2.08) | 8,425,850 (1.85)
cB.gb | 3,568,060 (2.29) | 3,570,958 (2.29) | 3,573,423 (2.28) | 4,134,569 (1.97)

Table 6:
Compression results of LZSSPDC, LZSS16Huff, LZSSIDC and GZIP

On the other hand, LZSSIDC achieves the worst compression ratios. It
is mainly due to the partition concept no longer works for the unmatched
characters. Consider a new file generated only by the unmatched char-
acters, there should have no obvious correlation between two consecutive
unmatched characters because the two characters come from distant po-
sitions. Consequently, it is hard to choose indicators to cut the file into
partitions clearly. Furthermore, in the adaptive IDC, extra information
such as the indicators and the novel characters in the second tree have to
be stored in the compressed file, so the overall compressed size of LZSSIDC
is larger than the other two algorithms.

In order to compare the compression results with existing cascading com-
pressor, the compression results of a famous UNIX compressor GZIP are
also shown in Table 6. Again, LZSSPDC is the best. It outperforms GZIP
by 5% on average.

5 Cascading LZW with PDC, 16Huff and IDC

In this section, the cascading models of LZW [Wel84] with PDC, 16Huff
and IDC are studied. LZW is an effective variant of LZ78 [ZL78]. The
basic idea is to use a potentially unlimited size of dictionary which contains
previously seen phrases for encoding the coming phrases. The dictionary en-
tries of LZW are initially assigned with all defined alphabets in a language.
Then, the algorithm tries to match the input text against the dictionary
entries. When a phrase is matched, a code (dictionary entry number) is
generated. Each time a code is generated, the code and the following un-
matched character are merged to form a new phrase and, the phrase will be
appended in the dictionary. Table 7 illustrates an example of LZW [Mar92).
The example is for 8-bit ASCII codes, and the input string is “WED WE
WELR WEB WET?,

216

Character | Code | New code value &
Input Output | associated string
‘(W” (3] 256 s ((W”
“E? W 257 = “WE”
“D” E 258 = “ED”
“wn D 259 = “D”
“WE” 256 260 = “WE”
N E 261 = “E”
“WEE” 260 262 = “WEFE”
“W” 261 263 = “E W”
“EB” 257 264 = “WEB”
[{&}] B 265 = “B”
“WET” 260 266 = “WET® |
End of file T

Table 7: An example of LZW

In the example, LZW outputs a dictionary entry number each time.
Some entries are referenced frequently while some are not. Therefore, the
frequency distribution of the entries is not uniform, and Huffman coding
scheme should be applied. The way of cascading LZW with an adaptive
Huffman coding scheme is trivial. When LZW outputs an entry number
in fixed-length bits, the entry number is further encoded by an adaptive
Huffman tree in variable-length bits. The generalized cascading model of
LZW is shown in Figure 4.

Dictionary Huffman Tree

Figure 4: The generalized cascading model of LZW

217

The only parameter in LZW is the size of dictionary (2V). If N is equal to
16, there are 65,536 entries in the dictionary, and each token is represented
by 16 bits. Apart from tuning the parameter N, Mark [Mar92] proposed
two modifications to increase the compression performance. They are the
bumping and flushing mechanisms. Take a 8-bit ASCII input file as an
example: assuming N is equal to 16. LZW loads the 256 defined characters
into the dictionary, and the size of dictionary will be gradually increased.
When the LZW encoding process starts, the number of filled entries is
far less than 65,536, so it would be wasteful to output a 16-bit token for
representing the beginning entries. Instead, a 9-bit token is generated at
first. When the number of filled entries becomes 512, a special bumping
code is output, and the length of token is increased to 10 bits. In other
words, the bit length of a token is not fixed. It is gradually increased
according to the number of filled entries in the dictionary. This is called
the bumping mechanism. Once the dictionary is filled up, a special flushing
code is output. Then, the dictionary is totally flushed and initialized again.
This is called the flushing mechanism.

Before performing the cascading process, it is necessary to find the best
size of the LZW dictionary so that it can achieve the minimum compressed
file size. The bumping and flushing mechanisms are employed, and the
parameter N is varied. It is found out that the token length would be
very large if all predefined 16-bit characters are loaded in the dictionary. A
simple modification is made to load the distinct characters appearing in an
input text only. To achieve this effect, an extra pass is consumed for finding
the distinct characters appearing in the text. It is worth using the extra
pass to reduce the token length because the size of the distinct characters
in the text would be far less than the size of predefined character set.
Table 8 shows the compression results of LZW by varying the parameter
N. Although when N = 17 or 18, the compression results of LZW are the
best, N = 16 is chosen for the cascading model of LZW. The parameter
setting will be explained later.

[Name| N=15 | N=16 | N=17 | N=18 |
clgb | 129,419 | 130,174 | 130,539 | 130,539
c2.gb | 219,986 | 219,396 | 215,171 | 215,171
c3.gb | 426,801 | 424,530 | 414,173 | 410,810
cdgb | 448,193 | 446,521 | 442,577 | 439,343
c5.gb | 1,324,362 | 1,207,368 | 1,272,860 | 1,255,536
c6.gb | 1,434,080 | 1,409,500 | 1,387,704 | 1,364, 666
c7.gb | 8,774,061 | 8,473,740 | 8,245,063 | 8,032, 090
c8.gb | 4,339,441 | 4,179,656 | 4,029,293 | 3,879,077

Table 8: Compression results of LZW with different values of N

218

5.1 Compression Results

The cascading algorithms of LZW with PDC, 16Huff and IDC are called
LZWPDC, LZW16Huff and LZWIDC respectively. In the above paragraph,
it is said that when N = 17 or 18, the compression results of LZW are the
best. However, N is set to be 16 in the cascading model of LZW. If N is
greater than 16, the number of nodes in the Huffman tree would be so large
that the compression and decompression processes are very slow. Moreover,
larger number of dictionary entries means fewer repetitions of the entries,
so the Huffman coding scheme may not take any advantage when encoding
the entries. If NV is less than 16, the dictionary is not large enough to hold
sufficient phrases for matching. Therefore, N = 16 is used as a default set-
ting for the different cascading algorithms. The compression results of these
algorithms are shown in Table 9. It is observed that LZWPDC achieves
higher compression ratios than the other two algorithms, and LZWIDC
performs the worst.

[Name | LZWPDC | LZWI6HuR | LZWIDC |
cl.gb | 128,814(1.83) | 144,361 (1.64) | 144,766 (1.63)
c2.gb | 210,252(1.52) | 231,041 (1.38) | 232,434 (1.37)
c3.gb | 413,937(2.04) | 446,751 (1.89) | 448,342 (1.89)
cd.gb | 426,879(1.74) | 456,626 (1.63) | 458,689 (1.62)
c5.gb | 1,223,893(1.89) | 1,263,797 (1.83) | 1,268,638 (1.83)
c6.gb | 1,316,973(1.88) | 1,362,091 (1.82) | 1,367,751 (1.81)
c7.gb | 7,758,557 (2.01) | 7,749, 346(2.02) | 7,773,862 (2.01)
c8.gb | 3,902, 765(2.09) | 3,938,609 (2.07) | 3,953,481 (2.06)

Table 9: Compression results of LZWPDC, LZW16Huff and LZWIDC

When an input text is being read, the dictionary in LZW grows gradually.
It is found that the output entries are within some repeating intervals, and
the repetitions of the intervals are quite high. It would be better if we
can encode the intervals and the numbers within the intervals separately.
Only PDC can achieve this goal. It encodes the first 8 bits by a tree and
the remaining 8 bits by another trees. The arrangement can capture the
property of high repetition of the intervals (the first 8 bits). None of the
LZW16Huff and LZWIDC can capture this property.

Most entries in the dictionary consist of several 16-bit characters, and
the repetition of consecutive dictionary entries are expected to be low. In
other words, applying IDC to the entries of LZW dictionary has no benefit
because it is hard to cut the entries into partitions without duplication.

The weakness of LZWIDC is similar to the case of the cascading algorithm
LZSSIDC.

219

To sum up, by taking the compression ratio into consideration, PDC is
better for both the cascading models of LZSS and LZW.

6 Conclusions

Among different character-based Huffman coding schemes, IDC seems to
be the best. It outperforms 16Huff and PDC by around 5% in compression
ratio. The average compression ratio achieved by IDC is 1.7. However,
when considering the cascading models of LZSS and LZW, PDC is better.
In the cascading model of LZSS, LZSSPDC outperforms the LZSS16Huff
and LZSSIDC by around 1%. It can achieve an average compression ra-
tio of about 2. In the cascading model of LZW, LZWPDC outperforms
LZW16Huff and LZWIDC by around 5%. It can achieve an average com-
pression ratio about 1.9. In conclusion, it is more effective to choose PDC
for the two cascading models. From the experimental results, the best cas-
cading algorithm is LZSSPDC. It outperforms a famous UNIX cascading
compressor GZIP by 5% on average.

References

[Bel86] T.C. Bell, Better OPM/L text compression, IEEE Transactions
on Communications, 34(12) (1986), 1176-1182.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms, MIT Press, 1990.

[CWY99 | K.S. Cheng, K.F. Wong, and Gilbert H. Young, A study on
Word-based and Integral-bit Compression Chinese Text Compres-

sion Algorithms, Journal of American Society of Informalion Science
50(3) (1999), 218-228.

[CY97] K.S. Cheng and Gilbert H. Young, Chinese Text Compression: A
Survey, In Proceedings of the Seventeenth International Conference
on Computer Processing of Oriental Languages, pages 162-167, Hong
Kong, April 1997.

[HC92] R.N. Horspool and G.V. Cormack, ‘Constructing Word-Based Text
Compression Algorithms, In Proceedings of Data Compression Con-
ference 1992, pages 62-71, Snowbird, Utah, March 1992.

[HT90]| T.H. Huang and L.Y. Tseng, A Predictive Coding Method for
Chinese Text File Compression, Journal of Computers 2(3) (1990),
18-23.

[Huf52] D.A. Huffman, A Method for the Construction of Minimum Re-
dundancy Codes, Proceedings of the Institute of Radio Engineers
40(10) (1952), 1098-1101.

220

[Mar92 | N. Mark, The Data Compression Book, M & T Books, 1992.

[Wel84] T.A. Welch, A Technique for High-performance Data Compres-
sion, IEEE Computer 17(6) (1984), 8-19.

[YC99] G.H. Young and K.S. Cheng, Indicator Dependent Huffman Cod-
ing Scheme for Chinese Text Compression, Computer Processing of

Oriental Languages, (1999) to appear.

[ZL77] J. Ziv and A. Lempel, A Universal Algorithm for sequential Data
Compression, IEEE Transactions on Information Theory IT-23(3)
(1977), 337-343.

[ZL78] J. Ziv and A. Lempel, Compression of Individual Sequences via
Variable-rate Coding, IEEE Transactions on Information TheoryIT-
24(5) (1978), 530-536.

221

