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Abstract

Given a finite-dimensional vector space V over a finite field F of
odd characteristic, and equipping V with an orthogonal (symplectic,
unitary) geometry, the following two questions are considered:

1. Given some linearly independent vectors w,, ws, ..., wx € V and
the k x k matrix A = ({(wi, w;)), and given scalars a1, az, ..., ay,
B € F, how many vectors v € V. not in the linear span of
Wy, Wy, ..., Wk, satisly (w;,v) = a; (¢ = 1,2,...,k) and (v,v) =
B?

Given a k x k£ matrix A = (A;;) with entries from F, how many
k-tuples (v1, v2, ..., vx) of linearly independent vectors from V
satisfy {(vi, v;) = Ay; (1,7 =1,2,..., k)?

w

An exact answer to the first question is derived. Here there are two
cases to consider, depending on whether or not the column vector
(i) is in the column space of A. This result can then be applied
iteratively to address the second question.
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ometry, totally isotropic subspace, pseudo-orthogonal complement.
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1 Introduction

The purpose of this paper is to derive formulas which allow one to rapidly
compute the number of configurations of & vectors in a finite vector space \".
equipped with an orthogonal (symplectic, unitary) geometry, where these
vectors are required to have some given relationships with respect to the
geometry on V. The computation involves solving a certain system of linear
equations, as well as diagonalizing the coefficient matrix of this system
with respect to matrix congruence. Researchers involved with finite vector
spaces might find it worthwhile to incorporate these methods in a symbolic
manipulation software package dealing with linear algebra over finite fields.

In the following discussion, attention will be restricted to the case where
the field of scalars F is a Galois field GF(q) with ¢ odd. V will be an
n-dimensional F-vector space. A nondegenerate bilinear or sesquilinear
form (-, -} will be fixed on V, and it is assumed that this is one of the
three classical types (symmetric, alternating, hermitian), inducing one of
the three classical geometries (orthogonal, symplectic, unitary) on V. Two
related questions will be addressed:

1. Given some linearly independent vectors wy, wa,...,w; € V and the
k x k matrix A = ((wi, w;)), and given scalars oy, a2, ...,ax, 8 € F,
how many vectors v € V', not in the linear span of wy,ws, ..., wy,
satisfy (w;,v) = a; (i = 1,2,...,k) and (v,v) = 87

2. Given a k x k matrix A = ();;) with entries from F', how many k-
tuples (v;,va, ..., vx) of linearly independent vectors from V' satisfy
(v,-,vj) = /\,'j (i,j = 1,2, ,k)‘?

We will make use of the following three parameters. Let € = 1 if the
geometry is orthogonal or unitary, and let ¢ = —1 if the geometry is sym-
plectic. Let g =0, ,%,, 1, respectively, in the symplectic, unitary, orthogonal
case. Let d be the (Witt) index of the form (-, -). That is, d is the di-
mension of any maximal subspace on which the form vanishes identically.
Subspaces on which the form vanishes identically are called totally isotropic
subspaces. Subspaces on which the form is nondegenerate are called non-
degenerate subspaces.

Recall that in the case of unitary geometry, ¢ is necessarily a perfect
square, and the form is sesquilinear with respect to the involution A — A=
A7 on F. In the other two cases, we will define A = X for all A € F. In all
cases, Fy will denote the fixed field of the automorphism A — Aon F.
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2 Single vectors

Before considering the counting problems discussed in the introduction, it
is necessary to determine the number of vectors v € V with a prescribed
value of (v,v). This will be the goal of this section, although the results
can also be found in the references cited here. Some (mostly nonstandard)
definitions will be required.

DEFINITION. 7 will identify the isometry type of the geometry given to
V by the form (-, -}, as follows. Take 7 to be the symbol “Sp” if the
geometry is symplectic. Take 7 to be the symbol “U” if the geometry is
unitary. When the geometry is orthogonal and n is even, take 7 to he “O+”
if n = 2d, and take T to be “O~” if n = 2d + 2. When the geometry is
orthogonal and n is odd, consider whether or not V admits an orthogonal
basis {e1, ez, ...,en} such that (e;,e;) = 1 when i is odd, and (e, ¢;) = —1
when 7 is even (7 = 1,2,...,n). If such a basis exists, then take 7 to be
“O*”. Otherwise, take 7 to be “O~”". It is known that n and 7 uniquely
determine V' and (-, -) up to an isometry (z.e. up to an isomorphism which
preserves the form).

DEFINITION.  F~ is the multiplicative group of F' (i.e. F* = F\{0}).
F2is {X* | A € F}. F*%is F* N F?. When the geometry is unitary,
Fy = GF(\/q), and F§, F§, F3* have the evident meanings. &, 65, 6_, x
will denote functions from F to the ring of (rational) integers. They are
defined as follows:

L tifa=0 [ lifae Fe
‘50(’\)‘{ 0if A#£0, 6+(")‘{ 0if A ¢ F*2,

6-(A)={ saER am=am-e.

DEFINITION.  [n;7;¢|A] is defined to be the number of nonzero vectors
v € V with (v,v) = X, where A € F.

The following result, which gives [n;7;q|A] explicitly, can be found
already in the existing literature.

THEOREM 2.1. Fiz A € F. Then
[7;Sp; | Al = Bo(A) (g™ — 1);

g"F + (—1)"o(N)gE — (=1)"¢*F - 8p(N)
[n;U;q|A] =

=[¢% - (=) +(-D"%(N)]  if)e R,
0 if A ¢ Fo;
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= [¢"F £ 6, (V) £8A)lg 7 F6-(3) F ()]
n:0%;q| )] = if n is odd,
[ a1 "~ £ 60(V)e? F 457 - 6o(d)

=[g% F1)lg7 " £ 0(N)]

if n is even.

Proof. The symplectic case follows immediately. The orthogonal cases are
dealt with in [5, Section 6.10). (The O case with n odd is handled by
negating equation (66) in [5). The O~ case with n odd follows from the Ot
case.) The unitary case with A = 0 is dealt with in (2, Theorem 8.1]. The
unitary case in general can be proved by the following induction argument.
This proof can be adapted for the orthogonal cases as well.

Clearly [n;U;q|A] = 0 if A ¢ Fo. Assume then that A € Fp. We will
argue by induction on n. When n = 1, the claim is that [n;U;q1A] =

n
(v/g+1)(1 —60(})), which is correct. For general n, let # {E :c}/q_""l = A}
i=1
n
denote the number of solutions to the equation Z a:}ﬁ'H = A. Now with

n > 1, assume as an induction hypothesis, that ‘t.hle theorem is true when
n is replaced by n — 1. Observe that V has an orthonormal basis (cl. [2,
Theorem 4.1 and its corollary] and [6, Theorem 28]), and that the norm
map A — AV¥H! from F to Fy is onto, and is (/g + 1)-to-1 when restricted
to F*. So,

[n;U;q ) Al + 60(A) = #{zﬂ:x}/ﬂl = A} =
i=1

n-—-1 n-1
#{Zw,ﬁ“ =A}+(ﬁ+1> > #{Zw,ﬁ“ =A—p} =

i=1 pEFy =1
"+ (D) ENET - (- +
(Va+1) ) [4"'% +(=1)""18(A - p)"T - (—1)"'14"7_2] =

pEFy
(14 (Va+ D(v/a = Dllg" " + (-D"¢¥ 7] -
(=1)¢* T {Bo(N) + (V3 + 1)(1 = 6o(A)] =
¢ (¢ F + ()2 ) - (DT VA + L - BV =

@+ (=1)"6(\)g? - (-D)"*F. O
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3 Configurations of vectors

The following (known) lemma will be required in the proof of Theorem 3.2.

LEMMA 3.1. If U and U’ are both tolally isolropic m-subspaces of V,
and if U + U’ is nondegenerate, then for any basis {e,,...,e} of U, there
ezists a unique basis {e, ..., e;,} of U’ satisfying (e;, e}) = &;; for all i, j =
1,2,...,m.

Proof. First, note that U N U’ = 0. U & U’ is nondegenerate and so,
by dimensional reasoning, contains a vector f; + e} (fi € U,ef € U’)
orthogonal to span{es, ..., e, } but not to e;. Clearly the same claim can
be made about the vector e]. By rescaling ¢/ if necessary it may be assumed
that (e;, e}) = &;1. Likewise, for j = 2, ...,m, there exists e with (e;, e}) =
6;;. Now, e},...,e;, are linearly independent and together span U’. This
shows the existence of the basis {€], ..., e/, }. The uniqueness follows easily
from this. 0O

Another (known) result with many applications is the following gener-
alization of Witt’s Extension Theorem (cf. [5, Sections 6.5, 6.9, 6.11] and
[4, Section 1.11}).

THEOREM 3.1. Let U and U’ be subspaces of V. Then any isometry from
U onto U’ can be extended to an isomelry from V onio V.

The notation [n;7;¢|A] will now be extended as follows. Fix some
scalars ay,a2,...,az,8 € F. Let A = (XA;;) be a k£ x k matrix with the
property that there exist linearly independent vectors wy,ws,...,wx € V
such that (w;,w;) = A;j, for all i, j = 1,2,..., k. Let r be the rank of A. In
the orthogonal case, it is known that A is congruent to a diagonal matrix
whose only nonzero entries are the first » entries of the diagonal, with all
except possibly the first entry being ones (cf. [6, Theorem 11}). Let p be
the first diagonal entry of this diagonal matrix.

DEFINITION. The number of vectors v € V, not contained in the linear
span of wy, ..., wg, and satisfying the conditions (v,v) = § and (w;,v) = e;
(i=1,2,...,k) will be denoted by

n;T;q B
A - Ak oy
Akt Akk oy
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Notice that Theorem 3.1 assures that this definition is well-defined. in
that it is independent of the particular vectors wy, ..., w used. We will now
see how to compute these numbers. In the following, it will be supposed
that # = 0 if 7 = Sp, and that 8 € Fp if 7 = U. The number sought is
clearly zero in the cases which are contrary to this.

THEOREM 3.2. Assume that 3 =0 if 7 = Sp, and that B € Fo if 7 = U.
Then

n; T4 B
Ain - - Ak oy
| A Ak o

( k k
¢t [n - 2%+ q‘ﬂ— Zlaj’r'j] fai =2 Xij7i
i= =
(i=12,...k),

4 ay
gk if | @ |is not in the
ag
L column space of A,

where the v; are any scalars, and where 7' = 7, ezcept possibly in the orthog-
onal case, where say T = O!, and where v = O’ with J =
I,\'((—I)H]p) if n is even,
Ix((=D)3lp) if n is odd.
(Here “+” and “” are identified wilh the integers 1 and -1, respectively.)

Proof. Let W = span{wi,...,wr}. Let U = Wt ={v eV | (uv) =
0 for all u € W}. Let U’ be a pseudo-orthogonal complement. of U, which
exists by [7, Corollary 2]. This means that V = U&U’, and that UNU't and
U’ A U+ are maximal nondegenerate subspaces of U and U’, respectively.
Let H = rad(U) ¢ rad(U’"), M = UNU™" and M' = U'NW. Then
V =H@&M@ M’, an orthogonal direct sum of nondegenerate subspaces,
by [7, Proposition 3]. Also, U = rad(U) & MU' = rad(U’) & M’ and
W = rad(U)& M'. Consider the linear map from V = U@ U’ to F* taking
v to ({w1,v), .., {wg,v)). Uis the kernel of this map. Clearly there exists
a unique v € U’ with (wi,ve) = ai(i = 1.2,....k), and moreover, vg + U
consists of all the vectors v for which {w;. v) = a; (i = 1,2,..., k). We seek
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to count certain vectors contained in the coset vy + U. Write vg = v| + va,
where v) € rad(U’) and v2 € M'.
Let us establish the equivalence of the following three conditions:

(i) m = 0 s
(i) (vu+U)NW £0 ,
aq
(in) : is in the column space of A.

aj

If (i) holds, then vy € W and so (ii) certainly holds. If (ii) holds,
then there exists u € U with vg+u € W. So vo + 4 = w + z, for some
w € rad(U) = rad(W) and z € M’. But then vg—z=w—u e U'NU = 0.
So vo = z € M’. So (i) holds. This shows that (i) < (ii). Now (ii) < (iii)
is straightforward to check, since the coset vg + U consists of those vectors
v satisfying (w;.v) = a; (i = 1,...,k). We now have two cases to consider.

Case 1: Suppose that v; = 0, so that vp = vo € M’ C W. Now (vg + u,
vo + ) = (vo, vo) + (u, u), for all u € U. We seek the number of u € U\W

%
such that {u,u) = B — (vg, vg). Now write vy = E 7;w;, for some scalars
i=1

k k
%i. Then o; = (w;,v) = > i (wi, w;) Z YjAij. Also, (vo,v) =
ji=1 =1
k
A Z a;. So we seek the number of vectors u € U\W with

iy
k
(u,u) = 8 - Z «;7;. But U\W = U\rad(U) and the number we seek

is lrad U)| t,lmes the number of nonzero vectors u E M with (u,u) =

i=1
the type of geometry on the nondegenerate subspace M mherlted from that

of V. (Notice that W has dimension k, rad(W) = rad(U) has dimension
k —r, U has dimension n — k and M has dimension n — 2k 4 r.) Clearly
7' = 7 when 7 is either Sp or U.

When 7 is O%, the situation is not so clear, except that M has an
orthogonal geometry of course. So let us say then that 7 is O/ and 7/
is O/, where I and J may be “4” or “”. W = M' @ rad(W) has an
orthogonal basis wj,...,w} such that M’ = span{w{,...,w,’,}, rad(W) =
spanf{wg g, ..., wi}, (), wi) = p. and wh,w), ..., w! are unit vectors (cf.
[6, Theorem 11]). By Lemma 3. l, rad(U') has a basns uy, ..., up_, such
that (wy ;. ui) =6;(¢,j = 1,2,....k — ). Now M has an orthogonal basis
uy. ... u,,_qH.r with ua, us, ..., u,,_g;H., all unit vectors. Let w = {(u;, u).

8- Z @{¥;, which is just ¢*=7 [n -2 +r7q| 8- Z 0,7,], where 7/ is
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Combining the selected bases for the various subspaces to form a basis
for V. we see that the discriminant of (-, -) with respect to this basis
is wp(—1)*=". This forces x(wp(—1)*"") = Ix((—=1)L%]), since V has a
geometry of type O'. So x(w) = Ix((—=1)lE1+¥-7p). But this must equal
Jx((—-l)l";?‘ﬂl), since M has a geometry of type O7. From here, one can
deduce that I and J are related as stated in the theorem. This concludes
case 1.

Case 2: Here we suppose that vy # 0. So vg ¢ W. There exists a basis
Uy, Uz, ..., Ug—y of rad(U) = rad(W) with (u;,v1) =61 (i=1,2,...,k — 7).
Consider some u € U and write u = Zf;{ Yiu; + 2, for scalars v; and
for z € M. Then {vo + u,vo + u) = (v; + va + Zf;lr'y,-u,- +z,v1 +vo +

Uy 4 2) = (o + DA v, v+ Dis] vew) + (v2,02) +(2,2) =
Y1 + €71 + (v2, va) + {2, 2). We seek the number of u for which this equals 3.
In the symplectic case, since {vg + u,vo +u) = 0= B, for all u € U, we get
a count of [U] = ¢"~% = ¢"~¥~9. Next consider the orthogonal case. As u
ranges over all of U, 71 + €7, = 27; ranges uniformly over all of F. (For a
fixed value of z € M, but with 94, ..., 7& varying, we see that {vg+u, vo +u)
varies uniformly over all of F'. This is then still the case as z is allowed to
vary as well.) Hence, the number of u € U with {vo+u,vo+u) = § is equal
to ;11-|U| = q"~k-1 = ¢"~k=9_ Lastly, we consider the unitary case. Here
(vo +u,vo + u) = 71 + 7, + (v2, v2) + (2, 2). Now the trace map ¢ — ¢ +C
from F to Fy is Fy-linear and onto. So as v; varies, 7; +%, varies uniformly
over all of Fy. It follows, by reasoning as in the orthogonal case, that the
number of u € U with {vo +u,vo+u) = B is [U|/|Fo| = hY = R,
This concludes case 2. m]

The numbers discussed in Theorem 3.2 can be used to iteratively com-
pute the following numbers.

DEFINITION. Let A = (A;;) be a k x k matrix with entries taken from F'.
The number of k-tuples of vectors (vy, vz, ..., v ) from V satisfying (vi, v;) =
Aij (3,5 = 1,2,...,k) will be denoted by

In order for this number to be nonzero, it is of course required that
AT = ¢A. The next section provides an example, demonstrating how to
compute the above number.
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4 An example
Consider, as an example, the number

4:0%:7

<

SO N
[ S L]

1
2
3

In this count, three vectors are required to satisfy certain relationships with
respect to an orthogonal geometry. To compute this number, simply select
(subject to the restrictions) the vectors one at a time, in any order, and
make use of Theorems 2.1 and 3.2. The following three computations of
this number use different orderings for selecting the three vectors.

1.
4;O+;7|

. O+ . 5
1 2
2 0 4

[4:0*:7(1] - [3;07;7]3] - [2,0*;7]4] =

7 =1)- 7T+ 1) (7= 1) = 72T = 1)*(7+1)* = 112896.

I 3 1 2 1] _
(Notethat[lO][QO][3 0] =
3

EIBEHE

ot - 4;0%;7] 1
[4,0+’7|0][4;0 ; 7 5][ 0 4 ] 5 -
3

—
oo
— O

], and that

0 4 4 5

[4;0%;710] - ¢* - [2,0*%;7]1] =
(P =1)(T+1)- 72 (T=1) =757 - 1)*(T+1)2 = 112896.

(Note that ][2 g}[} :’;'] = [g (1)], and that
2
3

4[]
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Oo* T 4;,07:7] 0
[4;0";7|5]-[4’Or - ;] 5 3 T | =
? 31
[4;0%;75] - [3;0%:7]4] - [20%:714] =

T =1)-T(T+ 1) (7= 1) =TT = 1T+ 1)* = 112896.

(Note that : ] 2 ?][g (1)] = [g ?] and that
4
2

53114

(=L
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