The index- λ -closures of the subsets of $\{3, \ldots, 10\}$ including 3

Volker Leck*
Universität Rostock, Fachbereich Mathematik
18051 ROSTOCK, Germany
vleck@zeus.math.uni-rostock.de

Abstract

Gronau, Mullin and Pietsch determined the exact closure of index one of all subsets K of $\{3, \ldots, 10\}$ which include 3. We extend their results to obtain the exact closure of such K for all indices.

1 Introduction

Let K be a set of positive integers and λ a positive integer. A pairwise balanced design (PBD) of index λ with order v and block sizes from K is a pair (V, \mathcal{B}) , where V is a finite set of cardinality v (the point-set) and \mathcal{B} is a familiy of subsets of V (called blocks) which satisfy the properties:

- 1. if $B \in \mathcal{B}$, then $|B| \in K$
- 2. every pair of distinct elements of V occurs in exactly λ blocks of $\mathcal B$

We denote such a design by $PBD(v, K; \lambda)$ and call λ the *index of pairwise balance*. Note that the blocks are not necessarily distinct. A trivial example for this is a $PBD(v, \{v\}; \lambda)$, e. g. every block consists of all points, which clearly exists for all positive integers v and λ .

The notion of PBD-closure is due to Wilson [7]. Let K be a set of positive integers and let $B(K,\lambda) := \{v, \exists PBD(v,K;\lambda)\}$. Then $B(K,\lambda)$ is said to be the *index-\lambda-PBD-closure* of K. Consider M as the set of all subsets of $\{3,\ldots,10\}$ which contain the integer 3. From [3] for each element $M \in \mathcal{M}$ the set B(M,1) is known. In this paper we determine $B(M,\lambda)$ for all positive integers λ . Note that $B(\{3\},\lambda)$ is well-known [4].

^{*}research supported in part by NATO grant CRG 940085

2 Closure properties

The following construction called *breaking up blocks* is easily established but turns out to be very powerful in constructing PBDs of higher index from those of lower ones.

Proposition 1 ([2]) Let K and L be sets of positive integers, and let λ_1, λ_2 be positive integers. Suppose that there exists D, a $PBD(v, L; \lambda_1)$, and for each ℓ which occurs as a block-size of D there exists a $PBD(\ell, K; \lambda_2)$. Then there exists a $PBD(v, K; \lambda_1\lambda_2)$.

Thus breaking up blocks means to replace blocks by PBDs on their point set. We do so with blocks of length 7,9 or 10 using $PBD(7, \{3\}; 1)$, $PBD(9, \{3\}; 1)$ (Steiner-triple systems) and $PBD(10, \{3,4\}; 1)$ (the affine plane of order 3 with a new point added to each block of a fixed parallel class) and get $B(K,1) = B(K \cup \{7\}, 1) = B(K \cup \{9\}, 1)$ if $3 \in K$ and $B(K,1) = B(K \cup \{10\}, 1)$ if $\{3,4\} \subseteq K$. If we break up every block B of a $PBD(v, K; \lambda_1)$ using the trivial design $PBD(|B|, \{|B|\}; \lambda_2)$ with a fixed positive integer λ_2 , e. g. taking every block λ_2 times, we derive a $PBD(v, K; \lambda_1\lambda_2)$. So $B(K, \lambda_1) \subseteq B(K, \lambda_1\lambda_2)$ for every positive integer λ_2 , in particular $B(K, 1) \subseteq B(K, \lambda_2)$. Therefore when determining $B(M, \lambda)$ for any λ and $3 \in M$ we need not consider subsets M containing 10 if $\{3,4\} \subseteq M$ and subsets containing 7 or 9 at all.

Adding the block sets of a $PBD(v, K; \lambda_1)$ and a $PBD(v, K'; \lambda_2)$ clearly gives a $PBD(v, K \cup K'; \lambda_1 + \lambda_2)$. So $B(K, \lambda_1) \cap B(K', \lambda_2) \subseteq B(K \cup K', \lambda_1 + \lambda_2)$, in particular for K' = K it holds $B(K, \lambda_1) \cap B(K, \lambda_2) \subseteq B(K, \lambda_1 + \lambda_2)$.

3 Necessary conditions

There are two well-known necessary conditions for the existence of a PBD with fixed parameters.

Let $D = (V, \mathcal{B})$ be a $PBD(v, K; \lambda)$ and let β_i count the number of blocks of length $k_i, i = 1, ..., n$. Then $\vec{\beta} = (\beta_1, ..., \beta_n)$ is called block type of D. By double counting the point pairs in D we get:

Lemma 2

$$\sum_{i=1}^{n} \beta_i k_i (k_i - 1) = \lambda v (v - 1)$$

Now fix a point $x \in V$ and let $\gamma_i(x)$ count the number of blocks B of length k_i with $x \in B$, i = 1, ..., n. Then $\vec{\gamma}(x) = (\gamma_1(x), ..., \gamma_n(x))$ is the point type of x in D. Double counting the point pairs which include x gives:

Lemma 3

$$\sum_{i=1}^{n} \gamma_i(k_i - 1) = \lambda(v - 1)$$

These lemmas lead to the following proposition.

Proposition 4 (necessary conditions) Let $K = \{k_1, \ldots, k_n\}$, $k^* := \gcd(k_i(k_i-1), i=1, \ldots, n)$ and $k' := \gcd(k_i-1, i=1, \ldots, n)$. If there exists a $PBD(v, \{k_1, \ldots, k_n\}; \lambda)$, then

$$\lambda v(v-1) \equiv 0 \pmod{k^*},\tag{1}$$

$$\lambda(v-1) \equiv 0 \pmod{k'}. \tag{2}$$

Wilson [8] proved these conditions to be asymptotically sufficient. Moreover, Hanani showed that they are sufficent for triple systems, e. g. when $K = \{3\}$ [4]. The necessary conditions for all 3-including subsets of $\{3, \ldots, 10\}$ are listed in appendix A.

4 Pre-structures and Hill climbing

Let K be a set of positive integers with $3 \in K$. The pre-structure \mathcal{P} of a $PBD(v,K;\lambda)$ is the family of all blocks of this PBD with block sizes different from 3. The lemmas above give necessary conditions for such pre-structures to exist, particularly for the number of blocks modulo 6 and the number of point types modulo 2. We call a family of sets fulfilling these conditions a candidate for the pre-structure.

Hill climbing has turned out to be very efficient in constructing triple systems [1],[6]. Analogously to [3] we use it to complete a given prestructure candidate with blocks of length 3. The advance is that our algorithm handles also higher indices.

Let $F = \{\{x,y\} : \exists P \in \mathcal{P} \text{ such that } \{x,y\} \in P\}$ denote the family of all pairs occurring in a pre-structure candidate \mathcal{P} and let $n_{\mathcal{P}}(\{x,y\})$ be the number of occurrences of a pair $\{x,y\}$ in F. Further let T denote the set of triples found so far and let $n_T(\{x,y\})$ count the number of occurrences of $\{x,y\}$ in T. The algorithm now searches for a decomposition of the graph $G = \lambda K_v \setminus F$ into triangles.

Input
$$v, \lambda, n_{\mathcal{P}}$$

step 0
 $T := \emptyset, G = \lambda K_v \backslash F$

```
step 1
pick a random p \in V with d_G(p) > 0
if d_G(p) = 0 for all p GOTO Output

step 2
pick randomly two edges \{x, p\}, \{y, p\} \in E(G) adjacent to p
if n_P(\{x, y\}) = \lambda GOTO step 1

step 3

(a) if n_T(\{x, y\}) < \lambda - n_P(\{x, y\})
T := T \cup \{x, y, p\}, E(G) := E(G) \setminus \{\{x, p\}, \{y, p\}, \{x, y\}\}
GOTO step 1

(b) if n_T(\{x, y\}) = \lambda - n_P(\{x, y\})
delete randomly one of the triangles containing \{x, y\}, e.g. \{x, y, z\}
```

Output T

5 The closures

 $T := T \setminus \{x, y, z\} \cup \{x, y, p\}$

GOTO step 1

In this chapter, we show that the necessary conditions for the closures are sufficient up to the trivial and very few nontrivial exceptions. An integer $v \in \mathbb{N}$ is a *trivial exception* of $B(K, \lambda)$, if it fulfills the necessary conditions to be a member of $B(K, \lambda)$ but it doesn't fulfill the necessary conditions for $B(K', \lambda)$, where K' consists of all $k \in K$ with $k \leq v$.

Let K denote a subset of $\{3, \ldots, 10\}$ which include 3. Moreover let \mathbb{N} $x_1, \ldots, x_n(y)$ denote the set of all nonnegative integers greater than 2 that are $x_1 \pmod{y}$ or \ldots or $x_n \pmod{y}$, especially let \mathbb{N} be the set of all nonnegative integers greater than 2. Besides the constructions we use two programs to decide wether an integer belongs to a closure or not, one uses the hill climbing approach and the other, desy by Pietsch [5], constructs all PBDs for the given parameters. Clearly only desy can show nonexistence. If v < 17 the constructed PBDs are normally found by desy otherwise by hill climbing. A list of the used pre-structures can be found in appendix D.

5.1 $\lambda = 1$

Gronau, Mullin and Pietsch [3] showed that the necessary conditions are almost sufficient. The exceptions can be found in appendix B.

5.2 $\lambda = 2$

The necessary conditions for the following closures are equal, and they are known to be already sufficient for $B(\{3\}, 2)$. So $B(\{3\}, 2) = B(\{3, 4\}, 2) = B(\{3, 6\}, 2) = B(\{3, 10\}, 2) = B(\{3, 4, 6\}, 2) = B(\{3, 6, 10\}, 2) = \mathbb{N} \ 0, 1(3)$. From $B(\{3, 4, 5\}, 1)$ and the existence of $PBD(4, \{3\}; 2), PBD(6, \{3\}; 2)$ and $PBD(8, \{3, 5\}, 2)$ we get that $B(\{3, 5\}, 2) = \mathbb{N}$. It follows, that $B(K, 2) = \mathbb{N}$ for all K with $\{3, 5\} \subseteq K$.

Analogously $B(\{3,4,8\},1)$ gives that $B(\{3,8\},2) \supseteq \mathbb{N}\setminus\{5,11,14,17\}$. Since a PBD on v points can not have blocks of size larger than v and $5 \notin B(\{3\},2)$ it follows that $5 \notin B(\{3,8\},2)$, desy shows that this is true also for 11,14,17, e.g. equality holds.

Clearly $B(\{3,8\},2) \subseteq B(\{3,4,8\},2)$. We found a $PBD(v,\{3,4,8\},2)$ for v=11,14,17. Therefore $B(\{3,4,8\},2)=\mathbb{N}\setminus\{5\}$. In the same way we get $B(\{3,6,8\},2)=\mathbb{N}\setminus\{5,11,14\}$ and $B(\{3,8,10\},2)=\mathbb{N}\setminus\{5,11,14\}$ using desy to show nonexistence.

Because of $B(\{3,4,8\},2) \subseteq B(\{3,4,6,8\},2)$ we have that $B(\{3,4,6,8\},2) = \mathbb{N}\setminus\{5\}$. From $B(\{3,6,8\},2)$ we get $B(\{3,6,8,10\},2) \supseteq \mathbb{N}\setminus\{5,11,14\}$, desy proves equality.

5.3 $\lambda = 3$

The closure of $B(\{3\},3)$ is wellknown, and because the necessary conditions are the same it holds $B(\{3\},3) = B(\{3,5\},3) = \mathbb{N} \ 1(2)$.

Taking $B(\{3,4,5\},1)$ and $PBD(5,\{3\};3)$ gives that $B(\{3,4\},3) \subseteq \mathbb{N}\setminus\{6,8\}$. Solutions for 6 and 8 can be found with desy. So $B(K,3) = \mathbb{N}$ for all K with $\{3,4\} \in K$. From $B(\{3,5,6\},1)$ and $PBD(5,\{3\};3)$ we have that $B(\{3,6\},3) \subseteq \mathbb{N}\setminus\{4,8,10,12,14,20,22\}$. We found solutions for all exceptions but for 4. It follows that $B(K,3) = \mathbb{N}\setminus\{4\}$ for all K with $\{3,6\} \in K$ and $4 \notin K$. The same way we get $B(\{3,8\},3) = \mathbb{N}\setminus\{4,6,10\}$ and $B(\{3,10\},3) = \mathbb{N}\setminus\{4,6,8,12\}$, because we find that $\{12,14,16,18,20,26,28,30,34\}$ $\in B(\{3,8\},3)$ and $\{4,16,18,20,22,24,26,32,34,36,38,42,44\}$ $\in B(\{3,10\},3)$.

With the help of desy we find that $B(\{3,5,8\},3) = \mathbb{N}\setminus\{4,6,10\}$ and $B(\{3,5,10\},3) = \mathbb{N}\setminus\{4,6,8,12\}$.

Clearly $B(\{3, 8, 10\}, 3) = B(\{3, 5, 8, 10\}, 3) = \mathbb{N} \setminus \{4, 6\}.$

5.4 $\lambda = 4$

It holds $B(K,4) \supseteq B(K,2)$ for all K, and since the necessary conditions are equal, we only have to investigate the exceptions of the index 2 closures. It turns out that $11, 14, 17 \in B(K,4)$ for $\{3,8\} \in K$.

5.5 $\lambda = 5$

We get $B(\{3,4\},5) = \mathbb{N} \ 0,1(3)$ from $B(\{3,4\},2) \cap B(\{3,4\},3)$ and from the necessary conditions. Analogously $B(\{3,5\},5) = \mathbb{N} \ 1(2)$, $B(\{3,6\},5) = \mathbb{N} \ 0,1(3)\setminus\{4\}$. Furthermore we obtain $B(\{3,8\},5) \supseteq \mathbb{N}\setminus\{4,5,6,10,11,14,17\}$ and $B(\{3,10\},5) \supseteq \mathbb{N}\setminus\{4,6,12\}$. We find that $B(\{3,8\},5) = \mathbb{N}\setminus\{5,6\}$ and $B(\{3,10\},5) = \mathbb{N}\setminus\{4,6\}$.

The closure of the other subsets is the intersection of the closures of index 2 and 3, with the exceptions $10, 11, 14, 17 \in B(K, 5)$ for all K with $\{3, 8\} \subseteq K$ and $12 \in B(K, 5)$ when $\{3, 10\} \subseteq K$.

5.6 $\lambda = 6$

Since $B(\{3\}, 6) = \mathbb{N}$ we trivially have that $B(K, 6) = \mathbb{N}$ if $3 \in K$.

5.7 $\lambda \geq 7$

Since the necessary conditions for the closures are the same for $\lambda' = \lambda \mod 6$ and $B(K,\lambda) \subseteq B(K,\lambda+6)$ we only need to consider the exceptions of the necessary conditions for $\lambda=1,\ldots,6$. If an exception is smaller than the largest block it is still an exception if we delete this block-size from K. Therefore we need not consider these values.

Clearly $B(K,7) \supseteq B(K,5) \cap B(K,2)$. This solves the case $\lambda = 7$ up to the exceptions 11,14,17 if $\{3,8\} \subseteq K$. But then $11,14,17 \in B(K,3) \cap B(K,4) \subseteq B(K,7)$.

From $\lambda = 4$ we know that $11, 14, 17 \in B(K, 4) \subseteq B(K, 8)$ for $\{3, 8\} \in K$. Finally $10 \in B(K, 4) \cap B(K, 5) \subseteq B(K, 9)$ for $\{3, 8\} \in K$ and $12 \in B(K, 4) \cap B(K, 5) \subseteq B(K, 9)$ for $\{3, 10\} \in K$.

It follows that for $\lambda \geq 4$ the necessary conditions are sufficient up to the trivial exceptions.

Conclusion

The exact index- λ -closures of all subsets of $\{3, \ldots, 10\}$ which contain 3 have been determined for all λ . The results are summarized in appendix C.

A Necessary Conditions

N	set of all nonnegative integers greater than 2
$\mathbb{N} \ x_1,\ldots,x_n(y)$	set of all integers which are x_1, \ldots, x_n modulo y

Subset	$\lambda \bmod 6$						
	1	2	3	4	5	0	
3	N 1,3(6)	\mathbb{N} 0, 1(3)	ℕ 1(2)	\mathbb{N} 0, 1(3)	$\mathbb{N} \ 1, 3(6)$	N	
3,4	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	
3,5	№ 1(2)	N	№ 1(2)	N	№ 1(2)	N	
3,6	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	
3,8	N	N	N	Ŋ	N	N	
3, 10	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	
3,4,5	И	И	N	N	N	N	
3, 4, 6	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	
3, 4, 8	N	N	N	N	N	N	
3, 5, 6	N	N	N	N	N	N	
3, 5, 8	N	N	N	Ŋ	N	N	
3, 5, 10	N	N	N	N	N	N	
3, 6, 8	N	N	N	N	N	N	
3, 6, 10	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	\mathbb{N} 0, 1(3)	\mathbb{N} 0, 1(3)	N	
3, 8, 10	N	N	N	N	N	N	
3, 4, 5, 6	N	И	N	N	N	N	
3, 4, 5, 8	N	N	N	N	N	N	
3, 4, 6, 8	N	N	N	14	N	N	
3, 5, 6, 8	N	И	Ŋ	N	N	N	
3, 5, 6, 10	N	N	N	N	N	N	
3, 5, 8, 10	N	N	N	N	N	N	
3, 6, 8, 10	N	N	N	N	N	N	
3, 4, 5, 6, 8	N	N	N	N	N	N	
3, 5, 6, 8, 10	N	N	N	N	N	N	

B The Closures with Index 1

subset	exceptions
3	-
3,4	6
3,5	-
3,6	4, 10, 12, 22
3,8	[4, 5, 6, 10, 11, 12, 14, 16, 17, 18, 20, 23, 26, 28, 29, 30, 34, 35, 36, 38]
3, 10	4, 6, 12, 16, 18, 22, 24, 34, 36, 42
3, 4, 5	6,8
3, 4, 6	-
	5, 6, 11, 14, 17
3, 5, 6	4, 8, 10, 12, 14, 20, 22
3, 5, 8	4, 6, 10, 12, 14, 16, 18, 20, 26, 28, 30, 34
	4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 32, 34, 36, 38, 42, 44
1 ' '	4, 5, 10, 11, 12, 14, 17, 20, 23
3, 6, 10	4, 12, 22
3, 8, 10	4, 5, 6, 11, 12, 14, 16, 17, 18, 20, 23, 26, 29, 35, 36
3, 4, 5, 6	
3,4,5,8	6
	5, 11, 14, 17
	4, 10, 12, 14, 20
	4, 8, 12, 14, 20, 22
	4, 6, 12, 14, 16, 18, 20, 26
3, 6, 8, 10	4, 5, 11, 12, 14, 17, 20, 23
3, 4, 5, 6, 8	-
[3, 5, 6, 8, 10]	4, 12, 14, 20

C Exceptions of the sufficiency of the necessary conditions

Subset	Exceptions for λ modulo 6, $\lambda \geq 2$						
	1	2	3	4	5	0	
3	-	-	-	-	-	-	
3,4	-	-	-	-	-	-	
3, 5	-	-	-	-	-	-	
3,6	4	-	4	-	4	-	
3,8	4, 5, 6	[5,11(2),14(2),17(2)]	4, 6, 10(3)	5	4, 5, 6	-	
3, 10	4,6	-	4, 6, 8, 12(3)	-	4,6	-	
3,4,5	-	-	-	-	-	-	
3, 4, 6	-	-	-	-	-	-	
3, 4, 8	5	5	-	5	5	-	
3, 5, 6	4	-	4	-	4	-	
3, 5, 8	4,6	-	4, 6, 10(3)	- 1	4,6	-	
3, 5, 10	4, 6, 8	-	4, 6, 8, 12(3)	-	4,6,8	-	
3, 6, 8	4,5	5, 11(2), 14(2)	4	5	4,5	-	
3, 6, 10	4	-	4	-	4	-	
3, 8, 10	4, 5, 6	5, 11(2), 14(2)	4, 6	5	4, 5, 6	-	
3, 4, 5, 6	-	-	-	-	-	-	
3, 4, 5, 8	~	-	-	-	-	-	
3, 4, 6, 8	5	5	-	5	5	-	
3, 5, 6, 8	4	-	4	-	4	-	
3, 5, 6, 10	4		4	-	4	-	
3, 5, 8, 10	4,6	-	4,6	-	4,6	-	
3, 6, 8, 10	4,5	5, 11(2), 14(2)	4	5	4,5	-	
[3, 4, 5, 6, 8]	-	-	-	-		-	
3, 5, 6, 8, 10	4	<u>-</u>	4	-	4	-	

If we write x(y), then x is not in the closure only for this special $\lambda = y$.

D The Pre-structures

D.1 Pre-structures for $\lambda = 2$

```
PBD(17, \{3,4,8\}; 2)
V = \{0, \ldots, 16\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ ), (8\ 9\ 10\ 11\ 12\ 13\ 14\ 15)
(0 1 8 9), (2 3 10 11), (4 5 12 13), (6 7 14 15)
PBD(17, \{3, 8, 10\}; 2)
V = \{0, ..., 16\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9)
(0 1 2 3 4 10 11 12), ( 5 6 7 8 9 10 11 12)
D.2 Pre-structures for \lambda = 3
PBD(18, \{3, 8\}; 3)
V = \{0, \ldots, 17\}
\mathcal{B} = (01234567), (01289101112),
(0 1 2 13 14 15 16 17)
PBD(20, \{3, 8\}; 3)
V = \{0, ..., 19\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7), (0\ 1\ 8\ 9\ 10\ 11\ 12),
(0 1 2 13 14 15 16 17)
PBD(26, \{3, 8\}; 3)
V = \{0, \ldots, 25\}
\mathcal{B} = (0\ 1\ 3\ 4\ 6\ 8\ 9\ 10), (0\ 1\ 3\ 4\ 6\ 8\ 9\ 11),
(0 1 2 5 6 7 12 13), (0 2 4 5 7 9 14 15),
(0 2 3 5 7 8 16 17), (18 19 20 21 22 23 24 25)
PBD(28, \{3, 8\}; 3)
V = \{0, \ldots, 27\}
\mathcal{B} = (0\ 1\ 2\ 4\ 6\ 8\ 9\ 10), (0\ 1\ 3\ 4\ 6\ 8\ 11\ 12),
(0 1 3 5 6 7 13 14), (0 2 3 5 7 8 15 16),
(0 2 4 5 7 17 18 19), (20 21 22 23 24 25 26 27)
```

```
PBD(30, \{3, 8\}; 3)
V = \{0, \ldots, 29\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7), (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7),
(0 1 2 3 4 5 6 7), (0 8 9 10 11 12 13 14),
(0 15 16 17 18 19 20 21), (22 23 24 25 26 27 28 29)
PBD(34, \{3, 8\}; 3)
V = \{0, \ldots, 33\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7), (0\ 1\ 2\ 3\ 4\ 5\ 6\ 8),
(0 1 2 3 4 5 6 9), (10 11 12 13 14 15 16 17),
(18 19 20 21 22 23 24 25), (26 27 28 29 30 31 32 33)
PBD(18, \{3, 10\}; 3)
V = \{0, \ldots, 17\}
\mathcal{B} = (0\ 1\ 2\ 4\ 6\ 7\ 9\ 11\ 12\ 14), (0\ 1\ 3\ 4\ 6\ 8\ 9\ 11\ 13\ 14),
(0 1 3 5 6 8 10 11 13 15), (0 2 3 5 7 8 10 12 13 16),
(0 2 4 5 7 9 10 12 14 17)
PBD(20, \{3, 10\}; 3)
V = \{0, ..., 19\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (10\ 11\ 12\ 13\ 14\ 15\ 16\ 17\ 18\ 19)
PBD(22, \{3, 10\}; 3)
V = \{0, \ldots, 21\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 2\ 3\ 10\ 11\ 12\ 13\ 14\ 15),
(0 1 2 3 16 17 18 19 20 21)
PBD(24, \{3, 10\}; 3)
V = \{0, \ldots, 23\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 2\ 10\ 11\ 12\ 13\ 14\ 15\ 16),
(0 1 2 17 18 19 20 21 22 23)
PBD(26, \{3, 10\}; 3)
V = \{0, \ldots, 25\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17),
(0 1 18 19 20 21 22 23 24 25)
```

```
PBD(32, \{3, 10\}; 3)
V = \{0, \ldots, 31\}
\mathcal{B} = (0\ 1\ 2\ 4\ 5\ 6\ 7\ 8\ 9\ 10), (0\ 1\ 3\ 11\ 12\ 13\ 14\ 15\ 16\ 17),
(0 2 3 18 19 20 21 22 23 24), (1 2 3 25 26 27 28 29 30 31)
PBD(34, \{3, 10\}; 3)
V = \{0, ..., 33\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17),
(0 2 18 19 20 21 22 23 24 25), (1 2 26 27 28 29 30 31 32 33)
PBD(36, \{3, 10\}; 3)
V = \{0, \ldots, 35\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17),
(0 1 18 19 20 21 22 23 24 25), (26 27 28 29 30 31 32 33 34 35)
PBD(38, \{3, 10\}; 3)
V = \{0, \ldots, 37\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17\ 18),
(0 19 20 21 22 23 24 25 26 27),
(28 29 30 31 32 33 34 35 36 37)
PBD(42, \{3, 10\}; 3)
V = \{0, \ldots, 41\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 10),
(0 1 2 3 4 5 6 7 8 11), (12 13 14 15 16 17 18 19 20 21),
(22 23 24 25 26 27 28 29 30 31), (32 33 34 35 36 37 38 39 40 41) can
also be derived from a TD(3, 14) and a PBD(14, \{3, 10\}; 3)
PBD(44, \{3, 10\}; 3)
V = \{0, \ldots, 43\}
\mathcal{B} = (0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9), (0\ 1\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17),
(0 1 18 19 20 21 22 23 24 25), (0 26 27 28 29 30 31 32 33 34),
(0 35 36 37 38 39 40 41 42 43)
```

D.3 Pre-structures for $\lambda = 5$

```
PBD(14, \{3,8\}; 5)
V = \{0, ..., 13\}
B = (0 1 2 3 4 5 6 7), (0 1 2 3 4 5 6 7), (0 1 2 3 4 5 6 7), (0 1 2 3 4 8 9 10), (0 1 2 3 4 11 12 13)
PBD(17, \{3,8\}, 5)
V = \{0, ..., 16\}
B = (0 1 2 3 4 5 6 7), (0 1 2 3 4 5 6 7)
```

References

- P.B. GIBBONS AND R. MATHON The use of Hill-Climbing to Construct Orthogonal Steiner Tripel Systems, J. Comb. Designs 1 (1993), 27-50.
- [2] H.D.O.-F. GRONAU AND R.C. MULLIN, PBDs of higher index, The CRC-Handbook of Combinatorial Designs, C.J. Colburn and J.H. Dinitz (eds.), CRC 1996.
- [3] H.D.O.-F. GRONAU, R.C. MULLIN AND C. PIETSCH, The closure of all subsets of $\{3, \ldots, 10\}$ which include 3, Ars Combinatoria 41 (1995), 129-161.
- [4] H. HANANI The existence and construction of balanced incomplete block designs, Ann. Math. Stat. 32 (1961), 361-386.
- [5] C. Pietsch Über die Enumeration von Inzidenzstrukturen, Dissertation, Universität Rostock, 1993
- [6] D.R. STINSON Hill-Climbing Algorithms for the Construction of Combinatorial Designs, Ann. Discrete Math. 26 (1985), 321-334.
- [7] R.M. WILSON An existence theory for pairwise balanced designs, 1. Composition theorems and morphisms, J. Comb. Th. (A) 13 1972, 220-245.
- [8] R.M. WILSON An existence theory for pairwise balanced designs, 3. Proof of the existence conjectures, J. Comb. Th. (A) 18 1975, 71-79.