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Abstract

Gronau, Mullin and Pietsch determined the exact closure of index
one of all subsets K of {3,...,10} which include 3. We extend their
results to obtain the exact closure of such X for all indices.

1 Introduction

Let K be a set of positive integers and X a positive integer. A pairwise
balanced design (PBD) of index A with order v and block sizes from K is a
pair (V, B), where V is a finite set of cardinality v (the point-set) and B is
a familiy of subsets of V (called blocks) which satisfy the properties:

1. if B € B, then |B| € K
2. every pair of distinct elements of V' occurs in exactly A blocks of B

We denote such a design by PBD(v, K; A) and call A the index of pairwise
balance. Note that the blocks are not necessarily distinct. A trivial example
for this is a PBD(v, {v}; )), e. g. every block consists of all points, which
clearly exists for all positive integers v and A.

The notion of PBD-closure is due to Wilson [7]. Let K be a set of
positive integers and let B(K,\) := {v,3PBD(v, K;))}. Then B(K,\)
is said to be the inder-A-PBD-closure of K. Consider M as the set of
all subsets of {3,...,10} which contain the integer 3. From [3] for each
element M € M the set B(M,1) is known. In this paper we determine
B(M, }) for all positive integers A. Note that B({3}, ) is well-known [4].
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2 Closure properties

The following construction called breaking up blocks is easily established
but turns out to be very powerful in constructing PBDs of higher index
from those of lower ones.

Proposition 1 ([2]) Let K and L be sets of posilive integers, and let
A1, A2 be positive integers. Suppose that there exists D, a PBD(v,L; A,),
and for each £ which occurs as a block-size of D there erxists a
PBD(¢, K;)2). Then there exists a PBD(v, K; A1 )2).

Thus breaking up blocks means to replace blocks by PBDs on their point
set. We do so with blocks of length 7,9 or 10 using PBD(7,{3};1),
PBD(9,{3};1) (Steiner-triple systems) and PBD(10, {3,4};1) (the affine
plane of order 3 with a new point added to each block of a fixed parallel
class) and get B(K,1) = B(K U {7},1) = B(K U {9},1)if3 € K and
B(K,1) = B(X U {10},1)if {3,4} C K. If we break up every block B
of a PBD(v, K; A1) using the trivial design PBD(|B|,{|B|}; A2) with a
fixed positive integer Az, e. g. taking every block Ay times, we derive a
PBD(v,K;A1)2). So B(K, A1) C B(K, A Az) for every positive integer A,
in particular B(X,1) C B(K,)\z). Therefore when determining B(M, A)
for any A and 3 € M we need not consider subsets M containing 10 if
{3,4} C M and subsets containing 7 or 9 at all.

Adding the block sets of a PBD(v, K; A1) and a PBD(v, K'; X2) clearly
gives a PBD(v, KUK'; A1 +2). So B(K, \)NB(K', A;) C B(KUK', A1 +
A2), in particular for K’ = K it holds B(K, A\ )NB(K, A2) C B(K, A1 +A2).

3 Necessary conditions

There are two well-known necessary conditions for the existence of a PBD
with fixed parameters.

Let D = (V,B) be a PBD(v, K;\) and let §; count the number of
blocks of length k;,z = 1,...,n. Then g= (B1,---,Bn) is called block type
of D. By double counting the point pairs in D we get:

Lemma 2
n
> Biki(ki — 1) = dv(v — 1)
i=1

Now fix a point z € V and let v;(z) count the number of blocks B of length
k; with z € B, i = 1,...,n. Then J(z) = (m1(),..., V(%)) is the point
type of z in D. Double counting the point pairs which include z gives:
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Lemma 3

n

PIRACESIERICESY

i=1
These lemmas lead to the following proposition.

Proposition 4 (necessary condiltions) Let K = {ki1,...,kn}, k™ :=
ged(ki(k; — 1),i = 1,...,n) and k := ged(k; — 1,i = 1,...,n). If there
erists a PBD(v,{k1,...,ks}; ), then

A(@w—1) = 0 (modk*), (1)
Av—1) = 0 (modk). (2)

Wilson [8] proved these conditions to be asymptotically sufficient. More-
over, Hanani showed that they are sufficent for triple systems, e. g. when
K = {3} [4]. The necessary conditions for all 3-including subsets of
{3,...,10} are listed in appendix A.

4 Pre-structures and Hill climbing

Let K be a set of positive integers with 3 € K. The pre-structure P of
a PBD(v,K;}) is the family of all blocks of this PBD with block sizes
different from 3. The lemmas above give necessary conditions for such pre-
structures to exist, particularly for the number of blocks modulo 6 and the
number of point types modulo 2. We call a family of sets fulfilling these
conditions a candidate for the pre-structure.

Hill climbing has turned out to be very efficient in constructing triple
systems [1],[6). Analogously to [3] we use it to complete a given pre-
structure candidate with blocks of length 3. The advance is that our algo-
rithm handles also higher indices.

Let F = {{z,y} : 3P € P such that {z,y} € P} denote the family of
all pairs occuring in a pre-structure candidate P and let np({z,y}) be the
number of ocurrences of a pair {z,y} in F. Further let T denote the set of
triples found so far and let ny({z,y}) count the number of occurences of
{z,y} in T. The algorithm now searches for a decomposition of the graph
G = AK,\F into triangles.

Input v, A, np

step 0
T:=0,G=AK\F
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step 1
pick a random p € V with dg(p) > 0
if dg(p) = 0 for all p GOTO Output

step 2
pick randomly two edges {z,p}, {y,p} € E(G) adjacent to p
if np({z,y}) = A GOTO step 1

step 3

(a) if nT({ma y}) <A- n'P({mv y})
T :=TU{z,y,p}, E(G) = E(G\{{z,p}, {y, P} {=,¥}}
GOTO step 1

(b) if nr({2,9}) = A - np({z,3})
delete randomly one of the triangles containing {z,y}e.g.
{z,y,2}
T:= T\{:l!, Y, z} u {:B, y,P}
GOTO step 1

Output T

5 The closures

In this chapter, we show that the necessary conditions for the closures are
sufficient up to the trivial and very few nontrivial exceptions. An integer
v € Nis a trivial exception of B(K, }), if it fulfills the necessary conditions
to be a member of B(K,A) but it doesn’t fulfill the necessary conditions
for B(K’,\), where K’ consists of all k € K with k <v.

Let K denote a subset of {3,...,10} which include 3. Moreover let
N z1,...,2,(y) denote the set of all nonnegative integers greater than 2
that are ; (mod y) or ... or z, (mod y), especially let N be the set of all
nonnegative integers greater than 2. Besides the constructions we use two
programs to decide wether an integer belongs to a closure or not, one uses
the hill climbing approach and the other, desy by Pietsch [5], constructs all
PBDs for the given parameters. Clearly only desy can show nonexistence.
If v < 17 the constructed PBDs are normally found by desy otherwise by
hill climbing. A list of the used pre-structures can be found in appendix D.

51 A=1

Gronau, Mullin and Pietsch [3] showed that the necessary conditions are
almost sufficient. The exceptions can be found in appendix B.
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5.2 A=2

The necessary conditions for the following closures are equal, and they are
known to be already sufficient for B({3},2). So B({3},2) = B({3,4},2) =
B({3,6},2) = B({3,10},2) = B({3,4,6},2) = B({3,6,10},2) = N 0, 1(3).

From B({3,4,5},1) and the existence of
PBD(4,{3};2),PBD(6,{3};2) and PBD(8,{3,5},2) we get that
B({3,5},2) = N. It follows, that B(K,2) = N for all K with {3,5} C K.

Analogously B({3,4,8},1) gives that B({3,8},2) D N\{5,11,14,17}.
Since a PBD on v points can not have blocks of size larger than v and
5 ¢ B({3},2) it follows that 5 ¢ B({3,8},2), desy shows that this is true
also for 11,14, 17, e.g. equality holds.

Clearly B({3,8},2) C B({3,4,8},2). We found a PBD(v, {3,4,8};2)
for v = 11,14,17. Therefore B({3,4,8},2) = N\{5}. In the same way
we get B({3,6,8},2) = N\{5,11,14} and B({3,8,10},2) = N\{5,11, 14}
using desy to show nonexistence.

Because of B({3,4,8},2) C B({3,4,6,8},2) we have that
B({3,4,6,8},2) = N\{5}. From B({3,6,8},2) we get B({3,6,8,10},2) D
N\{5, 11,14}, desy proves equality.

53 A=3

The closure of B({3}, 3) is wellknown, and because the necessary conditions
are the same it holds B({3},3) = B({3,5},3) =N 1(2).

Taking B({3,4,5},1) and PBD(5,{3};3) gives that B({3,4},3) C
N\{6,8}. Solutions for 6 and 8 can be found with desy. So B(K,3) =N
for all K with {3,4} € K. From B({3,5,6},1) and PBD(5,{3};3)
we have that B({3,6},3) C N\{4,8,10,12,14,20,22}. We found so-
lutions for all exceptions but for 4. It follows that B(K,3) =
N\{4} for all K with {3,6} € K and 4 ¢ K. The same way
we get B({3,8),3) = N\{4,6,10} and B({3,10},3) = N\{4,6,8,12},
because we find that 12,14,16,18,20,26,28,30,34 € B({3,8},3) and
14,16, 18, 20,22, 24, 26, 32, 34, 36, 38, 42, 44 € B({3, 10}, 3).

With the help of desy we find that B({3,5,8},3) = N\{4,6,10} and
B({3,5,10},3) = N\{4,6,8,12}.

Clearly B({3,8,10},3) = B({3,5,8,10},3) = N\{4, 6}.

54 A=4

It holds B(K,4) D B(X,2) for all K, and since the necessary conditions
are equal, we only have to investigate the exceptions of the index 2 closures.
It turns out that 11,14,17 € B(K,4) for {3,8} € K.
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55 A=5

We get B({3,4},5) = N 0,1(3) from B({3,4},2) n B({3,4},3) and
from the necessary conditions. Analogously B({3,5},5) = N 1(2),
B({3,6},5) = N 0,1(3)\{4}. Furthermore we obtain B({3,8},5) 2
N\{4,5,6,10,11,14,17} and B({3,10},5) D N\{4,6,12}. We find that
B({3,8},5) = N\{5,6} and B({3,10},5) = N\{4,6}.

The closure of the other subsets is the intersection of the closures of
index 2 and 3, with the exceptions 10,11, 14,17 € B(K,5) for all K with
{3,8} C K and 12 € B(X,5) when {3,10} C K.

56 A=6
Since B({3},6) = N we trivially have that B(K,6) = Nif 3 € K.

5.7 A>T

Since the necessary conditions for the closures are the same for A" = A mod

6 and B(K,)) C B(K, ) + 6) we only need to consider the exceptions of
the necessary conditions for A = 1,...,6. If an exception is smaller than
the largest block it is still an exception if we delete this block-size from K.
Therefore we need not consider these values.

Clearly B(X,7) 2 B(K,5) N B(K,2). This solves the case A = 7 up
to the exceptions 11,14,17 if {3,8} C K. But then 11,14,17 € B(X,3) N
B(K,4) C B(X,T).

From A = 4 we know that 11,14, 17 € B(K,4) C B(K, 8) for {3,8} € K.
Finally 10 € B(K,4)NB(K,5) C B(K,9) for {3,8} € K and 12 € B(K,4)n
B(K,5) C B(K,9) for {3,10} € K.

It follows that for A > 4 the necessary conditions are sufficient up to
the trivial exceptions.

Conclusion

The exact index-A-closures of all subsets of {3, ..., 10} which contain 3 have
been determined for all A. The results are summarized in appendix C.

246



., &n modulo ¥

set of all nonnegative integers greater than 2

set of all integers which are z,, ..

N

A Necessary Conditions

5 Zn(Y)

Nzl,..

CZEZZEZZ|BCZZZZ 22N
SELE 8 = o
D ™ N i i - -
Z Z Z. Z. Z Z
e = B = =
— ] - - -
O,O,NO,NO,NO,NNNNNO,NNNNNNNN
ol 22 Z Z| = z.
-
gl . &
ARl A A A A A A A A A A A A A A A A A
\A
Z &
oE T T = D
— - - — - -
O,O,NO,NOaNO,NNNNNO,NNNNNNNN
Z Z Z. Z Z Z
SELE § B D
O v S i — i i
l,OaMOaNO,anNNNNNO,NNNNNNNNNN
zZzZ " Z &Z| Z& Z.
© M T O W0 O W WS PS SO DO Q|0
2 BB AT WS 8 BB G . e .
= Plded od s od 2ed LOUF F F 5 LR RS R
e8] o 333,3,3;&5564,6
Qwoo.._..%oo,.nm
o

247




B The

Closures with Index 1

subset | exceptions
3 (-
3,46
3,5 -
3,6 | 4,10,12,22
3,8 14,5,6,10,11,12,14,16,17, 18, 20, 23, 26, 28, 29, 30, 34, 35, 36, 38
3,10 | 4,6,12,16, 18 22,24, 34, 36,42
3,4,516,8
3,4,6 | -
3,4,8 | 5,6,11,14,17
3,5,6 | 4,8,10,12, 14, 20,22
3,5,8 | 4,6,10,12, 14, 16, 18, 20, 26, 28, 30, 34
3,5,10 | 4,6,8,12, 14,16, 18, 20, 22, 24, 26, 32, 34, 36, 38,42, 44
3,6,8 | 4,5,10,11,12,14, 17,20, 23
3,6,10 | 4,12,22
3,8,10 | 4,5,6,11,12,14,16,17, 18, 20, 23, 26, 29, 35, 36
3,4,5,6 | 8
3,4,5,816
3,4,6,8 1 5,11,14,17
3,5,6,814,10,12,14,20
3,5,6,10 | 4,8,12,14,20,22
3,5,8,10 | 4,6,12, 14, 16,18, 20,26
3,6,8,10 | 4,5,11,12, 14,17, 20,23
31 3 ’618 -
3,5,6,8,10 | 4,12,14,20
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C Exceptions of the sufficiency of the neces-
sary conditions

Subset Exceptions for A modulo 6, A > 2
1 2 3 4 5 0
3 - - - - - -
3,4 - - - - - -
3,5 - - - - - -
3,6 - 4 - 4 -
3,8 4,5,6|5,11(2),14(2),17(2) | 4,6,10(3) |5 | 4,5,6 | -
3,10 | 4,6 - 4,6,8,12(3) | - | 4,6 | -
3,4,5 - - - - - -
3,4,6 - - - - - -
3,4,8 5 5 - 5 5 -
3,5,6 4 - 4 - 4 -
3,5,8 | 4,6 - 4,6,103) |- | 4,6 |-
3,5,10 | 4,6,8 - 4,6,8,12(3) | - | 4,6,8 | -
3,6,8 | 4,5 5,11(2), 14(2) 4 5] 45 |-
3,6,10 4 - 4 - 4 -
3,8,10 | 4,5,6 5,11(2), 14(2) 4,6 54,56 -
3,4,5,6 - - - - - -
3,4,5,8 - - - - - -
3,4,6,8 5 5 - 5 5 -
3,5,6,8 4 4 - 4 -
3,5,6,10 4 - 4 - 4 -
3,5,8,10 | 4,6 - 4,6 - 4,6 |-
3,6,8,10 | 4,5 5,11(2), 14(2) 4 5] 4,5 |-
35 ;53618 - - - - = =
3,5,6,8,10 4 - 4 - 4 -

If we write z(y), then z is not in the closure only for this special A = y.
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D The Pre-structures

D.1 Pre-structures for A =2
PBD(17,{3,4,8};2)

v =1{0,...,16}
B= (01234567), (8910 11 12 13 14 15)
(0189, (2310 11), (45 12 13), (6 7 14 15)

PBD(17,{3,8,10};2)

vV ={0,...,16}
B= (01234567829)
(01234101112), (567 89 10 11 12)

D.2 Pre-structures for A =3
PBD(18,{3,8};3)

vV ={0,...,17}
B= (01234567, (012891011 12),
(012 13 14 15 16 17)

PBD(20,{3,8};3)

vV =1{0,...,19}
B= (01234567, (0189 1011 12),
(012 13 14 15 16 17)

PBD(26,{3,8};3)

v ={0,...,25}

B= (013468910), (01346829 11),
(012567 1213), (024579 14 15),
(02357816 17), (18 19 20 21 22 23 24 25)

PBD(28,{3,8};3)

v =4{0,...,27}

B= (0124689 10), (01346 81112),
(013567 1314), (02357 8 15 16),
(02457 17 18 19), (20 21 22 23 24 25 26 27)
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PBD(30,{3,8};3)

vV =A{o,...,29}

B= (01234567, (0123456T7),
(01234567, (089 10 11 12 13 14),

(0 15 16 17 18 19 20 21), (22 23 24 25 26 27 28 29)

PBD(34,1{3,8};3)

v ={0,...,33}

B= (01234567), (0123456 8),
(0123456 9), (10 11 12 13 14 15 16 17),

(18 19 20 21 22 23 24 25), (26 27 28 29 30 31 32 33)

PBD(18, {3,10}; 3)

v =1{0,...,17}
B= (01246791112 14), (013 4689 11 13 14),
(0135681011 13 15), (02357 8 10 12 13 16),
(02457910 12 14 17)

PBD(20, {3,10};3)

vV ={0,...,19}

B= (0123456789, (10 11 12 13 14 15 16 17 18 19)
PBD(22,{3,10};3)

v=1{0,...,21}
B= (0123456789, (01231011 12 13 14 15),
(012316 17 18 19 20 21)

PBD(24,{3,10};3)

v ={0,...,23}
B= (0123456789, (01210 11 12 13 14 15 16),
(01217 18 19 20 21 22 23)

PBD(26,{3,10};3)

vV ={0,...,25}
B= (0123456789, (0110 11 12 13 14 15 16 17),
(0 1 18 19 20 21 22 23 24 25)
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PBD(32,{3,10};3)

V={0,...,31}
B= (01245678910), (0131112 13 14 15 16 17),
(0 2 318 19 20 21 22 23 24), (1 2 3 25 26 27 28 29 30 31)

PBD(34,{3,10};3)

v=Ho,...,33}
B= (0123456789), (011011 12 13 14 15 16 17),
(0 2 18 19 20 21 22 23 24 25), (1 2 26 27 28 29 30 31 32 33)

PBD(36,{3,10};3)

v =1{0,...,35)
B= (01234567889), (0110 11 12 13 14 15 16 17),
(01 18 19 20 21 22 23 24 25), (26 27 28 29 30 31 32 33 34 35)

PBD(38,{3,10};3)

v={0,...,37)

B= (0123456789), (010 11 12 13 14 15 16 17 18),
(0 19 20 21 22 23 24 25 26 27),

(28 29 30 31 32 33 34 35 36 37)

PBD(42,{3,10};3)

Vv ={0,...,41}

B= (0123456789), (012346567 8 10),
(012345678 11), (12 13 14 15 16 17 18 19 20 21),

(22 23 24 25 26 27 28 29 30 31), (32 33 34 35 36 37 38 39 40 41) can
also be derived from a TD(3, 14) and a PBD(14, {3,10};3)

PBD(44,{3,10};3)

vV ={0,...,43}

B= (0123456789), (011011 12 13 14 15 16 17),
(01 18 19 20 21 22 23 24 25), (0 26 27 28 29 30 31 32 33 34),
(0 35 36 37 38 39 40 41 42 43)
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D.3 Pre-structures for A =15
PBD(14,{3,8};5)

Vv =H{o,...,13}

B= (01234567, (01234567),
(01234567), (0123489 10),
(012341112 13)

PBD(17,{3,8},5)

vV ={0,...,16}
B= (01234567), (0123456T7)
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