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1 Introduction

The issue of shared resources is of prime importance in computer systems in
general, and parallel and distributed applications in particular. Resources
that need to be shared can range from processing elements (PE’s) on par-
allel machines, to communication links in networks, to critical sections of
code to which processes need exclusive access.

Given one or several resources that need to be shared by a set of tasks,
scheduling is the process of determining which task gets access to which
resource, and when. Depending upon the characteristics of the application
system under consideration, this process of schedule generation aims to op-
timize specified objectives. In hard real-time systems, the critical objective
is that all tasks complete by their deadlines.

Our attention in this research is restricted to the non-preemptive schedul-
ing of independent real-time tasks. In our model, each task T} is charac-
terized by three parameters — a release time r;, an ezecution requirement
e; and a deadline d;, with the interpretation that task T; becomes ready
for execution at time 7;, and needs to be executed non-preemptively for e;
units of time over the interval [r;,d;). Given a set 7 = {T1,...,Tn} of n
such tasks to be scheduled on m identical processors, the primary goal is to
generate a schedule in which each task completes execution by its deadline.

Assuming that this primary goal can be met by several different sched-
ules, secondary objectives may play a role in determining scheduling strat-
egy. The focus of this research is one such secondary objective — that of
maximizing inter-completion time.

Inter-completion time. A schedule for 7 on m processors is completely
defined by specifying, for each T; € 7, the processor p; on which T; is to
execute, and the start time s; at which it begins execution!. The time
instant ¢; = s; + e; is called the completion time of task T; in this sched-
ule. For a given schedule, the minimum inter-completion time on processor
p is defined to be the smallest difference between the completion-times
of successive tasks that execute on processor p (if there is only one task
that executes on a processor, then its minimum inter-completion time is
defined to be 00.). The minimum inter-completion time (MICT) of a sched-
ule is defined to be the minimum, over all processors p, of the minimum
inter-completion time of processor p. MICT-scheduling is the process of
generating a schedule with the largest possible minimum inter-completion
time.

LOf course, a valid schedule would require that each task execute within its release
time and deadline (i.e., s; > 7; and s; + e; < d;), and that no processor is assigned
to more than one task at any given instant in time (i.e., if p; = p;, and s; < s, then
si +e; < 55).
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Example 1 Consider a set of tasks 7 = {T) = (0,4,5),T> = (0,3,7),T5s =
3,2,10), T, = (0,10,12), T5 = (3,1,10), Ts¢ = (9,1,12)}. Figure 1
shows a schedule for this system on three processors. The minimum inter-
completion time on Processor P1 is 6; since only once task completes on
P2, its minimum inter-completion time is set equal to oco; the minimum
inter-completion time on processor P3 is between the completions of tasks
T, and T3, and is equal to 4. The minimum inter-completion time for the
schedule is therefore min(6, c0,4), which is 4.

T1 TS

P1 [ l I l MICT(P1)= 10-4=6
o 2 4 6 8 10 12
. v : : : .
P2 [ v : i i MICT(P2) = oo
iT4 H T3 T
| 1 [ 1 : | ]r MICT(P3) = min(12-5,5-1)=4

Figure 1: Schedule for task system of Example 1

|

In traditional load-balancing, the aim is to distribute the given set of
tasks as evenly as possible among the available PE’s. We view MICT-
scheduling as an extension to this view of load balancing, in that we are
attempting to “balance” the load temporally as well as spatially (i.e., over
the PE’s). This perspective on load-balancing is particularly useful in sit-
uations where some additional work needs to be done whenever a task
completes execution, and we therefore wish to spread out these events as
much as possible. For example, a real-time architecture may have two
caches associated with each PE — while the currently executing process T;
uses one cache, the memory subsystem (e.g., the DMA processor) is loading
the other for the next scheduled process T;. When T; completes execution,
its cache is flushed and loaded for the process T} that is scheduled to fol-
low process T; (of course, Tj can only begin execution after T; completes).
By spreading out the completion times, we render it less likely that the
memory subsystem gets overloaded.

Our attention was drawn to maximizing the MICT as a scheduling ob-
jective by the following situation. A given set of software modules, each
with an a priori known release time, deadline, and (worst-case) execu-
tion requirement, needs to be scheduled for non-preemptive execution on
a homogeneous multiprocessor with m PE’s, where each PE consists of a
powerful primary processor, and a much less powerful co-processor. The
software modules need to execute on the primary processors; when each
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FIXED Processors
release exccution deadline Uniproc Multiproc
time req.
1 N N N NP-hard (Theorem 1) NP-hard (Theorem 2)
2 N N Y O(n log n log d) (Section 6.1.1) NP-hard (Theorem 6)
3 N Y N O(n2 log n log d) (Section 6.1.3) open (Section 6.2)
4 Y N N O(u2 log d) (Section 6.1.2) NP-hord (Theorem 7)
5 N Y Y O(n logn) (Section 5.1) O(n log n) (Scction 5.1)
6 Y N Y O(n logn) (SectionS.2) ‘1 NP-hard (Theorem 4)
7 Y Y N O(n log n) (Scction 5.1) O(n log n) (Section 5.1)
B Y Y Y O(n) (Section 4) O(n) (Section 4)

Table 1: Summary of results in this paper (n = number of tasks; d = the

largest deadline; the smallest release time is assumed to be 0)

module completes execution, it spawns certain other jobs (including: book-
keeping, checkpointing, and communicating the results generated by the
module to the other PEs), which are performed on the co-processor. It is
desirable that the co-processor complete executing all jobs spawned by one
module before the subsequent module spawns its set of jobs — this is more
likely to be achieved in schedules with large inter-completion times.

This research. Each task may be considered to enjoy three “degrees of
freedom” — one for each of its parameters. In Section 2 (Theorems 1 and 2),
we show that we are unlikely to be able to obtain efficient MICT-scheduling
algorithms that can schedule arbitrary sets of tasks, even on a single pro-
cessor. We therefore investigate the issue of designing optimal MICT-
scheduling algorithms when one or more of the degrees of freedom are
curtailed. In Section 4, we consider sets of tasks in which all tasks are
identical - i.e., each task has zero degrees of freedom. In Section 5, we con-
sider task sets in which each task has one degree of freedom. That is, we
separately consider the cases where all tasks (i) have the same release time
anc. execution requirement, but may have different deadlines, (ii) have the
same execution requirement and deadline, but may have different release
times, and (iii) have the same release time and deadline, but may have
different execution requirements. In Section 6, we consider task sets where
each task has two degrees of freedom — once again, we have three different
possibilities, which are individually analyzed. For each of the cases listed
above, we consider both uniprocessor and multiprocessor MICT-scheduling.
Our results are summarized in Table 1. In addition, we have established
a relationship (Section 3) between the MICT-scheduling problem and the
well-studied problem of non-preemptive scheduling when inter-completion
time is not a consideration: this relationship permits us to apply a wide
variety of results — heuristics, approximation algorithms, etc — that exist
for non-preemptive scheduling to the MICT-scheduling problem.

36



2 MICT-scheduling is hard

In this section, we prove that the general problem of obtaining a schedule
with large minimum inter-completion time for an arbitrary task system is
intractable. We start with some definitions. :

A task system is specified by an ordered pair

<T = U?:]{n = (rt's eiadi)}am)

and represents a set of n tasks T1, 75, . .., T, to be scheduled on m identical
processors, where task T is released at time 7;, has a deadline of d;, and
an execution requirement of e;.

mict({r,m)) = A indicates that there is a schedule for task system
(7,m) with a minimum inter-completion time at least A. (Thus, asserting
mict((7,m)) = 0 is equivalent to stating that 7 is feasible on m processors.)

Lemma 1 Given an arbitrary set of tasks 7 and an arbitrary integer A >
0, the problem of determining whether mict({r,1)) = A is NP-complete in
the strong sense.

Proof Sketch: Transformation from Sequencing with release times and
deadlines [2, page 236). B

As a direct consequence of Lemma 1, we obtain the following theorem:

Theorem 1 Given an arbitrary set of tasks 7, it is NP-hard to schedule
T on one processor such that the minimum inter-complztion time is maxi-
mized.

Theorem 2 immediately follows.

Theorem 2 Given an arbitrary set of tasks 7 and m processors it is NP-
hard to schedule 7 on the m processors such that the minimum inter-
completion time is maximized.

3 Reducing MICT-scheduling to feasibility

While the issue of non-preemptive scheduling to maximize minimum inter-
completion time has not been widely studied, there does exist a vast amount
of literature devoted to feasibility analysis for non-preemptive scheduling.
These include intractability results [2, Section A5)], approximation algo-
rithms (3, 4, 5], optimal algorithms for special cases [1, 6], etc. In this

37



section, we attempt to exploit this wide body of research by establish-
ing a relationship between MICT-scheduling and general non-preemptive
scheduling,.

The following theorem reduces the problem of determining schedules
with specified minimum inter-completion times to the problem of deter-
mining feasibility of sets of tasks.

def

Theorem 3 Let 7 = UL, {T; = (ri,e;,di)} be a set of tasks. Let A > 0.

def

For each i, 1 < i < n, define §; = max(0,A — e;). Define r(r,A) =

U {T} = (ri — 6i,e; + 6i,di) }.
mict((r,m)) = A iff r(r,A) is feasible on m processors.

Example 2 Consider a set of tasks 7 = {T} = (0,3,6),7> = (0,1,7),Tz =
(4,6,12)}. We wish to determine whether 7 can be scheduled on one proces-
sor such that the minimum inter-completion time is at least five (A = 5).
Since §; = 2,62 = 4,53 = 0, Theorem 3 claims that this is equivalent
to determining whether r(r,5) = {T] = (-2,5,6),T; = (—4,5,7),T3 =
(4,6,12)} can be scheduled on one processor:

T 0

n n (F)

—
402

48 8 0o

y

Figure 2: Schedule for (7, 5), and schedule for 7 with MICT 5

Proof of Theorem 3: In this proof, let 7' denote the task set r(r, A).
LHS = RHS. mict({r,m)) = A = (7', m) is feasible:
Suppose first that mict({r,m)) = A, and let S, be an m-processor schedule
for 7 with a minimum inter-completion time > A. We describe how to
obtain a schedule S; for 7/ on m processors.

For each i, 1 < ¢ < n, let [ts, 15 + e;) denote the interval during which
T; was executed in schedule S,. T} is executed on the same processor in
S,; its execution interval is determined as follows:

e If §; = 0, then the execution requirements of T} and T; are the same,
and S schedules T} over the interval [t,,¢, + €;).

e If §; > 0, observe that (i) the processor on which T; is executed in
S, is idle over the interval [t; — d;,¢;) (this follows from the fact that
the minimum inter-completion time of S, is at least A), and (ii) since
ts > 7;, it must be the case that t; —d; > r;—4J;. Schedule S; therefore
executes T} over the interval [t, — d;,t5 + €;).
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LHS < RHS. (v',m) is feasible = mict({T,m)) = A:
Suppose now that 7' is feasible on m processors, and let S; be an m-
processor schedule for 7/. We describe below how to obtain a schedule S3
for T on m processors, which has a minimum inter-completion time of (at
least) A.

For each ¢, 1 < ¢ < n, let [ts,t; + e; + ;) denote the interval during
which 77 is scheduled in S;. Then T; is executed on the same processor in
S3; its execution interval is determined as follows:

e If §; = 0, then the execution requirements of T} and T; are the same,
and S; schedules T; over the interval [t;,¢,+e¢;) as well. Since e; > A,
the separation between the completion time of T; and the task (if any)
that was executed prior to it on the same processor is at least A.

e If §; > 0, observe that t; > r; — d;. Ss assigns the processor to T;
over the interval [¢; + 8;,¢5 + e; + ;). Observe that (i) this interval
is of size e;, (ii) since t; > r; — d;, this interval starts no earlier than
T3, and (iii) since e; + d; = A, the separation between the completion
time of T; and the task (if any) that was executed prior to it on the
same processor is exactly A.

Remark 1 The proof of Theorem 3 is constructive — given a schedule for
r(7,A) on m processors, we can use the reduction defined in Case 2 of the
proof to construct a schedule for 7 on m processors with a minimum inter-
completion time > A. Furthermore, such a reduction can be performed in
O(n) time.

4 Task systems with no degrees of freedom

We start out by considering the very simple problem of MICT-scheduling
a set of n identical tasks 7 = {T,...,Tn}, where T; = (0, E,D), on m
Processors.

Consider any schedule for {7, m). Since there are n tasks to be scheduled
on m processors, some processor will be assigned at least [n/m] tasks.
The first task on this processor completes at (or after) time E; the interval
[E, D) is to be partitioned into at least ([n/m] — 1) inter-completion times.
Therefore, the minimum inter-completion time, obtained by partitioning
[E,d) as evenly as possible subject to integer boundaries, is

D-E
agm1 =1

An algorithm for generating a schedule with a minimum inter-completion
time of Anax is given in Figure 3; since its correctness is quite obvious, a

def
Apmaz =
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A e LD ;
If A < E return “not feasible”;
t « 0; /* time */
p « 1; /* processor */
fori <+ 1tondo {
ift+E>D {
pep+l
t + 0;

Schedule T; on processor p over the interval [t,t + E);
t+t+A

Figure 3: Algorithm for MICT-scheduling a set of identical tasks

formal proof of correctness is omitted. Observe that its run-time complexity
is O(n), where n is the number of tasks.

5 Task systems with one degree of freedom

The case when the task system is allowed one degree of freedom is more
interesting, and not quite as trivial as in the previous section. The results
of this section are summarized in rows 5-7 of Table 1: observe that 5 of
the 6 cases here are efficiently solvable while the sixth, rather surprisingly,
is intractable. (We also point out here that the O(nlogn) complexity
of each of the tractable problems is due to the complexity of sorting n
numbers; if the tasks are available in sorted order according to their non-
fixed parameter, each of these problems can be solved in O(n) time.)

5.1 Equal release times and execution requirements

We first consider task systems where all tasks (i) are released at the same
instant, and (ii) have the same execution requirement. Without loss of
generality, we assume that the common release time is 0, and let E denote
the execution time of each task. The deadlines of different tasks may be
different. (Since we are concerned with the off-line versions of the problem,
in which all task parameters are known beforehand, the results here, by
symmetry, apply also to the case when individual release times may differ,
but all execution times are equal and all tasks have the same deadline.)

One processor. First, we consider the case when set of tasks
7= {T1,T>,...,Ta}, with T; = (0, E, d;), are to be scheduled on a single
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processor. Assume that the tasks are sorted by deadline (i.e., d; < dit1
for all #) — given a set of n tasks, this can be achieved in O(nlogn) time.
Algorithm SCHEDULEPROC (Figure 4) generates a schedule for 7 with the
maximum possible minimum inter-completion time:

delmin + oo

for £+~ 2ton do
if ([(de — E)/(€ - 1)] < delmin) then delmin + |(d; — E)/(¢ - 1)]
if (delmin < E) then return "not feasible”

fori < 1tondo
schedule task T; over interval [(¢ — 1) - delmin, ( — 1) - delmin + E)

Figure 4: Algorithm SCHEDULEPROC

Lemma 2 Let A be the largest number such that mict({r, 1)) = A. Algo-
rithm SCHEDULEPROC generates a schedule for = on one processor with a
minimum inter-completion time equal to A.

Proof: Let d;,ds,...,d, denote the deadlines of the tasks, arranged
in order of non-decreasing deadline. Observe first that Algorithm SCHED-
ULEPROC generates a schedule with a minimum inter-completion time equal
to ming_,{[(d¢ — E)/(¢-1)]}

Consider now any schedule that schedules all the tasks. Since the first
completion time is > E, and the k’th is < dj, it follows that the minimum
inter-completion time on this schedule is no smaller than |(dx — E)/(k—1)]
for each integer k,2 <k <n. N

Observe that the run-time complexity of Algorithm SCHEDULEPROCS
is O(n) if the tasks are already sorted by deadline. If the tasks are not
already sorted, they can be sorted in O(nlogn) time.

Multiple processors. We now consider the case when 7 = |J_,{T; =
(0, E,d;)} are to be scheduled on m processors, m > 1. Given such a
system, Algorithm MULTIPROC (Figure 5) generates a schedule for r with
the maximum possible minimum inter-completion time.

Lemma 3 Let A be the largest number such that mict({r,m)) = A. Algo-
rithm MULTIPROC generates a schedule for {(r,m) with a minimum inter-
completion time equal to A.

Before proving this Lemma, we need some auxiliary results. Let the dead-
lines of the n tasks, arranged in non-decreasing order, be d;,d>, ..., d,.
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Claim 3.1 Each k, m < k < n, imposes the restriction that

E
= I.I'k/m']_lj (1)

Proof:  Observe that there are k tasks with deadline < di. By the
pigeonhole principle, there is one processor which is assigned at least [k/m)]
of these tasks. Since the first completion time on this processor is > E,
and the completion time for each task with deadline no more than d; is
< dg, it follows that the minimum inter-completion time is no more than

l(de = E)/([k/m] - 1)|. B

We are now ready to prove Lemma 3.
Proof of Lemma 3: Suppose that Algorithm MULTIPROC generates
a schedule with minimum inter-completion time Ay;,. Suppose that this
minimum inter-completion time occurs on processor j, and is due to the
assigning of the i’th-largest deadlined task?. That is,

d; - FE
ni;— 1

A!'l‘)ll'l - I_ J

where n; ; denotes the number of tasks with deadline < d; that have been
assigned to processor j in Step 2 of Algorithm MULTIPROC. Since the tasks
are assigned to the processors in round-robin order, it is clear that exactly
[¢/m] of the first ¢ tasks are assigned to processor j; i.e., n;; = [i/m].

Therefore, - E
mln — I.I-Z/m] _ 1,’ (2)

By setting k in Equation 1 to i, it follows that no schedule can obtain a
larger minimum inter-completion time. M

Run-time complexity. Step 1 takes O(nlogn) time. Step 2 takes
O(n) time. Let n; denote the number of tasks allocated to processor j,
1< j <m,in Step 2. Step 3 requires calls to Algorithm SCHEDULEPROC
on sets of tasks that are already sorted by deadline. The total complexity
of this step is therefore 3°77 ) O(n;), which is equal to O(n). The dominant
step is therefore Step 1, and the total complexity is O(n logn).

5.2 Equal release times and deadlines

When all the release times and execution requirements are equal (or, by
symmetry, when all the deadlines and execution requirements are equal),

2]t can be shown that j is necessarily 1; however, this fact does not concern us here.
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1. Sort the tasks by deadline.

2. Assign the tasks, considered in deadline order, to the processors in
a round-robin fashion. That is, let T},T5,...,T, denote the tasks
sorted by deadline. Assign the tasks to the m processors, as follows:

j+1

fori +— 1ltondo
assign T; to the j’th processor
if(j<m)thenj+j+1lelsej«1

3. Schedule each processor individually, by Algorithm SCHEDULEPROC.

Figure 5: Algorithm MULTIPROC

we have seen that the problem of scheduling to maximize minimum inter-
completion can be very efficiently solved on any number of processors. We
will now see that, when execution requirements may vary while release
times and deadlines are fixed, the situation is not quite the same.

Theorem 4 Let 7 = UL, {T; = (0, e, D)} be a task system. The problem
of MICT-scheduling 7 on m processors is NP-hard, for arbitrary m.

Proof Sketch: We prove this theorem by showing that there is a polyno-
mial transformation from the NP-hard problem of multiprocessor schedul-
ing to MICT-scheduling with equal release times and deadlines.

The multiprocessor scheduling problem is defined as follows (2,
page 238]:

INSTANCE: Set T of tasks, number m € Z* of processors,
length £(t) € Z+ for each t € T, and a deadline D € Z*.
QUESTION: Is there an m-processor schedule for T that meets
the overall deadline D, i.e., a function o : T - ZF such
that, for all ©« > 0,-the number of tasks ¢ € T for which
o(t) < u < o(t) + £(t) is no more than m and such that, for all
teT, o(t) + £(t) < D?

Given an arbitrary instance of the multiprocessor scheduling problem,
we obtain an instance of the problem of MICT-scheduling with equal re-
lease times and deadlines, by the following mechanism: for each task ¢ in
the multiprocessor scheduling problem instance, we define an MICT task
with release-time 0, deadline D, and execution requirement £(t). It is rel-
atively straightforward to observe that this system of MICT tasks can be
scheduled with an intercompletion time > 0 if and only if the multiprocessor
scheduling problem instance has a solution. l
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Algorithm EQUALEXUNIPROC
delmin + o
for £ « n down to 2 do
if (|(D —e1 = X704y )/ (€ —1)] < delmin)
then delmin ¢ [(D — ey — 357, €;)/(€ - 1))
schedule task T; over [0,€;)
¢ + e; /* last completion time */
fori « 2ton do
if (e; < delmin) {
schedule task T; over the interval [c + delmin — e;, ¢ + delmin)
¢ + c+delmin }
else {
schedule task T; over the interval [c, c + e;)
c—c+e;}

Figure 6: Algorithm EQUALEXUNIPROC

However, the situation is not quite as bleak on a single processor. As-
sume that the tasks are sorted by execution requirement (i.e., e; < e;4;
for all i) — given a set of n tasks, this can be achieved in O(nlogn) time.
Observe that an MICT-schedule would have a task with smallest execu-
tion requirement (without loss of generality, T}) scheduled over the inter-
val [0,e;), and that this would leave the interval [e;, D) to be partitioned
into n — 1 inter-completion intervals. We want [e;, D) to be partitioned
as evenly as possible, subject to the constraint that each e;,i > 1, has to
“fit” within an interval. Algorithm EQUALEXUNIPROC (Figure 6) gener-
ates such a schedule, in which the order of task-execution is 7}, T5, ..., T,.
(The first for-loop accounts for the possibility thzt some of the later tasks
have very large execution requirements, thus forcing the remaining tasks
closer together.)

Example 3 Consider a set 7 of 5 tasks, with r; = 0 for all tasks, d; = 21
for all tasks (i.e., D =21),,ande; =1,e2=2,e3 =2,e4 = 5, and e5 = 8.
We trace below the execution of Algorithm EQUALEXUNIPROC on 7: for
each iteration of the first for loop, we indicate how the value of delmin
gets updated. (The figure shows that delmin = 5 or 4 are unacceptable,
illustrating the need to loop through ¢ = 5,4, 3, 2 to determine the optimal
delmin.)



Ll (D-e - Zjn;t+1 ej)/(€—1)] | delmin
5(1(21-1-0)/(5-1)] =5 5
41 [(21-1-8)/4-1)] =4 4
3([1(21-1-13)/3-1)] =3 3
2(1(21-1-15)/(2-1)] =5 3
Deadline
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Orar I 1 ]

3

Theorem 5 Let A be the largest number such that mict({r,1)) = A. Al-
gorithm EQUALEXUNIPROC generates a schedule for (7, 1) with a minimum
inter-completion time equal to A.

Proof Sketch: Similar to the proof of Lemma 2. I

If the tasks are already sorted by execution requirement, the run-time
complexity of Algorithm EQUALEXUNIPROC is O(n). Since sorting can be
done in O(nlogn) time, the total complexity of MICT-scheduling a set of
tasks with equal release times and deadlines on one processor is O(n logn).

6 Task systems with two degrees of freedom

In Sections 4 and 5, we considered task systems with zero and one degrees
of freedom. All of these were relatively straightforward to analyze and,
with the exception of Theorem 4, could be solved from first principles.
Task systems with two degrees of freedom — the subject of this section
— are a lot more challenging. For the uniprocessor problems, we make
use of the reduction defined in Section 3 to transform MICT-scheduling to
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(general) non-preemptive scheduling, and then design efficient solutions to
the resulting scheduling problems. Each of the three cases (Sections 6.1.1
- 6.1.3) require a fresh approach that differs significantly from the ones
employed in the other two. Two of the three multiprocessor problems turn
out to be intractable; the complexity of the third remains unresolved.

6.1 One Processor

Let 7 = U, {T: = (7i,€i,di)} be a set of tasks to be scheduled on a single

processor. Let d = max®  {d;}, and assume without loss of generality
that minl, {r;} = 0. Let Amax denote the largest integer A for which
mict({r,1)) = A. Observe that |d/(n — 1)} is a (loose) upper bound on the
value of Anax. The aim in MICT-scheduling is to generate a schedule with
a minimum inter-completion time equal to Apax.

Suppose now that we had an algorithm that, given 7 and a positive
integer A, determines whether 7 can be scheduled with a minimum inter-
completion time of at least A on a single processor (i.e., whether mict(({r, 1))
= A); if so, it generates a schedule with minimum inter-completion time
at least A. Then an MICT-schedule for  — i.e., a schedule with mini-
mum inter-completion time equal to Amax — can be obtained by making
O(log|d/(n—1)]) calls to this algorithm, by essentially performing “binary
search” between the values 0 and |d/(n — 1)]. Since O(log|d/(n - 1)]) =

O(log d), the complexity of MICT-scheduling 7 is therefore O(log d) times
the complexity of generating a schedule with a specified minimum inter-
completion time A, if it exists®.

In the remainder of Section 6.1, we consider separately the three cases
when 7 is restricted in one of its degrees of freedom - fixed deadlines (Sec-
tion 6.1.1), fixed release times (Section 6.1.2), and fixed execution require-
ments (Section 6.1.3). For each, we make use of the reduction defined in
Theorem 3 to design an efficient algorithm which accepts as input a con-
strained task system 7 and a positive integer A and, if mict({r,1)) = A

generates a schedule for 7 with minimum inter-completion time of at least
A.

6.1.1 Fixed deadlines

When all the deadlines are equal, we may make use of Theorem 3 to reduce
MICT-scheduling on a single processor to a tractable problem in (regular)
scheduling.

3Observe that log d is polynomial in the size of the binary representation of 7; MICT-
scheduling is therefore a polynomial-time operation, provided the problem of generating
a schedule with specified minimum inter-completion time is in PTIME.
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Let 7 = UL, {(T: = (ri,ei, D)} be a task system in which all tasks
have the same deadline D, and let A be a given positive integer. We apply
def

the reduction r defined in Theorem 3 to 7, yielding the taskset 7(r,A) =
U, {(T! = (r;i—8;, ei+6;, D)}, where &; = max(0, A—e;). By Theorem 3, 7
has a schedule with minimum intercompletion time A if and only if r(7, A)
is feasible.

Since each task in r(7,A) has the same deadline D, it is trivial to
determine whether r(7,A) is feasible, and to generate a schedule if the
answer is yes: simply schedule the tasks according to earliest release times
(ties broken arbitrarily), and report success if they all complete by time
D, and failure otherwise. The run-time complexity is O(nlogn), with the
dominant cost being the cost of sorting the tasks by order of non-decreasing
release times. The overall complexity of determining Amax is therefore
O(nlognlogd).

6.1.2 Fixed release times

When all the release times are equal, a technique similar to the one used
in Section 6.1.1 may be used.

Let 7 = UL, {(T: = (0,e;,d;)} be a task system in which all tasks
have the same release time (without loss of generality, we have assumed
that this release time is 0). Let A be a given positive integer. We once
again apply the reduction r defined in Theorem 3 to 7, yielding the taskset
r(r,A) = UL, {(T} = (=6;, e + 8:,d;)}, where §; £ max(0,A —e;). By
Theorem 3, 7 has a schedule with minimum intercompletion time A if and
only if r(r, A) is feasible.

Observe that each task in r(r,A) may have a different release time,
execution requirement, and deadline. Scheduling such systems is, in gen-
eral, NP-hard in the strong sense (Sequencing with release times and dead-
lines [2, page 236)]). Fortunately, 7(7, A) is not quite general — notice that
the interval between the release time —4;, and the instant zero, is no larger
than the execution requirement e; + 9;, for every task T;. We may therefore
conclude that at most one task executes before time-instant zero in any
schedule for 7(r,A). In the pseudocode below, each iteration of the for
loop “guesses” a different candidate T} for this first task. The rest of the
tasks are all available by the time T; completes execution, and may there-
fore be executed in deadline order. Since some task T; must execute first
in a schedule for r(r, A), this algorithm will discover the schedule during
the j’th iteration.

1 Assume that the tasks are available in order of non-decreasing
deadlines
2 for £ + 1 to n do{
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/*Task T, is executed first */
3 execute task T, over the interval [—d¢, e¢)
4  execute the remaining tasks in EDF order
5  if all tasks meet their deadlines return "success"

}

The run-time complexity may be computed as follows: It costs O(n log )
to sort the tasks by deadline (line 1). Each iteration of the for loop (lines
2-5) takes O(n) time, and there could be up to n iterations, for a total
complexity of O(n logn +n?), which equals O(n?). The overall complexity
of determining Amay is therefore O(n?logd).

6.1.3 Equal execution requirements

Let 7 = UL, {(T: = (r:, E,d;)} be a task system in which all tasks have
the same execution requirement E, which we wish to schedule on a single
processor. Let A be a given positive integer. We make use of the following
result from [6] in determining whether mict((r,1)) = A:

Result 1 (Simons (1978)) Let 7 be a set of n tasks, in which all tasks
have the same execution requirement. Simons presented an O(n?logn)
algorithm to determine if 7 can be non-preemptively scheduled on a single
processor, and to generate such a schedule if it exists. We will refer to this
algorithm as Simons’ Algorithm.

We apply the reduction r defined in Theorem 3 to 7, yielding the taskset
r(r,A) = UL {(T! = (r; = 6, E + 6,d;)}, where & < max(0,A - E). By
Theorem 3, T has a schedule with minimum intercompletion time A if and
only if r(7, A) is feasible.

The crucial observation is that the execution requirements of all tasks
in r(r, A) are equal. We can therefore use Simons’ Algorithm to determine
in O(n?logn) time if r(r,A) is feasible, and to generate a schedule if so.
The total complexity of determining Amax is therefore O(n?logn log d).

6.2 Multiple processors

While all the problems studied above are seen to have efficient solutions,
two of the corresponding problems on multiple processors turn out to be
intractable. The complexity of the third remains open.

Theorem 6 Let 7 = UL, {T; = (ri,e;,D)}. The problem of MICT-
scheduling 7 on m processors in NP-hard, for arbitrary m.

Proof: Directly follows from Theorem 4. l
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Theorem 7 Let 7 = UL, {T; = (0,e;,d;)}. The problem of MICT-
scheduling 7 on m processors in NP-hard, for arbitrary m.

Proof: Directly follows from Theorem 4. B

7 Conclusions

While scheduling application systems, it is sometimes advantageous to
spread out over time the instants at which different tasks complete ex-
ecution. We have formalized this idea into the concept of scheduling to
mazimize inter-completion time — MICT-scheduling. We have shown that
the MICT-scheduling problem is, in general, NP-hard, and have studied
a wide variety of special cases of task systems, where each special case is
distinguished by being restricted along some of its degrees of freedom. For
a large number of these special cases, we present very efficient schedul-
ing algorithms; others we prove NP-hard. In addition, we have identified
(Theorem 3) a very useful relationship between MICT-scheduling and the
well-understood problem of scheduling to meet deadlines. Our current re-
search efforts include using this relationship to obtain MICT-scheduling
algorithms for other problems which have tractable corresponding feasibil-
ity problems.

In this research, we have chosen to focus on maximizing the minimum
inter-completion time on each processor —— in the Introduction, we ex-
plained why we were directed to this metric by the application systems
under consideration. An alternative approach could be to maximize the
minimum inter-completion time over all processors. That is, we could have
attempted to maximize the minimum difference between the completion
times of successive tasks to complete, irrespective of the processor each
tasi: executes on. This metric would be more appropriate in a situation
where, for example, each completion is followed by some interprocessor
communication, and the idea is to balance out the network load over time.
We are currently exploring issues relating to this “global” minimum inter-
completion time metric — it appears that techniques fundamentally differ-
ent from the ones used in this paper are needed.
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