A Note on Dickson-Stirling Numbers

Leetsch C. Hsu
Institute of Mathematics
Dalian University of Technology
Dalian 116024
PR. China

Peter Jau-Shyong Shiue*

Department of Mathematical Sciences
University of Nevada, Las Vegas
Las Vegas, NV
USA 89154-4020

This note shows that Dickson-Stirling numbers of the second kind has some naive applications to the combinatorial enumeration of arithmetic mappings satisfying certain conditions.

Recall that Dickson polynomial $D_n(x, a)$ of degree $n \ge 1$ in x and with a real number parameter a may be defined by

$$D_{n}(x,a) = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{n}{n-k} \binom{n-k}{k} (-a)^{k} x^{n-2k}$$
 (1)

where [] denotes the greatest integer function (cf. [3]).

Very recently we and Mullen [1] have introduced two kinds of generalized Stirling numbers, (so called Dickson-Stirling numbers), of which the second kind is defined by

$$D_n(x,a) = \sum_{k=0}^{n} S(n,k;a) (x-a)_k, \quad n = 1, 2, \cdots,$$
 (2)

where $(x-a)_k = (x-a)(x-a-1)\cdots(x-a-k+1)$, with $(x-a)_0 = 1$. For n=0 we define S(0,0;a)=1. Note that $D_n(x,0)=x^n$, $(n \ge 1)$ so that the a=0 case of (2) yields the ordinary Stirling numbers of the second kind, viz. S(n,k;0)=S(n,k).

^{*}Work completed while on sabbatical leave at Texas A & M University. The author would like to thank the UNLV and Dr. G. Chen for support.

Clearly, Newton's interpolation formula gives

$$S(n,k;a) = \frac{1}{k!} \Delta^k D_n(x,a) \Big|_{x=a}$$
(3)

where Δ is the difference operator defined by $\Delta f(x) = f(x+1) - f(x)$.

In this note we are concerned with arithmetic functions defined on the set [1,n], i.e., the set of positive integers from 1 to n. Some notations to be used may refer to, e.g., Stanley's [4]. We shall need a terminology " \bar{a} -property" as defined by the following:

For a given positive integer a, an arithmetic function f defined on [1, n] is said to have \bar{a} -property if the cyclic sequence $f(1), f(2), \dots, f(n), f(1)$ does not possess any pair of consecutive terms which take the same integer in [1, a].

What we wish to prove are the following.

Proposition 1. Let $m \ge 1$, $n \ge 1$ and a with $0 \le a < m$ be integers. Then $D_n(m,a) - D_n(a,a)$ counts the number of functions $f:[1,n] \to [1,m]$ that have the \bar{a} -property and take at least one integer of the set [a+1,m].

Proposition 2. Let $n \ge k \ge 1$ and $a \ge 0$ be integers. Then k!S(n, k; a) counts the number of functions $f: [1, n] \to [1, a+k]$ that have the \bar{a} -property and take all the k values of [a+1, a+k].

Our proof will make use of Kaplansky's cycle theorem which asserts that the number of ways of selecting k disjoint pairs of consecutive objects from n objects arranged in a cycle is given by $\frac{n}{n-k}\binom{n-k}{k}$, where $k \leq \lfloor n/2 \rfloor$ and the pairs are counted in a clockwise fashion (cf. [2]).

Proof of Propositions 1 and 2. In accordance with (1) one may write

$$D_{n}(m,a) - D_{n}(a,a) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^{k} \frac{n}{n-k} \binom{n-k}{k} a^{k} \left(m^{n-2k} - a^{n-2k} \right). \tag{4}$$

Using Kaplansky's cycle theorem, one may see that the general term without the factor $(-1)^k$ occurring on the RHS of (4) just counts the number of such functions $f:[1,n]\to[1,m]$ that there are k pairs of consecutive terms of the cyclic sequence $f(1), f(2), \dots, f(n), f(1)$, each of which takes the same integer of [1,a], and that the remaining (n-2k) values of f take at least one integer of the set [a+1,m]. Applying the inclusion-exclusion principle to the RHS of (4), it is clear that the alternating sum just counts the number of functions f satisfying the conditions of Proposition 1. Hence the combinatorial meaning of $D_n(m,a)-D_n(a,a)$ is verified.

In proving Proposition 2, it suffices to note that (using (3))

$$k!S(n,k;a) = \Delta^{k} \left(D_{n}(x,a) - D_{n}(a,a) \right) \Big|_{x=a}$$
(5)

Clearly one may rewrite (5) in the form

$$k!S(n,k;a) = \sum_{j=0}^{k-1} (-1)^j \binom{k}{k-j} \left(D_n \left(a+k-j,a \right) - D_n \left(a,a \right) \right)$$
 (6)

Here it may be observed that for every (k-j) element subset of [a+1,a+k] say $\{a_1,a_2,\cdots,a_{k-j}\}$ with $(a+1)\leq a_1<\cdots< a_{k-j}\leq (a+k)$, the factor $(D_n(a+k-j,a)-D_n(a,a))$ always counts the number of functions $f:[1,n]\to [1,a]\cup \{a_1,\cdots,a_{k-j}\}$ that have the \bar{a} -property and take at least one value of $\{a_1,\cdots,a_{k-j}\}$. Consequently, the general term apart from the factor $(-1)^j$ on the RHS of (6) gives the total counting number for which there are exactly j values of [a+1,a+k] not included in the range of f's. Thus, an application of the inclusion-exclusion principle to (6) just yields the conclusion of Proposition 2.

Remark 1. Just like the case for the ordinary Stirling numbers S(n,k), one can also interpretate S(n,k;a) as a number of partitions of some set. To be more precise, let S be a set of n distinct elements, and denote it by \bar{S} when the elements are cyclically ordered. Let $n \geq k \geq 1$ and $a \geq 0$ be integers with $a+k \leq n$. Then S(n,k;a) counts the number of ways of partitioning the set S into k non-empty unordered subsets and, in addition, into at most a ordered subsets, of which no one contains two consecutive elements in \bar{S} .

Obviously, in the case a=0 the above statement and Proposition 2 yield the classical combinatorial meanings of S(n,k) and S(n,k) k! respectively. Remark 2. Proposition 2 can be slightly extended to the form: Let $n \ge k \ge 1$, $a \ge 0$ and m > a + k be integers. Then S(n,k;a) $(m-a)_k$ counts the number of functions $f:[1,n] \to [1,m]$ that have the \bar{a} -property and take exactly k distinct values in [a+1,m]. Actually, this follows easily from the combinatorial meaning of $\binom{m-a}{k}$ and the fact that $(m-a)_k = k!\binom{m-a}{k}$, (cf. Proposition 2).

Finally, it may be worth mentioning that a shorter proof of Proposition 2 can even be obtained with the aid of Proposition 2.2.2 of Stantley's Enumerative Combinatorics [4]. Related details may be left to the interested reader.

Acknowledgement.

The authors wish to thank the referee for helpful comments and suggestions that led to a better presentation of this note.

References

- [1] L.C. Hsu, G.L. Mullen, and Peter J.-S. Shiue, Dickson-Stirling numbers, Proc. Edinburgh Math. Soc. 40 (1997), 409-423.
- [2] I. Kaplansky, Solution of the Problème de Ménages, Bull. Amer. Math. Soc. 49 (1943), 784-785.
- [3] R. Lidl, G.L. Mullen, and G. Turnwald, Dickson Polynomials, Pitman Mono. & Surveys in Pure & Appl. Math. vol. 65, Longman Scientific & Technical, Essex, England, 1993.
- [4] R.P. Stanley, Enumerative Combinatorics I, Wadsworth & Brooks/Cole, Monterey 1986.