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This note shows that Dickson-Stirling numbers of the second kind has
some naive applications to the combinatorial enumeration of arithmetic
mappings satisfying certain conditions.

Recall that Dickson polynomial Dy, (z, a) of dggree n > 1 in z and with
a real number parameter a may be defined by

n/2]
D, (z,a) = _n_(n-k —a)* g2k 1
> () )

where | | denotes the greatest integer function (cf. [3]).

Very recently we and Mullen [1] have introduced two kinds of generalized
Stirling numbers, (so called Dickson-Stirling numbers), of which the second
kind is defined by

Dn(z,a)=Zn:S(n,k;a)(z—a)k, n=12---, (2)
k=0

where (z —a), =(z—a)(z~-a—1)---(z—a—k+1), with (z —a)y = 1.
For n = 0 we define §(0,0;a) = 1. Note that D, (z,0) = z*, (n > 1) so
that the a = 0 case of (2) yields the ordinary Stirling numbers of the second
kind, viz. S (n,k;0) = S (n,k).
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Clearly, Newton’s interpolation formula gives
S(n,k;a) = — A"Dn (z,a) |x=a 3)

where A is the difference operator defined by Af (z) = f(z + 1) — f ().

In this note we are concerned with arithmetic functions defined on the
set [1,n], i.e., the set of positive integers from 1 to n. Some notations
to be used may refer to, e.g., Stanley’s [4]. We shall need a terminology
“g-property” as defined by the following:

For a given positive integer a, an arithmetic function f defined on [1, 7]
is said to have a-property if the cyclic sequence f (1), f(2),---, f(n), f(1)
does not possess any pair of consecutive terms which take the same integer
in [1,a].

What we wish to prove are the following.

Proposition 1. Let m > 1,n > 1 and a with 0 < a < m be integers. Then
D, (m,a)— Dy, (a, a) counts the number of functions f : [1,n] — [1,m] that
have the a-property and take at least one integer of the set [a + 1, m].

Proposition 2. Let n > k > 1 and a > 0 be integers. Then k!S (n, k; a)
counts the number of functions f : [1,n] — [l,a+ k] that have the a-
property and take all the k values of [a+1,a+ kJ.

Our proof will make use of Kaplansky’s cycle theorem which asserts that
the number of ways of selecting k disjoint pairs of consecutive objects from
n objects arranged in a cycle is given by 72 (" %), where k < [n/2] and
the pairs are counted in a clockwise fashion (cf. [2]).

Proof of Propositions 1 and 2. In accordance with (1) one may write

Ln/2]

Dy, (m,a) — D, (a,a)= —-1)k—n— n-k n—2k _ gn—2k)
(m,a) > ¢ 2 (")t e )

Using Kaplansky’s cycle theorem, one may see that the general term with-
out the factor (—1)* occurring on the RHS of (4) just counts the number of
such functions f : [1,n] — [1,m] that there are k pairs of consecutive terms
of the cyclic sequence f(1), f(2), ---, f(n), f(1), each of which takes
the same integer of [1, a}, and that the remaining (n — 2k) values of f take
at least one integer of the set [a + 1,m]. Applying the inclusion-exclusion
principle to the RHS of (4), it is clear that the alternating sum just counts
the number of functions f satisfying the conditions of Proposition 1. Hence
the combinatorial meaning of Dy, (m, a) — Dy, (a, a) is verified. o
In proving Proposition 2, it suffices to note that (using (3))

KIS (n,k;a) = A% (Da (z,0) — Da (a,0))],_, (8)
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Clearly one may rewrite (5) in the form

k—1 . k
KIS (n,k;a) = Y (-1) (k _j) (Dn (a+k —j,a) — Dn(a,a)) (6)

=0

Here it may be observed that for every (k — j) element subset of [a + 1,a + k)
say {a1,a2,-+ ,ak—j} with (a+1) < a1 < -+ < ag—; £ (a+ k), the fac-
tor (D, (a+k — j,a) — Dy, (a, a)) always counts the number of functions
J:[1,n] = [1,a]U{ay, -+ ,ak—;} that have the a-property and take at
least one value of {ai,---,ax—;}. Consequently, the general term apart
from the factor (—1)’ on the RHS of (6) gives the total counting number
for which there are exactly j values of [a+1,a + k] not included in the
range of f’s. Thus, an application of the inclusion-exclusion principle to
(6) just yields the conclusion of Proposition 2. ]
Remark 1. Just like the case for the ordinary Stirling numbers S (n, k),
one can also interpretate S (n, k;a) as a number of partitions of some set.
To be more precise, let S be a set of n distinct elements, and denote it
by S when the elements are cyclically ordered. Let n > k> 1 and a >0
be integers with a + k < n. Then S (n, k; a) counts the number of ways of
partitioning the set S into k non-empty unordered subsets and, in addition,
into at most a ordered subsets, of which no one contains two consecutive
elements in S.

Obviously, in the case a = 0 the above statement and Proposition 2 yield
the classical combinatorial meanings of S (n, k) and S (n, k) k! respectively.
Remark 2. Proposition 2 can be slightly extended to the form: Let n >
k21, a>0and m > a+ k be integers. Then S (n, k;a) (m — a), counts
the number of functions f : [1,n] — [1,m] that have the @-property and
take exactly k distinct values in [a 4+ 1,7]. Actually, this follows easily from
the combinatorial meaning of (™ *) and the fact that (m — a), = k!(™; %),
(cf. Proposition 2).

Finally, it may be worth mentioning that a shorter proof of Proposition
2 can even be obtained with the aid of Proposition 2.2.2 of Stantley’s Enu-
merative Combinatorics [4]. Related details may be left to the interested
reader.
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