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ABSTRACT. The total domination number -, (G) of graph G =
(V, E) is the cardinality of a smallest subset S of V such that
every vertex of V has a neighbor in S. It is known that, if G
is a connected graph with n vertices, 4:(G) < [2n/3]. Graphs
achieving this bound are characterized.

1 Introduction

Let G = (V, E) be a graph without loops or multiple edges and n = |V|.
The familiar graphical invariant domination number, ¥(G), of G is the size
of a smallest subset S of V such that every vertex of V — S is adjacent to
at least one vertex of S. While the domination number can be as large as n
for the empty graph, Ore [3] has shown that v < |n/2| when the graph has
no isolated vertices. In particular, this bound is valid when the graph is
connected and has at least two vertices. Payan and Xuong [4] characterized
graphs with an even number of vertices which achieve the upper bound, and
Cockayne, Haynes, and Hedetniemi [2] did the same when n is odd.

This paper is concerned with similar characterizations for the total dom-
ination number, v,(G), defined as the size of a smallest subset S of V such
that every vertex of V has a neighbor in S. Again an upper bound is
available, this one provided by Cockayne, Dawes, and Hedetniemi [1].

Theorem 1 ([1]) If G is a connected graph with n > 3 wertices, then
7 < |2n/3].
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The need for a characterization of graphs achieving this upper bound
arose from other studies being conducted by the authors related to certain
allowable sequences of integers associated with the total domination num-
ber. Graphs achieving the bound are called eztremal. It will be assumed
in all discussions that the graphs of interest are connected.

Some notation is necessary. If X is a subset of V, then N(X) (N[X])
is the open (closed) neighborhood of X and (X) is the subgraph of G
induced by X. We say vertex u in set S has a private neighbor if P, =
(V -S)Nn(N(u) = N[S - {u}]) # 0. The private neighbors of u are the
vertices in P,. Throughout this paper there will be many instances of
the need for a phrase such as “the set (S — {a,b,c}) U {d, e} obtained by
removing vertices a, b, and ¢ from S and including vertices d and e not
in S is a smaller total dominating set, contradicting the assumption that
S is a minimum total dominating set.” For efficiency we will employ the
following notation to represent this entire phrase: | (a,b,c: d, e).

2 Preliminaries
The characterizations of those graphs G such that «,(G) = [2n/3] of ne-
cessity requires examination of several cases. Some of the arguments are
repetitive and this section presents lemmas useful in two or more of the
cases.

The basis of all arguments is the structure of a minimum total dominating
set S, as described in the proof of Theorem 1, and consequences of that
structure. We review the pertinent points here and simultaneously take the

opportunity to introduce some notation. Such an S can be partitioned as
AU BUCU D where

1. AUB = {v € S : vhas a private neighbor}. We shall represent
vertices of A by a; for appropriate values of the index i, vertices of B
by b;, one private neighbor of a; by w;, and one private neighbor of
b,‘ by Vi.

2. B={ve€ AUB v is isolated in (AU B)}.

3. C C S - (AU B) is a minimum size set such that each vertex of B is
adjacent to some vertex of C. Usually, an element of C adjacent to
b; will be denoted ¢;.

4. D=S-(AUBUC).

Additional notation is included with the following facts shown in the proof
of the theorem.

L |CI < Bl
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2. (D) = mK, for some nonnegative integer m. The vertices of the i**
K, are denoted by d;; and d;».

3. For each %, at least one of d;; and d;», say d;; without loss of generality,
is adjacent to a vertex z; € V - S.

. z; is adjacent to a second vertex of S.
. d;; and d;2 are not adjacent to zj, j # 4.

. di and d; are not adjacent to any vertex of S — {d, di2}.

N & s

. The bound of the theorem is established by the following sequence of
equalities and inequalities:

S| = %(G) = (|A|+|B|+m) +(|C|+m) < 2(|A|+|B|+m) < 2(n—%(C)).

In many cases of importance, it is possible to assume that |[D| = 0, a
fact derived in the following lemma. In the proof to this lemma we argue
in detail the first two justifications showing that a particular configuration
is impossible because it would produce a smaller total dominating set. In
other cases, however, such detail will be omitted. It is helpful to keep in
mind (1) that any a;, b;, ¢, di;, or diz is a member of S, and (2) vertices
¥;, bi, and ¢; usually appear in this order as a path P; on three vertices.

Lemma 2 [fn >4, |A| =0, and |V — S| = |B|+m, then D may be taken
to be emply.

Proof: Since the v; vertices are private neighbors, they are distinct from
the z; vertices. There must be at least | B| vertices of type v; a..d m of type
z;. This means that the |B| + m vertices of V' — S have to be apportioned
uniquely as private neighbors v; for each b; € B and neighbors z; for each
d;; € D. By facts 5 and 6 above and the private neighborness of the v;,
vertices d;; and d;» can be adjacent only to each other and to z;. Thus the
degree of d;; is two. If the degree of dis is one, S = (S — {di2}) U {z;} is
another minimum total dominating set. Since d;; is independent of every
vertex of B, we see that, in S, we may place d;; in B and z; in C, thereby
eliminating d;; and d;; from D. The only remaining possibility is that the
degree of d;2 is two so dy;, dig, and z; induce a triangle. Since n > 4, z;
must be adjacent to another vertex z. If z € S, then, since z; is adjacent to
di1, di2, and 2, we can produce a smaller total dominating set by replacing
d;; and d;p with z;, that is, | (di;, di2 : z;). If z is not in S, then either
z = v; or z = z; by the partitioning of V' — S. Suppose z = v; so that
we have the 3-path (vj,bj,¢;). If ¢; has degree one in (B U {c;}), then
1 (¢j,dar, di2 @ vj,2;), that is, the subgraph induced by di1, di2, zi, v;,
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bj, and c; is dominated by the three vertices z;, v;, and b; instead of the
original four vertices d;;, di2, bj, and c;. If 2 = v; and c; has degree at
least two in (BU {Cj}), l (bj,du,diz : v_,-,z,-). Fina.lly, if z = zj, ] 7£ 'l:,
| (di1, di2,dj1,dj2 : zi,z5). Thus the degree of d;2 cannot be two and the
result follows. 0

The next result is key to determining allowable substructures of the ex-
tremal graphs.

Lemma 3 Suppose b; has a unique private neighbor v; and ¢; # ci. If
C N N(bi) # {cj} for all k # 1,3, then there is no path in G of the form
(2, ¢, bi, vi, v;) where z € S — {cj}.

Proof: The condition on N (b) indicates c; is not necessary to dominate by.
Therefore, if (vj, v;, b;, i, z) is a path with z € S§—{c;}, then | (c;,b; : v;). O

Lemma 3 leads to two useful corollaries. The first limits adjacencies
between the v;’s.

Corollary 4 If c; is adjacent to b;,, biy, ... ,b;, witht > 2, v; is the unique
private neighbor of b;;, and, for k # i, c; has degree one in (cx U (B —
{biybigy ... 1 bi, 1)), then vjur @ E for 1 <5 <t.

The second corollary is a fundamental structural result. Define a brush
to be a graph constructed from a connected graph M by identifying with
each vertex of M one of the end vertices of a Ps. A brush is nontrivial if it
is not a P, and the vertices of M form the handle of the brush. Note that
a brush is also called the 2-corona of a connected graph.

Corollary 5 Let H be a subgraph induced by the 3t vertices of t paths of
the form (ci, bi, vs) where, in G, each b; has degree two and N(c;)N B = b;.
Then every component of H is either a Cg or a brush whose handle, without
loss of generality, is composed entirely of vertices of the type c;.

Proof: By hypothesis there are no edges of the form ¢;b;, j # 4, and there
can, be none of the form ¢v; (here j may equal 3) or byv;, j # 1, since v;
is a private neighbor of b;. In other words, the only edges in H outside of
those in the ¢ paths are of the type c;c; or v;v;. Suppose v;u; and c;c; are
both edges so that (¢, b, vi, v4, bj, ¢j, ¢;) forms a Cs. If v; is adjacent to vk,
k # j, then (cj, ci, bs, vi, vk) is a path of the type forbidden by Lemma 3. By
similar arguments there are no edges joining any of ¢;, ¢;j, v;, or v; to any
other vertices in H. Hence, the Cg forms a component of H. By Lemma 3,
if ¢;¢; is an edge and v;v; is not, neither v; nor v; can have edges to any vy,
k # 1,7, and the component is a brush whose handle is composed entirely
of vertices of the type ¢;. On the other hand, if v;v; is an edge and c;c;

84



is not, Lemma 3 also implies there can be no edges from either ¢; or ¢; to
any ck, k # 1, 5. Thus the component containing edge v;v; must be a brush
whose handle is composed entirely of vertices of the type v;. In this case
we may create a new dominating set S by interchanging the labels »; and
¢; in the brush, vghere the new v; (the old ¢;) is now the private neighbor
of b;. We show S is a total dominating set. If this is not the case, then
one of the original ¢; was necessary to dominate another vertex z # b; in
S. By the hypothesis N(¢;) N B = b;, so z ¢ B. Furthermore, every vertex
of AUCU D has a neighbor in S other than ¢;, so no z € S, other than b;,
depends on ¢; for domination. Finally, S is minimum since it has the same
cardinality as S. (m}

The next lemma is useful when a c; is adjacent to two or more b;’s because
it limits the number of edges which can be adjacent to the b;’s.

Lemma 8 If ¢; is adjacent to b, bi,, ... ,b;,, at least one by; is adjacent
to no vertez of S — {¢;}.

Proof: If, for each j, b;; is adjacent to z; € S — {¢;}, where the z; need
not be distinct, S — {¢;} is a smaller total dominating set. 0

3 The Cases
For an extremal graph, v:(G) = |2n/3]; hence, from fact 7,

[27/3] = |A] +|B| + [C] + 2m < 2(|A| + |B| + m) < 2(n - [2n/3])
=2[n/3]. 1)

We employ this to determine the various cases which must be considered,
in the order in which it is convenient to do so.

Case 1. n = 3k. Then v, = 2k = |2n/3] = 2[n/3]. Hence, the inequali-
ties in Equation 1 are all equalities and |A| + |B| = |C| < |B| by fact
1. It follows that |A| = 0, |B| = |C|, and |S| = 2|B| + 2m implying
[V -8|=|B|+m.

Case 2. n =3k +2. We have vy, =2k + 1= |2n/3] and 2[n/3] = 2k + 2.
Thus |C| < |A]+|B| £ |C|+1 < |B| + 1, implying |A| < 1. By the
definition of A, (A) has no isolated vertices so |A| = 1 is not possible
and we conclude |A| = 0. This in turn implies |C| < |B] < |C| + 1.
If |B| = |C|, & = 2|B| + 2m which is an even number, contradicting
vt = 2k + 1. We are forced to conclude |B| = |C| + 1 implying |S| =
2|B|-14+2m = 2(|B|+m—1)+1 and |V -S| = | B|4+m~—1+1 = | B|+m.

Case 8. n = 3k +1. Now v, = 2k = |2n/3] and 2[n/3] = 2k + 2.
Thus |[C] < |[A|+ |B] £ |C|+2 < |B| +2, implying |A] < 2. As
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before, |A| # 1. There are three subcases, two when |A| = 0 and one
when |A| = 2. If |A| =0, |C| < |B| £ |C|+2. If |B|] =|C|+1,
9¢ = 2|B| — 1 + 2m which is incorrectly odd. Thus, when |A| = 0,
|B| =|C] or |B| = |C|+2.

Case 8a. |A| =0, |B| = |C|, and |S| = 2|B|+2m implying [V -S| =
|B]+m+ 1.

Case 3b. |A| =0, |B| = |C|+2, and |S| = 2|B|-2+2mso |V -8| =
|Bl =1+ m+1=|B|+m.

Case 3c. |A| = 2, |B| = |C|, and |S| = 2|B| + 2 + 2m implying
[V-8|=|B|+14+m+1=|B|+m+2.

4 The Characterization When n = 3k

In this case we have |A| =0, |B| = |C|, and |V — S| = |B| + m. The only
connected graphs on three vertices are P; (which is a brush) and Cs, and
they both have total domination number two. For other extremal graphs we
may suppose n > 6 so we can use Lemma 2 to assume |D| = 0. It follows
that m = 0 and |V — S| = |B|. Hence, letting Pg be the set of private
neighbors of vertices in B, V—S = Pg and V = CUBU Pg. By Lemma 6,
there are no edges from c; to B — {b;} for any i. Furthermore, there are no
edges from v; to CU B — {b;} since v; is a private neighbor of ;. Finally,
the independence of B in {AU B) guarantees that none of the vertices in B
are adjacent to each other. It follows that the only edges in G that are not
of the type c;b; or v;b; are those between vertices in C or between vertices
in Pg. This means each b; has degree two and the entire graph G satisfies
the conditions required for H in Corollary 5, so every component of G is
either Cg or a brush. Since G is connected, there is only one component
and the characterization follows, with sufficiency an easy check.

Theorem 7 A connected graph G with n = 3k vertices has v, = |2n/3] if
and only if G is Cs, Cg, or a brush.

5 The Characterization When n =3k + 2

For this case |A| =0, |B| = |C|+1, and |V — S| = |B|+m. Since n > 5, we
may assume |D| = 0 by Lemma 2. It follows as in the previous section that
m=0,|V-8|=|B|,V—-S=Ppgand V=CUBUPg. To deal with the
fact that |C| = | B| — 1, we assume, without loss of generality, that c;b; and
c by are edges, along with ¢;b; for ¢ > 3. Similar to the previous section,
there are no edges from c¢; to B — {b1,b2,b;} for any ¢ > 3, there are no
edges from v; to CU B — {§;} for any ¢, and none of the vertices in B are
adjacent to each other. Lemma 6 states that for each ¢;, there must be at
least one vertex, b; which is adjacent to no vertex of S — ¢; so there are no
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edges from any b;, i > 3 to ¢; and at most one of b; and by can be adjacent
to any c; other than ¢c;. We assume, without loss of generality, that all such
adjacencies are to b;. Thus, in this case, the only edges in G that are not
of the type c¢;b; or v:b; are those between vertices in C, between vertices in
Ppg, and from b; to C — {c;}. Furthermore, b; has degree two for i > 2.

The subgraph H induced by all vertices of the form ¢;, b;, and v; for
i > 3 satisfies the requirements of Corollary 5, so every component of H
is Cg or a brush. Suppose a component is a cycle, taken without loss of
generality to be (cs, ¢y, by, v4, v3, b3, c3). It must be joined to the subgraph
J induced by cy, b1, b2, v1, and va. Corollary 4 assures there are no edges
between either v; or va and any v;, j > 3. Furthermore, by Lemma 3, if
vivj € E, 4,7 > 3, then ¢; and ¢; are not adjacent to either by or ¢;. Thus
no component can be a cycle. It follows that any remaining edges of G
involve only ¢;’s and b,, except possibly for edge vyvs.

If edge vy v, is present, (v1,b, ¢, b2, v2,v;) forms a Cs. In this case, the
Cs must be the entire graph G, since a larger graph could be obtained only
by joining the cycle to some c;, 7 > 3, via an edge incident to ¢, or b;. But
then either | (ci1,b1,b2 : v1,v2) or | (¢1,b1 : v2). Thus, if G # Cs, vive ¢ E.
This means all extremal graphs other than Cy are constructed from the
path (vy,b1,c1,b2,v2) by adding edges from b; and/or c¢; to an arbitrary
number of vertices in the handles of an arbitrary number of brushes. This,
along with a straightforward sufficiency check, is equivalent to the following
characterization.

Theorem 8 A connected graph G with n = 3k+2 vertices has v, = |2n/3]
if and only if G is Cy or is obtained from a connected graph L by identifying
an end vertez of a distinct P3 with all but one vertez of L and identifying
one vertez of a Py with the remaining vertex of L.

6 The Characterization When n =3k +1

This section will show that each extremal graph when n = 3k 4 1 has one
of the forms shown in Figure 1. In this figure, a dotted edge indicates
that that edge may or may not be present. If a form has two or more
dotted edges, the text will clarify which ones must be in the graph under
consideration. Any line between a vertex and a circled br indicates that the
vertex may be adjacent to an arbitrary number of vertices in the handles
of an arbitrary number of brushes. If the vertex is of type ¢;, the brushes
adjacent to it really form a single brush which includes the path (¢;, b;, v;).
If two or more vertices have lines to the same circled br, it means that
each of the vertices can be adjacent to an arbitrary number of vertices in
the handles of an arbitrary number of brushes, including the same brushes
as the other vertices and even the same vertices in the handles of those
common brushes. In order to simplify the presentation, we have created
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classes in which there are a few overlaps. The characterization theorem to
be proven is given next.

THERIOINRK"

VL VIL s

Figure 1.
The extremal graphs when n =3k +1,
with some dotted edges explained in the text

Theorem 9 A connected graph G with n = 3k+1 vertices has v, = |2n/3]
if and only if G is one of the graphs depicted in Figure 1.

A straightforward check shows that each of the graphs in Figure 1 is
extremal. The six connected graphs shown as class I of the figure are the
only extremal graphs on four vertices. All other extremal graphs will have at
least seven vertices. To find them we consider the three subcases indicated
in Section 3. Occasionally different subcases find the same graphs. We do
not eliminate this duplication as it would obscure the fact that all subcases
have been considered fully.

6.1 The Characterization When |4| =0 and |B| = |C|
For this case we have |S| = 2(|B|+m) and |V — S| =|B|+m+1s0V - §

contains a private neighbor for each b; € B, a vertex adjacent to d;; for
cach i in the range from 1 to m, and a single extra vertex z.
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6.1.1 The General Structure

Consider the graph G —z which has 3k vertices. Each component must con-
tain at least three vertices since every vertex is in a not necessarily induced
3-path of the form (c;, b;, v;) or (di2, di1, zi). The choice of z indicates it is
not the only private neighbor of any b;. Hence, 2|B| vertices are needed to
totally dominate the vertices in the (¢;, b, v;) paths in G — 2, and another
2m for the (z;, d;y, di2) paths. Thus, (G — z) > 2(|B| + m) = %(G). On
the other hand, if 4.(G — z) > 4:(G), z must be in every minimum total
dominating set of G, which it is not. We conclude that v;(G — z) = 7(G).

The next lemma shows that each component of G — z is a cycle or a
brush.

Lemma 10 The components of G — z are brushes, with the exception of at
most one which is either a C3 or a Cg.

Proof: Suppose component 7 has 3k; vertices for 1 < i < p, 3k; +1 vertices
forp+1<i<p+gq, and 3k; + 2 verticesfor p+q+1 <i<p+q+r.

It follows that 7:(G — z) = 1(G) = 2k = 232X+ k; + 2(¢ + 2r)/3 and,

by considering the maximum possible total domination number for each of
the components separately, 1:(G — z) < 23747+  k; + r. Thus we must
have » > 2(q + 2r)/3 which can be true only if ¢ = r = 0, implying all
components have a multiple of three vertices and have maximum possible
total domination number. By Theorem 7, each component is C3, Cs, or a
brush.

Graph G is formed from the components by adding edges from the com-
ponents to z. At most one of the components can be a cycle. If there are
two cycles, 2, a vertex adjacent to z on each of the cycles, and zero addi-
tional vertices for a C3 and two for a Cg permit a smaller total dominating
set. m]

Let us consider the possible edges from 2 to the components of G — z. If
there is an edge between z and one of the end vertices of a P;, we assume
without loss of generality that the edge zc; is present (where it is possible
that zv; also is an edge). On the other hand, if zv; is an edge where v; is
a vertex of a nontrivial brush, ¢; must be adjacent to another vertex in the
handle of the brush. Combining these two facts, we see that, if » is adjacent
to v;, ¢; must be adjacent either to z or to some c;, j # ¢. If a component
is a cycle, this observation leads to severe restrictions as to edges leading
to z from brushes, as is shown in the following lemma.

Lemma 11 If G — z contains a component which is a cycle, then z is not
adjacent to a b; or a v; in any brush.

89



Proof: To see that zb; cannot be an edge, note that the path (c;, b;,v;)
and the cycle would then be dominated by b;, z, and one vertex of a Cs
or three of a Cg, resulting in a smaller total dominating set. On the other
hand, if zv; € E, we have either c;c; or ¢;z as an additional edge. In either
case, the path and cycle are dominated by v;, 2, one vertex of a C3 or three
of a Cg, and ¢; if c;c; is an edge, again causing a smaller total dominating
set. o

Even if no component is a cycle, there still are additional restrictions on
how =z relates to the components.

Lemma 12 Vertez z can be adjacent to at most one b; and, if (z,v;, b;, ci,
cj,b4,vj,2) is not a cycle, at most one v;.

Proof: If zb; and zb; are edges, | (ci,c; : z). Suppose zv; is an edge.
Recall that the corresponding ¢; must have an adjacency to z or to a c;.
If (2,9, b, ,c5,b5,75,2) is not a cycle, without loss of generality, either
cjck € E for k # 4,5 or ¢;z and c;z are both edges. In either event,
l (b,', bj,Cj L Z, ’l)j). (]

6.1.2 The Graphs

We use the results from the previous subsection to generate the collection
of graphs for this case. First, suppose (2, v, bs, ¢i, ¢j, b, vj, z) forms a cycle.
We show in this case that G must be one of the two graphs of II of Figure
1. It is easy to check that the cycle itself and the cycle with edge 2b;
added are extremal. We cannot have an edge of the form zc; since then
1 (b, b; : z). Recall v;v; is not an edge because the component containing v;
and v; is a brush whose handle is composed of vertices of type c. Therefore,
taking earlier restrictions into account, the only possible connections to
other portions of the graph are between 2, ¢;, or ¢; and a vertex s € S. If
2s € E, | (bi,bj : 2) and, if cis € E (cjs € E is similar), | (b;, bj, ¢; : 2,v5).

In all remaining cases, then, z is adjacent to at most one v; and one b;
by Lemma 12. If i = j and z is adjacent to both v; and b;, we have the
structure of Figure 2 where ¢; is adjacent either to z or some c. Here z is
not adjacent to any other c;, for in such a situation | (b;, ¢; : 2). Thus there
is only one component of G — z and all graphs of this form are constructed
from a single brush with the edges zv; and zb; incident to one of the Ps’s
of the brush. The edge zc; may or may not be present. These are precisely
the graphs III of Figure 1 where the leftmost two dotted edges are present
and the dotted line representing possible edges to brushes is not present.
The remaining dotted edge may or may not be present. There is at least
one brush since the graph has at least seven vertices.
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Ci
Figure 2. Basic structure leading to the graphs III of Figure 1

If at most one of 2v; or 2b; is an edge and there are no edges from =z
to v; or b;, 7 # 4, then the graphs formed by connecting ¢; and/or z to
arbitrarily many brushes are all extremal. The edge zc; may or may not
be present. These again are the graphs III of Figure 1 where at least one
of the leftmost dotted edges is missing.

Now suppose i # j and zv;, zb; € E. If ¢;z or cick is an edge with
k # j, then | (bi,ci,¢cj : 2,v;). Since ¢; must be adjacent to either z or
some ci, the only remaining possibility is that c;c; is an edge and ¢; must
have degree two in G. Thus any extremal graphs to be found under this
situation must contain the structure shown in Figure 3 and be formed by
joining ¢; and/or z to brushes. The edge zc; may or may not be present.
These are the graphs IV of Figure 1.

Figure 3. Basic structure leading to the graphs IV of Figure 1

In the only remaining case, z is not adjacent to either a v; or a b;. By
Lemma 11 this is the only case for which a cycle can be joined to z. If 2
is not connected to a cycle, we have the graphs III of Figure 1 with both
of the leftmost edges missing. If z is connected to a Cs, we again have the
graphs III but with the vertex labeled c relabeled as z and the dotted edge
to the brush missing. Notice that z can be adjacent to at most two vertices
of the C3. The remaining situations are graphs V of Figure 1 in which z is
adjacent to a Cs. If G is the graph induced by 2 and the vertices of the Cg,
it is easy to see that G must be one of the graphs of V(a). If G has more
than seven vertices, the Cg can be joined to z by at most two edges, and
then only if the two vertices of the cycle which are involved are distance
two apart, which produces the graphs of V(b).
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8.2 The Characterization When |A| =0 and |B| = |C| 42

For this case |S| = 2(]B| — 1+ m) and |V — S| = |B| + m. By Lemma 2
we may assume m = 0. Since |B| = |C| + 2, one of the structures depicted
in Figure 4 must be present in any extremal graph. Furthermore, c;b; is an
edge for ¢ > 4 when structure (a) appears and for i > 5 when structure (b)
does, and each such b; is adjacent to no other c; by Lemma 6.

by n
by (%!
O &by,
b2 ()]
1
bs U3
by v3

€3 & by g

(a) (b)

Figure 4. Basic structures for the graphs of Section 6.2

Corollary 4 shows there is no edge v;v; when i < 3 and j > 4 if structure
(a) is used and when i < 4 and j > 5 if structure (b) is used. Thus the
structures of Figure 4 cannot be joined to the rest of the graph by edges
involving v,, vg, va, or v4. Lemma 6 indicates, without loss of generality,
that the only b;’s from the structure (a) which can be adjacent to other
c;’s are by and bz. It also shows that only one of b; and bz and one of b3
and b4 can be so joined. However, it is convenient not to pin down which
of these can have the adjacencies because it depends on how the two parts
of structure (b) are joined to each other.

Let us first concentrate on structure (a). If there are at least two edges
between v;, v, and vg, say v;v; and vovs, then | (b1, b3 : va). If vyv3,boc; €
E where j > 4, then | (c1,b1,b3 : v1,v3). From this it can be concluded,
since we are assuming that only b; and bz can have edges to c;’s other than
c1, that, if there is any edge between 1, v2, and vs, it can always be taken
to be vive. The graphs permitted by these restrictions are obtained from
structure (a) by connecting any of ¢;, by, and by to brushes. The edge v,vs
may or may not be present. These are the graphs represented by VI in
Figure 1.

All remaining extremal graphs must contain structure (b). First consider
the way edges can exist among the four v vertices of the structure. If
vvg € E, a Cs is formed. This cannot be the entire graph since n = 3k +4-1,
so it must be joined to the rest of the graph either by an edge between at
least one of by, by, and ¢, and some vertex s € S or by edges between v, or vy
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and vg or vg. If 18 € E, | (c1,b1,b2 : v1,v2); if bys € E, | (b1,¢1 : v2); and
if bes € E, | (b2, c; : v1). Finally if, for example, viv3 € E, | (b2,b3 : vy).
We conclude that vyv2, v3v4 ¢ E. We now consider all possible connections
between the pair v; and vs and the pair v3 and vg4.

Suppose a Cyo is formed, for example when v v3 and wpv, are edges.
Possible graphs obtained this way are illustrated by the graphs VII of Figure
1. We will show these are the only possibilites. Observe first there can be no
additional internal edges. If there were one, it would have to be equivalent
either to c1bs, or to cycs. In the former case, | (cs, by, bo, by : v, vs,v4).
In the latter, if either dotted edge is present, say v v4, along with c;bg,
1 (b1, b2, b3, by : v1,v2,v4) and if neither dotted edge exists, then ¢; relabeled
as v; and c3 relabeled v4 results in one of the graphs of VII. It also is not
possible to join the cycle to vertices outside it, for then there would have to
be an edge between a vertex x of the cycle and a vertex s € S external to
the cycle. But then s dominates z and the other nine vertices of the cycle
are dominated by only five vertices of the cycle, thereby reducing the size
of S by one, a contradiction.

Any remaining graphs have at most two edges joining v; and v, to v
and v4 and, without loss of generality, we may assume any such edges are
incident to v;.

When there are two joining edges, the structure must be equivalent to
that of Figure 5. By relabeling b as z, vz as a b and b3 as a ¢, we have a
situation considered in Section 6.1 which led to the graphs V(b) of Figure
1.

by v1 vs b3

1 C3

bg Vg V4 b4

Figure 5. Basic structure for graphs in class V(b) of Figure 1

The last cases involve either the single edge v;v3 or no edges, as illustrated
in Figure 6. When v,v3 is present, edges cjcs, c1b3, and c3b; are possible.
However c1b4 (and csb; by similarity) is not possible since then | (b;,¢3 :
v3). There also can be no edge from b (or b4) to a vertex s € S external
to the structure for then | (by,b3,c; : v1,v3). A similar argument can be
given when there are no edges between the v vertices of structure (b) in
Figure 4. Again we cannot have both of the edges c;bs and c;b,, for then
S — {cs} is a smaller total dominating set. Similarly both of the edges
c3by and c3bz cannot be present. Therefore all possible graphs are obtained
from the structures of Figure 6 by joining b, b3, ¢1, and c3 to brushes, with
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edges c;c3, c1bs, and csb; allowed. These are the graphs VIII of Figure 1
where at least one of the dotted edges must be present.

b1 U1 Us b3 b1 V1 U3 b3
Ci @& ®C3 C1 @& »C3
by vo vy by be v vs by
Figure 6.

Basic structures leading to the graphs in class VIII of Figure 1

6.3 The Characterization When |A| =2

Here |B| = |C|, |S] = 2|B| +2+2m, and |V - S| = |B| + m + 2 and all
graphs of concern here contain the path (wj,a1,a2,w2). We may assume
that tb degree of a; is at least three. Suppose it is two. Then we may
relabel a; as a b and one of w; and a; as the corresponding ¢ and the other
as the corresponding v, depending on the structure of the rest of the graph.
Then we have the requirements leading to the situation in Section 6.1 with
wy corresponding to z. Similarly, the degree of a3 is at least three. These
restrictions and the following observation show the number of cases that
need to be considered is severely limited.

Observation 13 The edges wyv; and azcj (wqvi and ajc;) cannot both
occur if i # j.

Proof: If wyv; and agc; are edges, | (a1, ¢ : ). O

It follows that the only possible additional edges involving w; and w; are
wywe, and wyv; if azc; also is an edge (wov; if a1¢; also is an edge).

If neither wyv; nor wav; is an edge, all graphs are obtained from the 4-
path by connecting a; and/or a3 to brushes, where edge wjws may or may
not be present. This leads to the graphs IX of Figure 1.

The next situation is when we have the structure of Figure 7. The edge
wywy may be present or absent. By Observation 13, nothing else can be
adjacent to either a; or wo, and only one of w; and a can have additional
adjacencies. Thus the only possible graphs are those which are obtained
from the structure of Figure 7 by joining w; to brushes, creating some of
the graphs V(b) of Figure 1, or by joining a2 to brushes, creating some of
the graphs IV of that figure.
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Figure 7.
Basic structure leading to graphs in classes IV and V(b) of Figure 1

The only other possibility is depicted in Figure 8. Observation 13 indi-
cates that nothing can be added to this graph, so it must be all of G and
is one of the graphs VII of Figure 1.

Figure 8. A graph in class VII of Figure 1

6.4 Summary

The results of the previous three subsections complete the proof of Theo-
rem 9.
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