On Sliding Block Puzzles

Filip R. W. Karlemo
Tellabs Oy
Porarinkatu 1
02600 Espoo, Finland

Patric R. J. Ostergrd*
Department of Computer Science and Engineering,

Helsinki University of Technology,
P.O. Box 1100, 02015 HUT, Finland

Abstract

A graph of a puzzle is obtained by associating each possible po-
sition with a vertex and by inserting edges between vertices iff the
corresponding positions can be obtained from each other in one move.
Computational methods for finding the vertices at maximum distance
é from a vertex associated with a goal position are presented. So-
lutions are given for small sliding block puzzles, and methods for
obtaining upper and lower bounds on ¢ for large puzzles are con-
sidered. Old results are surveyed, and a new upper bound for the
24-puzzle is obtained: d < 210.

1. Introduction

In the early 1980s, it was impossible to avoid hearing about Rubik’s cube,
a puzzle that became very popular all over the world. Very soon, math-
ematicians became interested in this puzzle, and several books have been
written on the subject (for example, [4]). Another popular—and much
older—puzzle is the 15-puzzle, which was invented by Sam Loyd in the 19th
century. This puzzle, and its variants, will be considered in this paper. The
15-puzzle is discussed in many books on games [1], discrete mathematics
(6], and computer algorithms [8, 12]. In particular, it has turned out to be

*The research was supported by the Academy of Finland and the Alfred Kordelin
Foundation.

JCMCC 34 (2000), pp. 97-107

a good test case for search methods in artificial intelligence (path planning
and scheduling problems); see [5] and its references.

A puzzle is solved by restoring a given position to a goal position. A
mathematician might not be satisfied with just a solution, but might want
to determine the minimum number of moves required to solve the puzzle.
Furthermore, it is very natural to try to find the “most difficult” initial
positions, that is, the positions that require most moves to be restored to
the goal position; in this paper, this problem is considered.

The paper proceeds as follows. In Section 2 the 15-puzzle and its vari-
ants are discussed and mathematical notations are introduced. Positions
are mapped to vertices of a graph, which makes it possible to discuss the
problem in graph theoretical terms. Computational methods for analyzing
puzzles are considered in Section 3. It turns out that it is the memory
size of the computer used rather than time available that sets the limits
of how large puzzles can be analyzed. Solutions of sliding block puzzles of
size up to 3 x 4 are given in Section 4. Methods for obtaining bounds on
the number of moves required to solve the 15-puzzle and larger puzzles are
discussed in Section 5.

2. The 15-Puzzle and Its Variants

The 15-puzzle is a 4 X 4 puzzle with 15 blocks (numbered 1 to 15) and one
empty square. A move consists of sliding a block adjacent to the empty
square into that place. The aim is to restore an initial position to the
following goal position (other different but equivalent numberings of the
blocks can often be seen):

11 2} 3| 4

5[6] 7| 8

9110 |11 |12
13|14 |15

Methods have been developed for finding solutions of the 15-puzzle with
as few moves as possible from a given initial position; see, for example,
[3, 5, 7, 10, 11, 13, 16]. This is a difficult problem; in fact, the n x n
extension of it is NP-hard [15].

In the general case, we consider a p x g puzzle. Let n = pg. The squares
of such a puzzle are here numbered row-wise from 1 to n, with 1 in the
upper left corner and n in the lower right corner. The goal position is
achieved when block i is in square ¢ for 1 < ¢ €< n — 1 and square n is
empty. (It is important to distinguish between the numbering of the blocks
and the numbering of the squares.)

98

There are n! possible positions of a p x ¢ puzzle. Now a graph G with
n! vertices can be constructed by associating each possible position with a
vertex, and by inserting edges between two vertices iff the corresponding
positions can be obtained from each other in one move (since a move can
always be reversed, we let G be undirected).

Properties of a puzzle can now be discussed in graph-theoretic terms.
For example, an initial position can be restored to the goal position exactly
when its vertex in G is in the same connected component as the vertex of
the goal position (the goal vertez). This matter is thoroughly discussed in
[20].

For a p x q sliding block puzzle, it was shown more than 100 years
ago [9, 19] that not all n! possible positions can be restored to the goal
position. Namely, when the empty square is in a given place, to obtain
another position with the empty square in the same place clearly requires
an even number of moves. If the empty square is identified as block number
n, a move is a transposition of the blocks, so only n!/2—which is the order
of the alternating group A,,—positions can be restored to the goal position.

3. Computing Maximum Distances in a Puz-
zle Graph

We shall now discuss computational methods for finding the vertices in the
same connected component of G that are at maximum distance é from the
goal vertex. This is done by an exhaustive search. Since there are n!/2
vertices in the connected component, it is clear that such a method works
only for small values of n.

The search method used is a breadth-first search. That is, we start with
the goal vertex, which is at distance 0 from itself. The set of vertices at
distance d+1 is calculated by considering the vertices at distance d from the
goal vertex and checking which of its (at most 4) adjacent vertices have not
been encountered earlier in the search. The adjacent vertices are actually
at distances either d — 1 or d + 1 from the goal vertex. This procedure is
repeated until all n!/2 vertices of the component have been encountered.
(For n x n puzzles, the number of vertices that have to be searched can be
reduced by another factor of approximately 2 due to symmetry of the goal
position.)

In the search, we are primarily interested in the distances from vertices
to the goal vertex. Thus, to save memory, we do not save the edges between
vertices. We use three data structures: one table with vertices (positions)
at distance d, one table with vertices (positions) at distance d + 1, and one
table that for each vertex indicates whether it has been encountered earlier.
The two former tables can be saved in a secondary memory, since, for each

99

level, they are written and read once and sequentially. The last table, the
main table, should, however, be in the primary memory, since its elements
are accessed in a nonsequential order.

For the 3 x 4 puzzle, the largest puzzle that we have solved completely,
the number of entries in the main table is 239500800. (Actually, to obtain
Theorem 1 to be presented later, larger puzzles than the 3 x 4 puzzle with
different shapes have been solved.) We use one bit of memory for each entry,
that is, the total memory requirement is approximately 30 MB—which
many modern computers can manage. The 15-puzzle, however, requires
about 1300 GB, which certainly still is beyond reach.

Let C; be the number of the block in square ¢ (the empty square is block
n). For the main table we need a bijective function from (C; C2---C,,) to
an index 0 < I < n!/2—1. We modify a function that maps permutations of
the elements {1,2,...,n} bijectively to the set of integers {0,1,...,n!-1};
for such functions, see [17] or any other book on combinatorial algorithms.
Many of these functions have the property that for any 4, the first n — ¢
elements of a permutation are mapped to an integer 0 < @' < n!/i! — 1, the
last i clements are mapped to an integer 0 < V¥ <i!'~1,and I =o' -i' +1'.
We now choose i = 3, a« = o', and let I = 3a + b, where b indicates the
place of the largest of the last three elements (which possibly is block =,
the empty square). The order of the other two of the last three elements is
then fixed.

It is clear that, as the total number of moves tried in a run (and thus
index calculations) is at most 3n!/2 (we save the move to a new position,
so that we need not try its inverse) and the total number of memory bits
required for the main table is n!/2, it is the memory size that sets the limits
of how large puzzles can be analyzed with this approach.

4. Complete Solutions of Small Puzzles

This section is mostly a survey of old results. Although we do not have
references to all those results, they have all been presented and discussed
in several forums (for example, in electronic newsgroups). The fact that
these results, which arc based on computer searches, have been presented
by several independent researchers, indicates that they are correct.

The smallest possible nontrivial sliding block puzzle is the 2 x 2 puzzle.
Since it has 4!/2 = 12 possible positions, the case is easily solved by hand.
We can also argue as follows. The empty cell is always in a corner, so there
are always two possible moves. Since the graph of the puzzle is connected
and is regular of degree 2, it is a circuit graph. Thus, § = 12/2 =6.

For larger puzzles, the use of computer is incvitable. We shall here give
a complete solution of puzzles of sizes 2 x 3, 2 x 4, 3 x 3, and 3 x 4. The

100

goal positions of these puzzles are as follows:

11213 11234 1(2(3 11 2] 3|4
415 5167 415(6 51 6] 7|8
718 91101| 11

The results of the calculations can be found in Table I, where the number
of vertices at each depth is given. The values of § for the puzzles considered
are obtained directly from the table.

TABLE I. Solutions of small puzzles
Depth 2x2 2x3 3x3 2x4 Ix4

0 1 1 1 1 1
1 2 2 2 2 2
2 2 3 4 3 4
3 2 5 8 6 9
4 2 6 16 10 20
5 2 7 20 14 37
6 1 10 39 19 63
7 12 62 28 122
8 12 116 42 232
9 16 152 61 431
10 23 286 85 781
11 25 396 119 1392
12 28 748 161 2494
13 39 1024 215 4442
14 44 1893 293 7854
15 40 2512 396 13899
16 29 4485 506 24215
17 21 5638 632 41802
18 18 9529 788 71167
19 12 10878 985 119888
20 6 16993 1194 198363
21 1 17110 1414 323206
22 23952 1664 515778
23 20224 1884 811000
24 24047 1999 1248011
25 15578 1958 1885279
26 14560 1770 2782396

101

TABLE I. (Continued)

Depth 2x2 2x3 3x3 2x4 3x4
27 6274 1463 4009722
28 3910 1076 5621354
29 760 667 7647872
30 221 361 10065800
31 2 190 12760413
32 88 15570786
33 39 18171606
34 19 20299876
35 7 21587248
36 1 21841159
37 20906905
38 18899357
39 16058335
40 12772603
41 9515217
42 6583181
43 4242753
44 2503873
45 1350268
46 643245
47 270303
48 92311
49 27116
50 5390
51 1115
52 86
53 18

Weaker variants of 2 x 3 and 3 x 3 puzzles were solved in [18]. Fur-
thermore, in that research the empty square of the goal position was not
in a corner. The 3 x 3 case, also called the 8-puzzile, has recently also been
solved in [16] (there is a misprint in [16, Figure 1]—the number of states

on level 12 is 748, not 749).

5. The 15-Puzzle and Beyond

Until recently, the first unsolved case was the 15-puzzle. A complete so-
lution of the 15-puzzle by a computer search using the approach in the
previous sections requires an amount of memory that is not available in

102

contemporary computers. For this and larger puzzles, we can try to find
good upper and lower bounds on 4. There are several methods for obtaining
such bounds, some of which will be discussed here.

5.1. Lower Bounds

Methods have been developed in artificial intelligence to find the shortest
distance from a position to the goal position. Any such distance is then a
lower bound on 4. We do not discuss the search methods here, but refer
the reader to [5].

For large problems, good lower bounds are then obtained by making
good guesses about which positions are difficult. Methods have also been
developed to find sets of difficult positions [5]. A good approach is usually to
reflect the goal position in the center of the puzzle, which for the 15-puzzle
leads to the following position:

15|14 | 13
1211 (10| 9
8 7] 6[5
41 3| 2] 1

This is certainly a good guess, since it is at distance 78 from the goal
position, and for the 15-puzzle we have that § = 80, proved in [2]. Thirteen
positions with distance 80 to the goal position are presented in [5]. Three
such positions are given below:

12 9113 12 9] 13 121 913
15|11 [10 | 14 15111110 | 14 151110 | 14
31 7] 5] 6 8] 3| 6 2 3| 7| 6] 2
41 8| 2| 1 41 7| 5| 1 41 8| 5| 1

For the 24-puzzle and even larger puzzles, the search methods are in
most cases not able to find the exact distance to the goal position within
reasonable time. For such cases, the more CPU time is used, the better
lower bound on the exact distance we get.

5.2. Upper Bounds

An upper bound is obtained by giving a method that guarantees that the
puzzle is solved within a given number of moves, whatever the position is.

103

This can be done in a way that humans solve these puzzles, which is usually
a row-by-row manner.

The 15-puzzle, for example, can be solved in the following way, see [5].
First, the following puzzle is solved. The puzzle contains indistinguishable
blocks, which are marked I, and it has 16!/8! = 518918400 possible states.

Pt | |] DN
Ll el]

Q| O] Oy =

‘We now obtain an upper bound for the 15-puzzle. Namely, the above-
mentioned position can be obtained in § = 62 moves, and thereafter we can
solve an 8-puzzle in at most 31 moves to get a total of 93 moves. To get an
even better upper bound, however, we calculate the maximum distance to
the goal position from any position with the empty square in a given ini-
tial position. These distances, in the corresponding positions of the empty
space, are

30 |29 [30
29 130 | 31
30 | 31| 30

Hence, for the 15-puzzle, § < 62 + 29 = 91. This idea has been further
developed in [5] to lower the record down to 87. Recently, Marzetta et al.
[2] announced a further improvement to 80 using more sophisticated meth-
ods. Since this upper bound equals the best known lower bound mentioned
earlier, the problem of determining 4§ has hence been settled.

We end the discussion of upper bounds by presenting a new upper bound
for the 24-puzzle.

Theorem 1 For the 24-puzzle, § < 210.

Proof: The approach is very much the same as the approach for the 15-
puzzle, outlined above. Now, however, the bound is obtained in three steps,
rather than in two. We go in the “wrong” direction. The 3 x 4 puzzle,
depicted earlier, has the following maximum distances to the goal position
with the empty square in different initial positions:

53 | 52 | 51 | 52
52 | 81 | 62 | 51
53 | 52 [561 | 52

104

This table is used to find a good place for the empty square in the goal

position of the next puzzle:

718]9][10
11| I|1 I
16 | I|I|I[1I
20| I | I|I] 1

This puzzle has § = 75, but, again, we do not use this value, but cal-
culate maximum distances to the goal position with the empty square in

different initial places:

75

74

73

74

75

74

75

74

73

74

75

74

73

74

75

74

75

74

75

Finally, we solve the following puzzle:

| | et | D] =

ot | | | bt} DND

L | |] e

Pt] =] =t =] O

This puzzle has § = 86, which means that for the 24-puzzle, § < 86+ 73 +

51 =210. O

The last two intermediate puzzles in the proof of Theorem 1 have
3047466240 and 2422728000 possible states, respectively. The earlier best
known bound was 219, proved in [5].

Acknowledgments

The authors thank Ralph Gasser and Aapo Rautiainen for rewarding dis-
cussions. The Center for Scientific Computing (CSC), Espoo, Finland, is
acknowledged for providing computing resources.

105

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy, “Winning Ways for
Your Mathematical Plays; Vol. 2: Games in Particular,” Academic
Press, London, 1982.

[2] A. Briingger, A. Marzetta, K. Fukuda, and J. Nievergelt, The parallel
search bench ZRAM and its applications, Ann. Oper. Res., to appear.

[3] J. C. Culberson and J. Schaeffer, “Efficiently Searching the 15-Puzzle,”
Technical Report TR 94-08, University of Alberta, Canada, 1994.

[4] A. H. Frey, Jr. and D. Singmaster, “Handbook of Cubik Math,” En-
slow, Hillside, NJ, 1982.

[5] R. U. Gasser, “Harnessing Computational Resources for Efficient Ex-
haustive Search,” Ph.D. Thesis, ETH, Ziirich, 1995.

[6] L.J. Gerstein, “Discrete Mathematics and Algebraic Structures,” Free-
man, New York, 1987.

[7] O. Hansson, A. Mayer, and M. Yung, Criticizing solutions to relaxed
models yields powerful admissible heuristics, Inform. Sci. 63 (1992),
207-227.

[8] E. Horowitz and S. Sahni, “Fundamentals of Computer Algorithms,”
Computer Science Press, Rockville, MD, 1978.

[9] W. W. Johnson and W. E. Storey, Notes on the “15” puzzle, Amer. J.
Math. 2 (1879), 397-404.

[10] R. E. Korf, Depth-first iterative deepening: An optimal admissible tree
search, Artif. Intel. 27 (1985), 97-109.

[11) R. E. Korf, Linear-space best-first search, Artif. Intel. 62 (1993), 41-
87.

[12] S. R. Lerman, “Problem Solving and Computation for Scientists and
Engineers: An Introduction Using C,” Prentice-Hall, Englewood Cliffs,
NJ, 1993.

[13] E. P. M. van Liempd, “Limited-Search Algorithms,” Report TI-IR-93-
1875, PTT Research Groningen, The Netherlands, 1993.

[14] I. Parberry, A real-time algorithm for the (n? — 1)-puzzle, Inform.
Process. Lett. 56 (1995), 23-28.

106

[15] D. Ratner and M. Warmuth, Finding a shortest solution for the (N x
N)-extension of the 15-puzzle is intractable, J. Symbolic Comput. 10
(1990), 111-137.

(16] A. Reinefeld, Complete solution of the eight-puzzle and the benefit of
node ordering in IDA*, in: “IJCAI-93: Proceedings of the 13th In-
ternational Joint Conference on Artificial Intelligence,” Morgan Kauf-
mann, San Mateo, CA, 1993, pp. 248-253.

(17] E. M. Reingold, J. Nievergelt, and N. Deo, “Combinatorial Algorithms:
Theory and Practice,” Prentice-Hall, Englewood Cliffs, NJ, 1977.

(18] P. D. A. Schofield, Complete solution of the “eight-puzzle”, in: N.
L. Collins and D. Mitchie (eds.), “Machine Intelligence 1,” Oliver &
Boyd, Edinburgh, 1967, pp. 125-134.

[19] P. G. Tait, Note on the theory of the “15” puzzle, Proc. Roy. Soc.
Edinburgh 10 (1880), 664-665.

[20] R. M. Wilson, Graph puzzles, homotopy and the alternating group, J.
Combin. Theory Ser. B 16 (1974), 86-96.

107

