A Theorem on 2-concurrence Designs

Luis B. Morales

IIMAS, Universidad Nacional Autónoma de México Apdo. Postal 70-221, México, D.F., 04510, México lbm@servidor.unam.mx

ABSTRACT. In this paper we define the imbalance of equi-replicate incomplete block designs. We prove that the imbalance measure of an equi-replicate incomplete block design has a lower bound, and this bound is attained if and only if the design is a 2-concurrence design. This result allows one to formulate the construction of 2-concurrence designs as an optimization problem.

1 Introduction

An equi-replicate incomplete block (EIB) design is a collection of b blocks of size k on a v-set such that every element occurs in r blocks. Clearly we have vr = bk. We shall refer to the elements s and t as ith associates if they occur together in λ_i blocks. Then, we define a 2-concurrence design (see [3]) as an equi-replicate incomplete design satisfying the conditions below:

- (1) Any two elements are either first or second associates.
- (2) Each element has exactly n_i ith associates (i = 1, 2).

The numbers v, b, r, k, λ_1 , λ_2 , n_1 and n_2 are called the parameters of the design. It is not hard to see that these parameters satisfy:

$$vr = bk$$
, $v - 1 = n_1 + n_2$, $r(k - 1) = n_1\lambda_1 + n_2\lambda_2$. (1)

The concurrence matrix of an EIB design with parameters v, b, r and k is a $v \times v$ matrix $B = (b_{ij})$, where b_{ij} is the number of blocks containing both the i and j elements. Note that an EIB design is a 2-concurrence design if and only if each row of its concurrence matrix consists of n_1 λ_1 's, n_2 λ_2 's and r on the diagonal.

A 2-concurrence design is called a regular graph design if $\lambda_2 = \lambda_1 + 1$. For the rest of this section, v, b, r, k, λ_1 , λ_2 , n_1 and n_2 will be integers satisfying (1), and $\lambda_2 = \lambda_1 + 1$.

In [1] and [2] the *imbalance* of an EIB design with parameters v, b, r and k was defined as

 $\sigma = \sum_{i < j} (b_{ij} - \lambda_1)^2, \tag{2}$

In this work, we shall prove a similar result for general 2-concurrence designs. This also allows one to formulate the construction of these designs as an optimization problem.

2 The Theorem

Given two integers α and β we define the function

$$H_{\alpha,\beta}(x) = \begin{cases} (x-\alpha)^2, & \text{if } x \neq \beta, \\ 1, & \text{if } x = \beta. \end{cases}$$

Let v, b, r, k, λ_1 , λ_2 , n_1 and n_2 be integers satisfying (1), and $\lambda_1 < \lambda_2$. Let D be an EIB design with parameters v, b, r and k. Then, the (λ_1, λ_2) imbalance of design D is defined as

$$\sigma_{\lambda_1,\lambda_2}(D) = \sum_{i < j} H_{\lambda_1,\lambda_2}(b_{ij}), \tag{3}$$

where (b_{ij}) is the concurrence matrix of D. It is not hard to see that the (λ_1, λ_2) -imbalance of a 2-concurrence design is $vn_2/2$. Note that the functions (2) and (3) are equal whenever $\lambda_2 = \lambda_1 + 1$.

Proof: The entries of the concurrence matrix B of D are nonnegative integers. So, without loss of generality we can suppose that the ith row of B has

$$n_{i1}$$
 elements λ_1, n_{i2} elements $(\lambda_1 + h_{i2}), \ldots, n_{im}$ elements $(\lambda_1 + h_{im})$

and r on the diagonal, where n_{ij} is a nonnegative integer, $|h_{ij}| \geq 1$ and the h_{ij} 's are different for $j = 2, \ldots, m$. To simplify the notation we will omit the subindices λ_1 and λ_2 of H. It is easy to see that

$$\sigma_{\lambda_1,\lambda_2}(D) = \frac{1}{2} \sum_{i=1}^{\nu} n_{i2} H(\lambda_1 + h_{i2}) + \dots + n_{im} H(\lambda_1 + h_{im}). \tag{4}$$

We shall prove that this value is not less than $vn_2/2$. From the concurrence matrix definition, the sum of all entries excepting the diagonal element of each row of B is r(k-1), and $(v-1) = n_{i1} + \cdots + n_{im}$. Thus we get

$$r(k-1) = (v-1)\lambda_1 + n_{i2}h_{i2} + \dots + n_{im}h_{im}.$$
 (5)

Let $h = \lambda_2 - \lambda_1$. Since $v - 1 = n_1 + n_2$, then $r(k - 1) = (v - 1)\lambda_1 + n_2h$. This and (5) imply that

$$n_2h=n_{i2}h_{i2}+\cdots+n_{im}h_{im},$$

which gives

$$n_2 \le n_2 |h| \le n_{i2} |h_{i2}| + \dots + n_{im} |h_{im}|.$$
 (6)

If $h_{ij} \neq h$ for j = 2, ..., m, then by definition of function H, $H(\lambda_1 + h_{ij}) = h_{ij}^2 \geq |h_{ij}|$ for j = 2, ..., m. It follows from (6) that

$$n_2 \leq n_{i2}H(\lambda_1 + h_{i2}) + \cdots + n_{im}H(\lambda_1 + h_{im}).$$

Suppose now that some $h_{ij} = h$; to simplify the notation take $h_{i2} = h$. Note that $h_{ij} \neq h$ for j = 3, ..., m and $H(\lambda_1 + h) = 1$. We consider two cases:

If $n_2 \leq n_{i2}$ then $n_2 \leq n_{i2}H(\lambda_1 + h)$. Since $n_{i3}H(\lambda_1 + h_{i3}) + \cdots + n_{im}H(\lambda_1 + h_{im}) \geq 0$, we have

$$n_2 \leq n_{i2}H(\lambda_1 + h) + n_{i3}H(\lambda_1 + h_{i3}) + \cdots + n_{im}H(\lambda_1 + h_{im}).$$

If $n_2 > n_{i2}$ then $-n_2(|h|-1) \le -n_{i2}(|h|-1)$ because $|h| \ge 1$. This and (6) show that

$$n_2|h|-n_2(|h|-1) \leq n_{i2}|h_{i2}|-n_{i2}(|h|-1)+n_{i3}|h_{i3}|\cdots+n_{im}|h_{im}|. (7)$$

Since $n_{i2}H(\lambda_1 + h) = n_{i2}|h| - n_{i2}(|h| - 1)$ and $H(\lambda_1 + h_{ij}) = h_{ij}^2 \ge |h_{ij}|$ for j = 3, ..., m, then from (7) we obtain

$$n_2 \leq n_{i2}H(\lambda_1 + h_{i2}) + n_{i3}H(\lambda_1 + h_{i3}) + \cdots + n_{im}H(\lambda_1 + h_{im}).$$

In any case, we have shown that the (λ_1, λ_2) -imbalance of each row of the concurrence matrix B is greater than or equal to n_2 . Hence, from (4) we have $\sigma_{\lambda_1,\lambda_2}(D) > n_2v/2$.

Now let us prove the second part of the theorem. Clearly, if the design D is a 2-concurrence design, then $\sigma_{\lambda_1,\lambda_2}(D) = vn_2/2$. We divide the proof of the converse implication into two cases:

Case (1) if |h| = 1. Since $\lambda_1 < \lambda_2$, we have $\lambda_2 = \lambda_1 + 1$. Therefore, the functions (2) and (3) are equal; and the rest of the theorem follows from Proposition 1 of [1].

Case (2) if |h| > 1. From the first part of the theorem, the (λ_1, λ_2) -imbalance of each row of the concurrence matrix B is greater than or equal to n_2 . The hypothesis $\sigma_{\lambda_1,\lambda_2}(D) = vn_2/2$ and (4) imply that, for any 1 < i < v,

$$n_2 = n_{i2}H(\lambda_1 + h_{i2}) + \dots + n_{im}H(\lambda_1 + h_{im}), \tag{8}$$

so that

$$n_2|h| = n_{i2}|h|H(\lambda_1 + h_{i2}) + \cdots + n_{im}|h|H(\lambda_1 + h_{im}).$$

This and the second inequality of (6) show that

$$n_{i2}|h|H(\lambda_1+h_{i2})+\cdots+n_{im}|h|H(\lambda_1+h_{im}) \leq n_{i2}|h_{i2}|+\cdots+n_{im}|h_{im}|.$$
(9)

Subtracting left-hand side from right-hand side of (9) we obtain

$$0 \leq n_{i2}(|h_{i2}| - |h|H(\lambda_1 + h_{i2})) + \dots + n_{im}(|h_{im}| - |h|H(\lambda_1 + h_{im})).$$
(10)

From definition of the function H, $|h_{ij}| - |h|H(\lambda_1 + h_{ij}) = 0$ for $h_{ij} = h$, and for the other $|h_{ij}| - |h|H(\lambda_1 + h_{ij}) < 0$ because |h| > 1. Therefore, (8) and (10) imply that $n_{ij} = 0$ for all $h_{ij} \neq h$, and $n_{ij} = n_2$ for some $h_{ij} = h$; to simplify the notation take $h_{i2} = h$. Since $n_1 + n_2 = v - 1 = n_{i1} + n_{i2}$ we must have $n_{i1} = n_1$. In consequence each row of the concurrence matrix B of the designs D has n_1 elements λ_1 , n_2 elements λ_2 and r on the diagonal. Hence, D is a 2-concurrence design.

References

[1] R.B. Brown, Nonexistence of a regular graph design with r = 17 and k = 6, Discrete Math. 68 (1988) 54-64.

- [2] B.S. Elenbogen and B.R. Maxim, Scheduling a bridge club (a case study in discrete optimization), Math. Magazine 65 (1992), 18-26.
- [3] R.G. Jarrett, Definitions and properties for m-concurrence designs, J.R. Statis. Soc. B 45 (1983), 1-10.
- [4] D.L. Kreher, G.F. Royle and W.D. Wallis, A Family of resolvable regular graph designs, *Discrete Math.* 156 (1996), 269-273.
- [5] L.B. Morales, Scheduling a bridge club by tabu search, Math. Magazine 70 (1997) 287-290.
- [6] L.B. Morales and F. Maldonado, Constructing optimal schedules for certain types of tournaments using tabu search, *Investigación Operativa*, to appear.
- [7] G.F. Royle and W.D. Wallis, Constructing bridge club designs, Bull. Inst. Combin. Appl. 11 (1994), 122-125.
- [8] R.J. Simpson, Scheduling a bridge club using a genetic algorithm, *Math. Magazine* 70 (1997), 281-286.
- [9] M. Zamudio, Búsqueda Tabú para la Construcción de Diseños de Experimentos, Master thesis, CCH-IIMAS, UNAM (1996).