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Abstract

We propose a number of problems about r-factorizations of com-
plete graphs. By a completely novel method, we show that K2, has
a 2-factorization in which all 2-factors are non-isomorphic. We also
consider r-factorizations of Kyn+1 where r > 3; we show that Kyn+1
has an r-factorization in which the r-factors are all r-connected and
the number of isomorphism classes in which the r-factors lie is either
2 or 3.

1 Introduction

Let r,n > 1 and consider decompositions of K,n+, into r-factors (spanning
r-regular subgraphs). It is well-known that K, has an r-factorization (a
decomposition into n edge-disjoint r-factors) if and only if either r is even
or r and n are both odd. It is natural to inquire whether the set of r-factors
in an r-factorization can satisfy some additional requirements.

We would like to propose the following problems, which are of decreasing
difficulty.

Problem 1. Let Hy, H,,... , H, be r-regular graphs of order rn+1. Under
what conditions is it true that K.+ has an r-factorization with r-factors
F,F,,...,F,, where F; is isomorphic to H; for 1 <i < n?

Clearly a necessary condition for the existence of an r-factorization is
that either 7 is even or r and n are both odd. But, if these necessary condi-
tions are satisfied, it may not be the case that such an r-factorization exists.
For example, there is no such factorization if »r = 2, n = 3 and exactly two
of Fy, F», F3 consist of a 3-cycle and a 4-cycle. The non-existence in such
a case seems to be a result of the fact that n is relatively small compared
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with 7. Our intuition is that if n is large enough compared with 7 then
such a factorization will exist.

Ifr = 2and each of Hy,... , H, is a Hamilton cycle, then there is such an
r-factorization. Buchanan (3] showed that if 7 = 2 and H, is any 2-regular
graph of order 2n+1 and Ha, ... , H, are Hamilton cycles, then there is such
an r-factorization. The well-known Oberwohlfach problem is the special
case when r = 2 and Hj,..., H, are all the same 2-regular graph of order
2n + 1; this problem has not been completely solved, although solutions in
some interesting cases have been found [1]. If » > 2 and Hy,... ,H, are all
the same specific 7-connected r-regular graph of order rn + 1 described in
[4], then such an r-factorization exists.

We can relax Problem 1 slightly to obtain Problem 2.

Problem 2. Let 1 < s < n and let Hy,...,Hs; be non-isomorphic 7-
regular graphs of order 7n+1. Under what conditions is it true that K,
has an r-factorization with r-factors Fy,..., F, such that, for 1 < i < s,
at least one of F1,...,F, is isomorphic to H; and each of Fy,...,F, is
isomorphic to one of Hy,...,H,?

Of course, in any case where there is a solution to Problem 1, there is a
solution to many corresponding cases in Problem 2.

Instead of specifying H;,...,H, initially, we can weaken Problem 1
considerably in the following way.

Problem 3. Letp;+---+ps =nand p; > 1 (1 <i < 5). Under what con-
ditions is it true that K,,4+1 has an r-factorization with r-factors Fy,... , F,
such that there exist non-isomorphic r-regular graphs Hy,... , H, of order
rn + 1 with exactly p; of Fi, ..., F, isomorphic to H; (1 <i < s)?

Problem 3 lends itself to further modification, since we could require
that the r-regular graphs Hi,...,H; have some further property. In [4]
when s = 1 with Fleischner, we required that H; be r-connected. Even in
the case s = 1, one could vary this by requiring for example that H, has
connectivity & for some given &, where 0 < xk < r. Another possibility is
that Hy,...,H, all be cyclically r-connected. No doubt there are other
modifications that would be of interest. Clearly any solution to Problem 1
is a solution to Problem 3.

We can similarly weaken Problems 2 and 3.

Problem 4. Let 1 < s < n. Under what conditions is it true that K 4"
has an r-factorization with r-factors Fi,... , F, such that there exist non-
isomorphic r-regular graphs H,, ... , H; of order rn+ 1 with at least one of
Fy,... , F, isomorphic to H;, for each ¢, (1 < ¢ < s) and each of Fy,... , F,
isomorphic to one of H,,..., H,?



The possibilities for modifying Problem 3 further by requiring that
H,,...,H, have some further property apply in this case also. A solu-
tion to any of Problems 1, 2 and 3 is also a solution to Problem 4.

In this paper we deal with two special cases of these problems.

Firstly we consider the case when r = 2. Let J(2n + 1;c1,...,¢s)
denote a regular graph of order 2n + 1 and degree 2 consisting of disjoint
cycles C1,Ca,...,C, with |V(C;)| = c¢i, where ¢; > 3 (1 < i < s) and
+--+c;=2n+1 For2n+12>9,let H; = J(2n+1;3,3,2n-35), Hy =
J(2n+1;3,2n—-2), H3 = J(2n+1;4,2n-3),... ,Hy_y = J(2n+1;n,n+1),
H,=J(2n+1;2n+1).

Theorem 1. Let 2n + 1 > 9. Then Kony1 has a 2-factorization into 2-
factors Fy,... ,F,, where F; is isomorphic to H; (1<i<n).

In this form our first result solves a special case of Problem 1 and a
special case of Problem 2. However, it is probably true to say that its
corollary, solving a special case of Problem 3 and a special case of Problem 4,
is more striking.

Corollary. Let 2n + 1 > 3. Then Kany1 has a 2-factorization into non-
isomorphic 2-factors if and only if 2n+1 > 9.

Secondly we consider the case r > 3 with the extra condition that the
r-factors are r-connected. Let m = rn + 1. Throughout we assume that
rm is even (or equivalently that either r is even, or r and n are both odd).
We use methods developed from those found in (4] and (6].

In particular as mentioned above, in [4] it was shown that K, has an
r-factorization of the type described in Problem 3 with all the r-factors
isomorphic to the same specific r-regular r-connected graph of order m.
These r-factors were defined with the aid of arithmetic modulo m — 1 as
follows. One of the vertices of K, is labeled oo and the others by the
integers modulo m — 1. The set of vertices labeled by the integers modulo
m — 1 will be denoted by V. If p is any integer, then G, denotes the
subgraph of K,, with edge-set given by:

E,={{z,y}|2#yandz+y=p}lU{{z,0}|22=p}
Then:

Kn=GoUG UG2U---UGp—2
=FURU---UF,

where for each integer i (1 < i < n) F; is defined by:

F; = Gicyy UG—yra1 U UG 1yrdr-1-



In this paper we generalize the construction of these r-factors, Fj, as
follows. Let P = {X; |1 < i < n} be a partition of the index set I = {j €
Z|0< j <m -2} into n (disjoint) subsets, each of cardinality 7. Then P
determines a factorization of Kp,:

Kn=FRUFRU- --UF,,

where for each 7 (1 <1 < n):

Fi=J G
J€X:

If r and n are both odd, then m is even and hence it is clear that each factor
F; is r-regular. However if r is even, then m is odd and the factors will
only be r-regular if the partitions, P, are chosen so that each X; contains
the same numbers of odd and even numbers. It is clear that in this way we
obtain many r-factorizations of K,,. Indeed the above factorization of K,
is determined by a partition of this type; namely, the trivial partition:

0,7 =1),[r,2r - 1],...,[(n - )r,nr - 1],

where, for any integers p,q with p < ¢, [p,¢] denotes the interval in Z
consisting of all integers & such that p < k < ¢. In this paper we analyze two
other cases and thereby show that, in particular, wheneverr > 3 and n > 2,
K, pn+1 has an r-factorization in which the factors are all r-connected and in
which at least two of the factors are not isomorphic. These factorizations
are determined by the following partitions of I:

P [0,r+1)\{r-1,7}, [r = 1,2r = 1]\ {r + 1}, [2r,3r - 1],
[3r,4r —1], ..., [(n — 1)r,nr - 1];

Py: [0,r + 1)\ {r =2, =1}, [r = 2,27 = 1]\ {r,7 + 1}, [2r,3r = 1],
[Br,4r —1], -+, [(n — D)r,nr — 1).

Theorem 2. Let v > 3, n > 2 and m = rn + 1. Suppose that:
Kn=FRUFRU---UF,

is the factorization determined by the partition P,. Then the factors F; are
all r-regular and r-connected. There are at least 2 distinct isomorphism
“classes which contain factors in this factorization. If, however, m is even
andr > 3, then there are precisely 3 distinct isomorphism classes. If n > 4,
then Fy,Fs,... ,F, are all isomorphic to F3.

Theorem 3. Letr > 3, n> 2 and m = rn + 1. Suppose that:

Kn=RUFRU---UF,



is the factorization determined by the partition P». Then the factors F; are
all r-regular and r-connected, ezcept when n =2 and r = 4, in which case
the two factors are both only 3-connected. Except whenn =2 andr =4,
there are at least 2 distinct isomorphism classes which contain factors in
this factorization. If m is even, then Fy and Fy are isomorphic. If, however,
m is odd, n > 2 and r > 4, then there are precisely 3 distinct isomorphism
classes. If n > 4, then Fy, Fs,... ,F, are all isomorphic to F3. If m is
even, then Fi and F3 are isomorphic.

Culling information from both these theorems and [4] and, in one case,
modifying the underlying partition, we have the following corollary:

Corollary. Letr >3, n>2, m=rn+1and z € {1,2,3}. Then K,,, has
a factorization into r-connected r-regular factors. The factorization can
be chosen so that the factors lie in = isomorphism classes in the following
cases:

() z=1:n2>2andr 2> 3;
(i) x = 2: n even or m even;
(i5)) t=3:n>3 andr > 5.

Note that the case z = 1 is dealt with in [4] and all the other parts of
the corollary are in Theorems 2 and 3, except, in the case £ = 2, n even,
we use a further partition, Pj:

0,y +1\{r-1,7}, [r—1,2r - 1]\ {r + 1},
[2r,3r + 1]\ {3r — 1,3r}, [3r — 1,4r = 1]\ {37+ 1},---,
(n=2)r,(n—-Dr+1\{(n=1)r—-1,(n-1)r},
[(n—1)r—1,nr - 1]\ {(n - 1)r + 1},

for which F} is isomorphic to F; when k is odd and is isomorphic to F;
when k is even (here F; and F; are the same as in P;).

In this paper we only use a rather crude method to compare and con-
trast the isomorphism classes; we consider only the number of triangles in
the graphs. It is quite possible that our techniques may be extended to
distinguish the isomorphism classes of some or all those graphs for which
our method fails to do so.

2 Non-isomorphic 2-factorizations

In this section we prove Theorem 1.
We shall need a preliminary result which is of some interest in its own
right. It generalizes a result in [5]. It concerns a K edge-coloured with n



colours ¢y,... ,¢, in such a way that no colour is used on more than two
edges at any vertex. Let e; be the number of edges of colour ¢; (1 < i < n)
and let p; be the number of paths of colour ¢; (1 < i < n); here a vertex
with no edges of colour ¢; on it counts as a path (of length 0). It is easy to
see that e; + p; = r (1 < i < n). Let P; be the subgraph of K, induced by
the vertices of K, that do not lie in cycles coloured c;. We give a necessary
and sufficient condition for such an edge-colouring of K, to be extendible
to an edge-colouring of K5,41 in which each colour class is a 2-factor of
Kanq1 and such that, for 1 < ¢ < n, all the vertices of P; and all vertices of
K3n+1\ K, lie in just one further cycle of colour ¢;. Thus the i — th 2-factor
F; of K244 contains just one more cycle than does (F;|K,), the restriction
of this 2-factor to the K. In [5] the case considered was when there were
no cycles coloured ¢; in the edge-coloured K; in that case the 2-factors of
Koyt were all Hamilton cycles.

Theorem 4. Let 1 <r < 2n+ 1. Let K, be edge-coloured with n colours
Ct,...,Cn in Such a way that no colour is used on more than two edges
at any vertex. Then this edge-colouring of K, can be extended to a 2-
factorization of Konyy with 2-factors Fy,. .., F,, where the edges coloured
¢; in I, all lie in F; (1 <i < n) and where F; contains just one more cycle
than (F3|K), if and only if (i) e; > 2r~2n—1 (1<i<n).

Note. Let (ii) be:
({f)pi<2n+1-r(1<i<n).

Conditions (i) and (ii) are easily seen to be equivalent. The result in [5]
about Hamilton cycles was stated in terms of condition (ii).

Proof. Necessity. Each further vertex can link together two disjoint paths.
Therefore the number p; of distinct paths in the colour class ¢; must not
be greater than 2n + 1 —r, the number of further vertices. This proves (ii),
and (i) is equivalent to (ii).

Before embarking on the proof of sufficiency we need to state a useful
result due to de Werra (7, 8, 9] on edge-colouring bipartite multigraphs. A
proof of this may also be found in [2]. Given an edge-colouring of a loopless
graph G with colours ¢, ... , ¢y, for each v € V(G), let C;(v) be the set of
edges on v of colour ¢;, and for each u,v € V(G), u # v, let Ci(u,v) be the
set of edges joining u and v of colour ¢;. An edge-colouring is equitable if,
for all v € V(G),

(Jnax (1G] =G < 1,

and it is balanced if, in addition, for all u,v € V(G), u # v,

; - |C; <1
e [[Cu(w,0)] = IG5, Il <



Thus an edge-colouring is balanced if the colours occur as uniformly as
possible at each vertex and if the colours are shared out as uniformly as
possible on each multiple edge.

Proposition 5 (de Werra). For each n > 1, any finite bipartite multi-
graph has a balanced edge-colouring with n colours.

Sufficiency. We shall show that, if r < 2n, then our edge-colouring of
K, can be extended to an edge-colouring of K, in such a way that the
property (i) is satisfied (with r replaced by r + 1) and with no further
cycles of colour ¢; (1 < i < n). Also, if 7 = 2n, then we shall show that
our edge-colouring of K, can be extended to a 2-factorization of Ka,41 (in
this case, F; necessarily has exactly one more cycle than (F;|K2,)).

If r = 2n, then, by condition (i), the number e; of edges of colour ¢; is
at least 2n — 1, and so ¢; € {2n — 1,2n}. But since K, contains exactly
n(2n — 1) edges and each of the n colour classes has at least 2n — 1 edges, in
fact each colour class has exactly 2n—1 edges. Thus e; = 2n— 1. Therefore
there is exactly one path coloured ¢;. It is not possible that this path is the
trivial one consisting of a single vertex. For in K5, a vertex v has degree
2n — 1. Since v has on it at most two edges of each colour, it follows that
n — 1 colours occur on two edges at v, and exactly one colour occurs on one
edge incident with v. There are two vertices at which colour ¢; occurs on
only one edge. Thus it follows that the required 2-factorization of Kan1
can be found by adjoining a further vertex, say vap41, to the Ks,, joining
it to each vertex of Ks,, and colouring each edge v;vzn41 (1 < i < 2n) with
the colour that occurs on only one edge of K>, incident with v;.

Now consider the case when r < 2n. We start by constructing a bipartite
graph B with vertex sets {c1,...,¢n} and {v1,...,v,}. Join vertices c;
and v; by = edges (where z = 0,1 or 2) if there are 2 — x edges of colour ¢;
incident with v; in the K. Then

(a) dg(v;) = 2n — (the number of edges incident with v; in the K,)
=2n—-(r-1)
§= 2n+1-—1;

(b) dp(c;) is even since it is joined to each vertex that is the end of a ¢;-
path in K,; moreover 0 < dg(c;) < 2(2n+ 1 —r). The case dg(c;) =0
occurs if each vertex of K, is in a cycle coloured c;; the case dg(c;) =
2(2n+1—-r)occursife; =2r —2n—1(sothat p; =2n+1—r).

We first give B a balanced edge-colouring with 2n + 1 — r colours,
Kl,--. ,K2n4+1—r. Let B* be the subgraph induced by the edges coloured



k1 and k3. Then

dp-(o) =2 (1<j<n),
dp-(c;) <4 (1<i<n),
|E(B*)| = 2.

For each i, 1 < i < n, if dp-(c;) = 2 or 3 we pair together two of the
vertices joined to c;, and if dp-(c;) = 4 we pair together all four vertices
joined to ¢;, forming what we shall call i-pairs, as follows: First, if there
are two edges joining c; to v;, then we form an i-pair of v; with itself. If
¢; is joined in B* to v; and v}, say, and in the K, v; and vj are the two
end vertices of a path coloured c;, then v; and v form an i-pair. If there
is more than one vertex joined to ¢; in B* still not paired off in an i-pair,
then the vertices that remain are paired off arbitrarily (with possibly one
vertex left over).

From B* we form a further bipartite graph B* as follows. The vertex
set of BY is {v1,...,v,} U {e11,¢12,€21,Co2,--. ,Cn1,Cn2}. Each vertex c;
of B* is split into two vertices ¢;; and c¢;;. We assign the edges that were
incident with c; to ¢;1 and c;2 so that dg+(cy) <2 (1<i<n,1<1<2)
and so that whenever two edges incident with c; are joined to vertices v;
and v} that form an i-pair then the two edges are both assigned to c;; or
are both assigned to c;.

We then give Bt a balanced 2-edge-colouring with colours, say o and
B. Then we transfer this edge-colouring to B*. We then have a balanced 2-
edge-colouring of B* with « and 3. Let B}, be the subgraph of B* induced
by the edges coloured . Then

dps(v;)=1 (1<j<r),
dps(ci) <2
|E(BL)| = 7.

— — )

Moreover, B}, has the following property P.

P: If v; and v} form an ¢-pair, then exactly one of the edges v;c; and vici
isin B},

We use B, to determine how to extend the original edge-colouring of
K, to an edge-colouring of the K,; obtained by adding one vertex v to
K, and one edge between v and each vertex of the K. If c;v; is an edge of
B, then we colour the edge vv; in our i, ,; with the colour ¢;. When this
is done for each j (1 < j < r), the K, is extended to an edge-coloured K,
in which the i-th colour class induces a subgraph with no vertices of degree
greater than two and with no more cycles than it had in K,; moreover
condition (i) is satisfied (with » replaced by r + 1). To see this, first note

10



that each of the new edges does actually receive a colour; this is because
dp:(v;) =1 (1 £j < 7). In our construction of the bipartite graph B, c;
and v; were joined by z edges if there were 2 — z edges of colour c; incident
with v; in the K,. Thus a vertex in the K., will have degree at most
two in the subgraph induced by the i-th colour class. This is also true of
the vertex v, since dp; (¢;) < 2. By property P, if there are two vertices
v; and v} joined to ¢; in By, v; and v} do not form an i-pair; therefore,
if dgx (c,j = 2, the two vertices v; and vj joined in K, i, to v by edges
coloured ¢; are not the end vertices of the same path in P;. Thus in the
K,y the i-th colour class has no more cycles than it had in KX,.

Clearly (i) is satisfied with r replaced by 7 + 1 for any ¢ with ¢; >
2r—-2n+1 = 2(r+1)—2n—1. But consider the possibility that e; = 2r—2n
or e; = 2r —2n — 1. Then dp-(c;) € {2,3,4} if e; = 2r — 2n, or dp-(c;) = 4
if e = 2r — 2n — 1. Therefore dp:(c;) € {1,2} if e, = 2r — 2n, and
dp: (c;) = 2 if e; = 2r — 2n — 1. Therefore at least one edge on v is coloured
¢; in the K, if e; = 2r — 2n, and two edges on v are coloured ¢; in K41
if e; = 2r — 2n — 1. Therefore (i) (with r replaced by r + 1) is satisfied by
our edge-coloured K.

Repeating this argument a finite number of times leads to the case r—2n,
which we have already dealt with.

O
Now we turn to the proof of Theorem 1.

Proof (Theorem 1). We first give suitable 2-factorizations in cases when
2n + 1 = 9 and 11. We take the vertex sets to be {1,2,...,2n + 1}. We

denote a cycle (a1, as, ... ,ar,a1) by {a1,a2,... ,a,) (thus (a;,as,... ,a;) =
{as,as,... ,ar,a1), etc. ). Then the 2-factorizations are given by
2n+1=9: Hy: (1,2,3), (4,5,6), (7,8,9);

Hy: (2,5,9), (1,4,3,8,6,7);

Hs: {1,6,3,9), (2,4,8,5,7);

Hy: (1,5,3,7,4,9,6,2,8).
2n+1=11: Hi: (1,2,3), (9, 10,11), (4,5,6,7,8);

H,: (6,8,9), (1,11,3,4,2,5,7,10);

Hy: (3.5.8,10), (1.4,9,7,2,11,6);

Hy: (3,8,11,4,7), (1,5,10,6,2,9);

Hs: (1,7,11,5,9,3,6,4,10,2,8).

Now we give two similar recursive constructions, both of which use
Theorem 4.

Recursion 1. Letn > 5. From any 2-factorization of Ksp,4+1 into 2-factors
J(2n+1;3,3,2n-5), J(2n+1;i,2n+1-1) (3 <i < n)aend J(2n+1;2n+1),
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we can construct a 2-factorization of I(4,—3 into 2-factors J(4n—3;3,3,4n—
9), J4n -3;i,4n -3 -1i) 3<i<2n-2) and J(4n - 3;4n - 3).

In the case when n = 4, there is a 2-factorization of Konyy of the
former kind from which a 2-factorization of K43 of the latter kind can be
constructed by a similar process.

Construction for Recursion 1. Let n > 5, and suppose we have a
2-factorization of K541 of the type described. Let C; be the set of edges
in the cycles of J(2n +1;3,3,2n — 5). For 3 < i < n, let C;_, be the set of
edges in the i-cycle and let Cy,_; be the set of edges in the (2n + 1 — 7)-
cycle of J(2n + 1;4,2n + 1 — ¢). Finally let Con—2 be the set of edges in
the (2n + 1)-cycle in J(2n + 1;2n + 1). We then have 2n — 2 disjoint sets
Ci,...,Caon—2 whose union is the edge-set of Kop4).

We shall modify this 2-factorization of K»,4) slightly in order that
the desired 2-factorization of K4,_3 can be obtained by an application
of Theorem 4. Note that condition (i) in Theorem 4 becomes here e; >
22n+1)-(4n-3) (1 <i<2n-2),e e; >5(1<i<2n—2). We have
that |C;| > 5 (i € {1,2,...,2n — 2} \ {2,3}), but |C;| = 3 and |C3| = 4.
Thus we need to increase the size of Cs and C; by 2 and 1 respectively.
We also need to re-assign at least one edge of the (2n — 5)-cycle in C; so
that the paths remaining can become part of the (4n — 9)-cycle in Ky, _3,
and we need to re-assign at least one edge of the (2n + 1)-cycle of edges in
C2n—2 so that the paths remaining can become part of a (4n — 3)-cycle in
Kyn-3.

Let the (2n — 5)-cycle whose edges are in C; be denoted by X. Let
v1, V2,3 be the three vertices of the 3-cycle with edges in C2. We show
that there is an edge e of X that is not incident with any of v;,v, or v;.
Then we colour e with colour ¢, colouring the edges of C;\{e} with colour
c1. If n > 6 then the (2n — 5)-cycle X has at least seven vertices, so the
edge e exists in this case. If n = 5 then the 5-cycle X is incident with
at most two of v1,v2 and w3, since v;,v2 and vs induce a 3-cycle that is
edge-disjoint from X. Therefore the edge e exists in this case also.

We colour the edges of C2 with colour c;. Let the (2n + 1)-cycle with
edges in Cs,,—2 be denoted by Y. Since n > 5, 2n + 1 > 11, so there is an
edge e* of Y that is not incident with any of y;,y2,y3. Since e € X, e # e*.
We colour e* with colour c; also. Since e is also coloured ¢z, there are now
five edges coloured c,.

Let the four vertices of the 4-cycle of edges in C3 be w; , w2, w3, w4. Since
2n 4+ 1 > 11, there are at least three edges of Cz,_» that are not incident
with any of wy, ws, w3, w4, and so there is an edge e** of Ca,—2\{e*} that is
not incident with any of w;,ws, w3, w,. We colour the edge e** with colour
¢3, and we also colour the edges of C3 with colour ¢3. Then there are five
edges coloured c3.

12



For 4 < i < 2n — 3 we colour the edges of C; with colour ¢;. We colour
the edges of Ca,—2\{e*, e**} with colour ¢ca,,—5. Each colour is now used on
at least five edges of the K3,+1, so Condition (i) of Theorem 4 is satisfied.
Each of X and Y have at least two colours used on them.

We now apply Theorem 4; this yields a 2-factorization of K4,—3 in
which the 2-factor coloured ¢; has two 3-cycles and a (4n — 9)-cycle, for
2 <1 < 2n—3, the 2-factor coloured ¢; has an (:+1)-cycle and a (4n—i—4)-
cycle, and the 2-factor coloured cs,,-2 is a Hamilton cycle. This establishes
the first recursion when n > 5.

In the special case when n = 4 (so that 2n + 1 = 9), we have to
modify the 2-factorization given at the beginning of this proof in a slightly
different way. In the Ky we colour the edges as follows (where the notation

(a,b,...,c) means all edges of the cycle (a,b,...,c)):
e (1,2,3), (7,8,9), 45, 56;

ca: (2,5,9), 46, 37;

ca: (1,6,3,9), 47,

cq: (2,4,8,5,7);

Cs: (1,4,3,8,6,7);

cs:  (1,5,3,7,4,9,6,2 8)\{37,47}.

We then apply Theorem 4 to obtain a 2-factorization of the desired kind.

Recursion 2. Let n > 7. From any 2-factorization of Kapy) into
2-factors J(2n + 1;3,3,2n - 5), J2n + 1;4,2n+1—-1) 3 < i < n)
and J(2n + 1;2n + 1), we can construct ¢ 2-factorization of Kyn—s into
J(dn — 5;3,3,4n — 1), J(An — 5;4,dn - 5—-1) (3 < i < 2n— 3) and
J(4n — 5;4n - 5).

Moreover, in the case when n = 5, from the 2-factorization of K1,
given at the beginning of the proof, we can construct by e similar process
such a 2-factorization of K15. If n = 6, we give a 2-factorization of K3
from which we construct similarly a 2-factorization of K19 of the desired
kind.

Construction for Recursion 2. Let n > 7 and suppose we have a
2-factorization of K3,4+1 of the type described. Let D; be the set of edges
in the cycles of J(2n + 1;3,3,2n — 5) and let D, be the set of edges in the
cycles of J(2n + 1;3,2n — 2). For 4 < i < n, let D;_; be the set of edges
in the i-cycle and let Ds,_; be the set of edges in the (2n + 1 — i)-cycle of
J(2n+1;4,2n+1—14). Finally let Da,_3 be the set of edges in the (2n+1)-
cycle in J(2n+ 1;2n+1). We then have 2n — 3 disjoint sets Dy,... ,Don_3
whose union is the edge-set of Ks,,41.

We shall modify this 2-factorization of Kan4; slightly in order that
the desired 2-factorization of K4,—5 can be obtained by an application of
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Theorem 4. Here Condition (i) in Theorem 4 becomes e; > 2(2n + 1) —
(4n—-5) (1 <i<2n-3),ie e; > 7(1<i<2n-3). Wehave that |D;| > 7
(1€{1,2,...,2n - 3}\ {2,3}), but |D3| =4, |D4| =5 and |Ds| = 6. Thus
we need to increase the size of D3, Dy and D5 by 3, 2 and 1 respectively.
We also need to re-assign at least one edge of the (2n — 5)-cycle in D; so
that the paths remaining can become part of the (4n — 11)-cycle in K45,
we need to re-assign at least one edge of the (2n — 2)-cycle in Ds so that
the paths remaining can become part of a (4n — 8)-cycle in K4,—5 and we
need to re-assign at least one edge of the (2n + 1)-cycle of edges in Dj,_3
so that the paths remaining can become part of a (4n — 5)-cycle in Kyy,_s.

Let the (2n — 5)-cycle whose edges are in D; be denoted by X. Let
wy, w2, w3, wy be the four vertices of the 4-cycle with edges in D3. Since
n > 7 the (2n — 5)-cycle has at least 9 vertices, so there is an edge e of
X that is not incident with any of w;, w2, w3, ws. Then we colour e with
colour c3 and colour the edges of Cy\{e} with colour ¢;.

Now let the (2n — 2)-cycle whose edges are in D, be denoted by Y.
Since (2n — 2) > 12 there are at least four edges that are not incident with
any of wy,ws, w3, ws. Let e* and e** be two such edges. Colour ¢* and e**
with colour c3, and colour the remaining edges of D2\{e*,e**} with colour
c3 (the edges of the 4-cycle (w;,ws, w3, wq) and e, e*,e**).

Let the (2n + 1)-cycle with edges in Dy,_3 be denoted by Z. Let
¥1,¥2, Y3, Y4, Ys be the five vertices of the 5-cycle with edges in Dy, and let
21, %2, ... ,2¢ be the six vertices of the 6-cycle in Ds. Since 2n+1 > 15 there
are at least three edges of Z that are not incident with any of zj,... ,z.
Let f be one such edge, and colour it c5. There are at least five edges of Z
that are not incident with any of y1,... ,ys. Let f* and f** be two such
edges that are distinct from f. Colour f* and f** with colour ¢4. There
are now seven edges coloured c4 (the edges of the 5-cycle (y1,¥2,--- ,¥s5,¥1)
together with f* and f**) and seven edges coloured cs (the edges of the
6-cycle (21, 2a,. .. , 26, 21) together with f).

For 6 < ¢ < 2n—4 we colour the edges of D; with colour ¢; and we colour
the edges of Don—3\{/f, f*, f**} with colour ¢z,—_3. Each colour is now used
on at least seven edges of the Kj,41, so Condition (i) of Theorem 4 is
satisfied. Each of X, Y and Z have at least two colours used on them.

We now apply Theorem 4; this yields a 2-factorization of K4,-5 in
which the 2-factor coloured ¢; has two 3-cycles and a (4n — 11)-cycle, for
2 <i € 2n—4, the 2-factor coloured ¢; has an (i+1)-cycle and a (4n—i—6)-
cycle, and the 2-factor coloured c3,,3 is a Hamilton cycle. This establishes
the second recursion when n > 7.

In the special case when n = 6, let us consider the following
2-factorization of K;3:

Hy: (1,2,3), (11,12,13), (4,5,6,7,8,9,10);
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Hy:  (5,7,9), (1,6,12,8,11,10,3,13,2,4);
Hs:  (1,7,10,12), (2,6,11,3,8,4,9,13,5);
Hy:  {1,5,8,2,10), (3,9,6,13,4,11,7,12);
Hs:  (3,4,6,8,10,5), (1,13,7,2,12,9,11);
He:  (1,9,2,11,5,12,4,7,3,6,10,13,8).

We now modify this 2-factorization in a way suitable for the application
of Theorem 4. The modification is similar to, but not the same as that
described above for the general case. The colour classes corresponding to
the colours ¢, ... ,cg are as follows:

e (1,2,3), (11,12,13), (4,5,6,7,8,9,10) \ {45,56,67,89};

e (5,7,9), (1,6,12,8,11,10,3,13,2,4) \ {6 — 12};
cs: (1,7,10,12), {45,56,89};

c: (1,5,8,2,10), {67,6 — 12};

cs: (3,4,6,8,10,5), {2 - 11};

e (1,13,7,2,12,9,11);

e (3,9,6,13,4,11,7,12) ;

cs:  (2,6,11,3,8,4,9,13,5);

co:  (1,9,2,11,5,12,4,7,3,6,10,13,8)\ {2 — 11}.

Here 6 — 12 is used to denote the edge joining vertices 6 and 12. We use
similar notation whenever a vertex is denoted by a 2-digit number.

In the special case when n = 5 we modify the 2-factorization of K,
given at the beginning of this proof. Again the modification is similar to,
but not the same as, the modification we described in the general case. The
colour classes corresponding to the colours ¢y, ... ,c7 are as follows:

e (1,2,3), (9,10,11), (4,5,6,7,8) \ {56,67,78};
e (8,9,6), (1,11,3,4,2,5,7,10)\ {1 - 11};

cs: (3,5,8,10), {17,67,1—11};

e (11,4,7,3,8), {56,2 — 10};

es: (1,5,10,6,2,9), {78}

et (1,4,9,7,2,11,6);

e (2,7,11,5,9,3,6,4,10,2,8)\{17,2 — 10}.

This establishes Recursion 2.

Theorem 1 now follows easily. First we note that we have given partic-
ular decompositions which establish the theorem for Ky and Kj;. Using
Recursion 1 we obtain a decomposition for K3 (we actually give another
in the course of the proof). For n > 5 we obtain a decomposition for K4,_5
from Recursion 2 (either a special or the general case), and we obtain a de-
composition for K4,_3 from Recursion 1 (either the special or the general
case). This proves Theorem 1. a
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3 Non-isomorphic r-connected
r-factorizations

To prove Theorems 2 and 3 it is convenient to introduce the following
notation. Firstly, if X is a subset of the index set I, we define:

G(X)= U Gi,
i€x

and then, in particular, if ¢ is a positive integer and p, q,;,172,... ,3; are
elements of I such that:

pSi1<ia < -+ <4 Lgq,
we define:

G(p,giirst2,- .. i) = G([p, @) \ {75 | 1 <5 < t}),

and:

G(p,q) = G([p,q))-

Then the factorization of Theorem 2 becomes:

Kn=GO0,r+1r-1r)UGr-1,2r-1;r+1)UG(2r,3r - 1)
UG@3r,4r-1)U---UG((n - 1)r,nr — 1),

and the factorization of Theorem 3 becomes:

Kn=G0,r+1;r-2,r —1D)UG(r-2,2r - 1;r,r +1)UG(2r,3r - 1)
UG(3r,dr—1)U---UG((n - Dr,nr — 1).

The proof now separates into two parts, the isomorphism and
non-isomorphism of the r-factors, and their connectivity.

3.1 Isomorphism and non-isomorphism

It was shown, in [6], that, for any integer k and integer s such that 2 < s <
m—1 and sm is even, G(k, k+ s — 1) is isomorphic to G(0,s—1). With k =
(:—1)r and s = r we see that, for 2 < ¢ < n, G((—1)r,ir — 1) is isomorphic
to G(0,r—1). Also, if n is even (r even and m odd), putting s = 2r, then, for
1<j < %, G(2jr,2(j +1)r - 1) is isomorphic to G(0, 2r —1). Moreover, for
1 <j < 2, the isomorphism sends G(2jr, (2j+1)r+1; (2j+1)r—1,(2j+1)r)
onto G(0,r + 1;7 — 1,7) and G((2j + 1)r — 1,2( + 1)r — 1;(25 + 1)r +
1) onto G(r — 1,2r — 1;7 + 1) (Recall that these graphs arise from the
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partition P3). Using a similar method, the graphs G(0,r + 1;7 — 2,7 — 1)
and G(r — 2,2r — 1;r,r + 1) are isomorphic when m is even. To be precise
it is easy to see that, when m is even, the mapping which sends oo to oo
and the vertex (0 < z < m —2) to & +r — 1 — z is an isomorphism
of G(0,7 + 1;r — 2,7 — 1) onto G(r — 2,2r — 1;7,7 + 1). Indeed it maps
the edge-set Ey bijectively onto the edge-set Eo,_;_i. Moreover the same
graphs are isomorphic when r = 4 (and m is odd). In this case the required
isomorphism maps co to co and the vertex x (0 <z <m-—-2)tor+1. To
deal with the non-isomorphisms of Theorems 2 and 3 it suffices to consider
the number of triangles in each r-factor. These triangles are separated into
three distinct types. Those triangles with vertices in V will be designated
as type-1 triangles. Those triangles which are not type-1 besides having
oo as a vertex will have two distinct vertices, z,y from V. The edges then
belong to the graphs G, Gy, G, where:

a=2r; b=2y; c=z+y mod (m-1).

Necessarily a, ¢ are distinct modulo (m — 1) as are b,c. However a, b need
not be distinct. It is easy to see that @ = b mod (m — 1) if and only if m
is odd and z —y = k£ mod (m — 1), where m — 1 = 2k. Therefore these
triangles separate into two cases; those for which a, b are distinct, designated
type-2, and those for which @ = b mod (m — 1), designated type-3. Note
that type-3 triangles only occur when m is odd. Note also that type-1 and
type-2 triangles occur in subgraphs of the form G, U Gy UG, where a,b,c
are distinct modulo (m — 1), whilst type-3 triangles occur in subgraphs of
the form G, UGy, where a, b are distinct modulo (m — 1). The existence of
triangles of the various types is dealt with in the following three lemmas.

Lemma 6. Let a,b,c be distinct integers modulo (m — 1). If m is even;
say m = 2k for some integer k; then the system of congruences:

z+y=a;, y+2=b z4+z=c mod(m-1)
has the unique solution:
t=k(a-b+c); y=k(a+b-c); z=k(—a+b+c) mod (m—1).

On the other hand, if m is odd; say m = 2k + 1; then the system has a
solution if and only if a + b+ ¢ = 2d mod (m — 1) for some integer d, in
which case there are precisely two solutions; namely:

z=d-b y=d-¢ z2z=d-a mod(m-1)
and:

r=k+d-b y=k+d-¢ 2=k+d-a mod (m-1).
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Proof. Suppose that m = 2k for some integer k. Let z,y, z be integers such
that:

z+y=a; y+z=b z+z=c mod(m-1)
Then:
2r=(x+y)—(y+2)+(z+z)=a—-b+c mod (m—1).
Since 2k =m =1 mod (m - 1),
z=2kz=k(a—b+c) mod (m-1).

Similarly y = k(a+b—c) mod (m—1) and z = k(—a+b+c) mod (m-1).
Conversely it is easy to see that these values for z,y, z satisfy the system
of congruences.

Now suppose that m = 2k+1 for some integer k and that x,y, z are inte-

gers which satisfy the system of congruences. Then, adding the congruences
we obtain:

a+b+c=2(z+y+2) mod (m-1).

Thus @ + b+ ¢ = 2d mod (m — 1) for some integer d. Conversely suppose
that a + b + ¢ = 2d for some integer d and suppose that z,y, z are integers
which satisfy the system of congruences. Then:

2e=(z+y)-(y+2)+(2+2z) mod(m—1)

=a-b+ec mod (m — 1)
=a+b+c—-2b mod (m — 1)
=2(d-b) mod (m — 1)

It follows that = — (d — b) is divisible by k. Thus either (i) z — (d - b) =
k(2h + 1) for some integer h, or (i) z — (d — b) = k(2h) for some integer h.
If (i), then = k+d—b mod (m—1). If (i¢), then z = d—b mod (m—1).
In case (3) it follows that, since —k =k mod (m~1)anda+b—-d=d—-¢
mod (m — 1):

y=a-—=c mod (m —1)

=a—-k—-d+b mod(m-1)

=k+d-c mod (m — 1).
Similarly z = k+ d —a mod (m — 1). In case (i) it follows, in the same
way, that y=d—c mod (m—1) and z =d —a mod (m —1). It is easy

to check that these two possibilities are indeed solutions of the system of
congruences. a
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Lemma 7. Let a,b,c be integers which are distinct modulo (m — 1). If the
system of congruences:

2t=a; 2y=b z+y=c mod(m-1)

has a solution, then a +b =2c mod (m —1). Ifa+b=2c mod (m — 1)
and m = 2k for some integer k, then the system has the unique solution:

z=ka; y=kb mod (m-1).

Ifa+b=2c mod (m—1) and m = 2k + 1 for some integer k, then the
system is solvable if and only if a,b are even; in which case, if a = 2 and
b = 28 for some integers a and J, then there are precisely two solutions;
namely:

T =q y=8 mod (m — 1);
z=k+o; y=k+ mod (m-1),

whenc=a+f mod (m — 1), or:

T=q y=k+F mod (m—1);
z=k+a; y=p mod (m — 1),

whenc=k+a+p mod (m—-1).

Proof. The first statement is trivial. Now suppose that a + b = 2¢
mod (m — 1) and m = 2k for some integer k. Then 2k =1 mod (m — 1)
and hence, if z,y, z is a solution, then:

z=2kzx=ke mod (m-1);
y=2ky=kb mod (m—1),

and, conversely, these values for z and y are solutions:
2(ka) =a; 2(kb) =b; (ka)+ (kb)=k(a+b)=2kc=c mod (m—1).

Next suppose that m = 2k+1 for some integer &, that a+b = 2¢ mod (m—
1) and that z,y are solutions of the system. Clearly, since (m — 1) is even
and @ =2z mod (m — 1) and b = 2y mod (m — 1), then a and b are even.
Conversely suppose that @ = 2a and b = 283 for some integers a and f.
Then 2(e + ) = 2¢ mod (m — 1). It follows that either (i) ¢ = a + 8
mod (m — 1) or (i4) ¢ = k+ o+ mod (m — 1). Suppose that z,y are
solutions. Then, in particular, 2z = 200 mod (m — 1) so that either z = a
mod (m —1) or z = k+ a mod (m — 1). Consider the case (i). If z = o
mod (m — 1), then:

y=c—zrz=c—a=f mod (m-1);
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but, if z = k + a mod (m — 1), then, since ~k =k mod (m — 1):
y=c—2=c—k—a=k+p mod (m-1).

It is easy to see that these are indeed two distinct solutions of the system
of congruences. Similarly in case (i¢), if 2 = @ mod (m — 1), then:

y=c—-z=c—a=k+8 mod (m-1);
but, if = k + a mod (m — 1), then:
y=c—z=c—k~-a=8 mod (m-1),
and again we have two distinct solutions of the system. a

Lemma 8. Suppose that m = 2k+1 for some integer k. Let a,b be distinct
integers modulo (m — 1). Then the system of congruences:

2r=a; 2y=a; z+y=b mod(m-1)

have a solution if and only if a is even; say a = 2a for some integer a;
and b = a+k mod (m — 1), in which case there are two distinct solutions;
namely:

zT=0; y=a+k mod (m-1)
and:
r=a+k y=a mod(m-1).

Proof. Suppose that the integers z,y satisfy the system of congruences.
Then, since (m — 1) is even and ¢ = 2z mod (m — 1), a is even. Moreover:

2b=2(r+y) =2a¢ mod (m —1),

and hence, since a, b are distinct modulo (m —1), b=a+k mod (m —1).
Now suppose that a = 2a for some integer a and that b =a+% mod (m —
1). fz=a mod (m—1)and y=a+k mod (m — 1), then:
2r=2a=a mod (m — 1);
2y=2(ac+k)=2a=a mod (m-1)
z+y=2a+k=a+k=b mod (m-1).

This yields a solution of the system. By symmetry, z = a+k mod (m—1),
¥y = a mod (m — 1) is also a solution. Suppose that z,y is any solution.
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Then 22 = a = 2a mod (m — 1). Therefore either z = @ mod (m — 1) or
z=a+k mod (m—1). f z =a mod (m — 1), then:

y=b-z=(a+k)—a=a+k mod (m-1).
Ifx =a+%k mod (m - 1), then:
y=b-z=(a+k)-(a+k)=a mod (m-1).
Therefore there are precisely two distinct solutions. O

Let s be an integer such that 3 < s < m — 1 and suppose that X be
any subset of I with cardinality s. Then G(X) contains (3) subgraphs of
the form G, UG, UG, where a, b, ¢ are distinct integers modulo (m —1). It
follows, from Lemma 6, that, if m is even, then there are precisely ( ) type-
1 triangles in G(X). On the other hand, if m is odd, then type-1 triangles
only occur in subgraphs of the form G, UG, UG, where the integers a, b, ¢
are distinct modulo (m — 1) and such that a + b + ¢ is even. In this case
a,b,c are all even or one is even and the other two are odd. Suppose that
s is even and X contains s/2 odd numbers and s/2 even numbers (in this
case we say that X is parity balanced). Then the number of subgraphs in
which a, b, ¢ are all even is:

(séz) = ng(s —2)(s — 4).

The number of subgraphs in which one is even and the other two are odd

is:
s(s/2 1 §2
5( 2 ) T
Therefore the number of triangles in G(X) is
2[%3(3 -2)(s—4)+ l32(3 -2)]

214s(s— 2)[(s — 4) + 3s]

= gs(s - 1)(s-2)

-0)

In either case the number of triangles is (;) This completes the proof of

Proposition 9. Let s be an integer such that 3<s<m—1. Let X be a
subset of I with cardinality s and suppose that, if m is odd, then X is parity
balanced. Then the graph G(X) contains precisely (3) type-1 triangles.
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Note that the sets occurring in each of the partitions P, and P, satisfy
the conditions of this proposition. Hence the associated graphs all have the
same number of type-1 triangles.

Given a subset X of I, let T(X) denoted the set of all triples {a,b,c},
where a, b, ¢ are (distinct) elements of X such that a+b = 2c (mod m — 1)
and, whenever m is odd a and b are both even. Then, by Lemma 7, the
number of type-2 triangles in G(X) is given by |T'(X)|, when m is even, and
2|T(X)|, when m is odd. As for graphs, we write T(p, q; 81,92, -+ »38) =
T(X), when X = [p,q]\ {i; | 1 < j < t}, and, in particular, T(p,q) =
T(lp,q]-

Let p, q be integers such that 0 < p,g <m —2 and0<g-p<r+1
Put X = [p,g]. Let a,b,c be distinct integers belonging to X such that
a+b=2c mod (m — 1). Moreover assume that, when m is odd, a and b
are both even. Then a + b — 2c = t(m — 1) for some integer {. Now:

—2(m—1)<—2(q—p)§a+b—2c§2(q—p)<2(m—1).

Thus ¢t = 0,1 or — 1. We may assume that ¢ <b.

If t = 0, then a + b = 2c and hence a and b are both odd or both even.
Moreover a < ¢ = 5(a +b) <b.

Ift =1, then a + b— 2¢c =m — 1 = nr. Hence:

nr<2(q—-p) <2(r+1)<3r.

Therefore n = 2, so that m is odd and r is even. In this case a and b are
even. Then 2r =a+b—2c<2(b—c)sothatr<b-c<gq-p<r+1. 1t
follows that b — ¢ =g — p = + 1 so that b= ¢ and ¢ = p. Then:

9% =a+b—-2c=a+q—2p=a—-p+r+1

and hence a = p+7r —1 = g — 2. In particular, p =c < a < b=g,
but a # %(c+b) (otherwise ¢ — 2 = %(p-i-q) sothat r=q—-p—-1=3;
contradiction). Also g is even and p is odd. Conversely, if n = 2 and if g is
even and p is odd with ¢ — p = 7 + 1, then, putting a = ¢ -2, b=qand
c=p,aandbarebothevenanda+b—2c=2(q—p)—2=2r=m—1;
ie. t=1.

If t = —1, then a + b — 2¢ = —nr and hence again:

nr <2(q—p)<3r

so that » = 2 and hence again m is odd and r is even, so that a and b are
odd. Moreover 2r = 2c—a — b < 2(c— a). Thenr <c—a<q—-p<r+1
and hence ¢ —a = q¢— p=r + 1. It follows that a = p, ¢ = q and:

b=2%—-a-2r=p+2=q—-1~-1
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In particular, p=a < b < c=gqand b # %(a + ¢) (otherwise we again
obtain the contradiction, » = 3). However, in this case, p is even and g is
odd. Conversely, if n = 2 and if p is even and ¢ is odd withg—p=7+1,
then, putting @ = p, b = p+ 2 and ¢ = ¢, a and b are both even and
a+b—-2c=2(p-q)+2=-2r=—-(m—-1);ie t=—1.

These arguments complete the proof of

Lemma 10. Leta,b,c be integers in I such thata < b < candc—a < r+1.
Then {a,b,c} € T(I) if and only if precisely one of the following conditions
hold:

(i). b= }(a+c), and a and b are both even or both odd if m is even, or
both just even if m is odd;

() n=2,c—a=r+1,ais odd, c is even and b=c - 2;
(i) n=2,c—a=r+1,a is even, c is odd and b = a + 2.

We now apply Lemma 10 to determine the number of type-2 triangles in
G(p,g). Suppose that m is even (so that r and n are both odd). In this case
the number of type-2 triangles is equal to |T'(p, g)|. By the lemma |T'(p, q)]
is the number of pairs of distinct even integers or distinct odd integers in
[p,q]. If p and g are both odd, then the number of even integers in [p, g] is
(g — p) and the number of odd integers in [p,q] is -,i,-(q —p)+1. If pand
g are both even, then the number of even integers is 7(g — p) + 1 and the
number of odd is (g — p). Therefore, in either case:

roal= (M) (H0P) Ly

If one of p and ¢ is odd and the other even, then the number of even integers
in [p,q] is (¢ — p + 1) as is the number of odd integers. Therefore:

IT(p,q)| = 2(%(‘1 _2p+ 1)) = %[(q -p)?-1]

Now suppose that m is odd and n > 2. In this case the number of type-2
triangles is equal to 2|T'(p, ¢)| and |T'(p, q)| is the number of pairs of distinct
even integers in [p, g]. Thus, if p and g are both odd, then:

Lea
el = (*97) = 2a-ne-p-2

if one of p and ¢ is odd and the other even, then:

Lg -
reol= (*97F4Y) = He-p2 - 1
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and otherwise, if p and ¢ are both even, then:

1(g_
IT(p,q)| = (2(‘1 21’) +1) _ %(q_p)(q-pw).

If misodd, n=2,¢—p=r+1, and either p is even and ¢ is odd or p is
odd and g is even, we have in addition 1 further triple; thus:

1
IT(@. )l = 3lla—p)* +7]
This completes the proof of

Proposition 11. Let p, g be integers such that 0 < p,g < m — 2and0<
g—p<r+1. Let N be the number of type-2 triangles in the graph G(p,q).
If p and q are both odd, then N = i-(q — p)? when m is even and N =
1(¢—p)(g—p—2) when m is odd. If p and q are both even, then N = 1(g-p)?
when m is even and N = %(q —p)(g—p+2) when m is odd. If p is odd
and q is even, or p is even and q is odd, then N = H(g—p)®> —1] unlessm
is odd, n = 2 and ¢ — p = r + 1, in which case N = %[(r + 1)® +7].

In particular, by Proposition 11, the number of type-2 triangles in
G(0,7~1) is equal to 3(r—1)® when m is even and [(r—1)*-1] = ir(r-2)
when m is odd.

To deal with the other graphs G(0,r+1;7—1,7), G(r—1,2r—1;7+1),
G(0,r +1;r — 2,7 — 1) and G(r - 2,2r — 1;7,7 + 1), we first note that, if
m is even, then:

[T, +1)| = [T(r —2,2r — 1)| = %(r +1)%
|T(r—1,2r - 1)| = %[ﬁ -1],
if m is odd and n > 2, then:
[T, +1)| = |T(r — 2,2r — 1)| = %[(r +1)2 - 1;
|T(r—1,2r - 1)| = -;-r(r - 2),
and, if m is odd and n = 2, then:
|T,r +1)| = |T(r-2,2r—1)| = %[('r +1)2+7);

IT(r —1,2r - 1)| = %r(r _9).
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Next we remove triples from the appropriate sets T(0,7+1), T(r—1,2r—1)
and T'(r—2,2r—1) to obtain the sets T'(0,r+1;r—1,7), T(r—1,2r—1;7+1),
TO,r+1;r—2,r—1)and T(r — 2,2r — 17,7 + 1).
First consider the case when m is even. By Lemma 10 we obtain r + 1
triples {a,b,c} in T(0,r + 1) which contain r — 1 or r; namely:
{0,551, r—1}, {2, ﬂ%’—‘-,r—l}, vy {r=38,r=2,7-1},{r-1,r,7+

1},
{i—f-r} 3,23, r},...  {r=2,7 = 1,7}, {r-3,r—1,r+1}.

Therefore:

70,7+ 1;7r = 1,7)| = |TO,r+ 1) - (r +1) ——(r—l -1.
Similarly, if r > 3, there are (r+3) triples in T'(r— 1, 2r — 1) which contain
r+1:

{fr+lLr+2,r+3}L{r+Lr+3,r+5},... {r+Lr+i(r-
1),2r — 2},
{r-1,rr+1},{r,r+1,r+2},{r-1,r+1,7+3};

but, if 7 = 3, there are only 2:
{2,3,4},{3,4,5}.
Therefore:

IT(r—1,2r—1)| - (r+3) (r>3)
|T(2,5)] — 2 (r=3)

_Jitr=1?-2 (r>3)
1o (r=3).

|T(r—l,2r—1;r+1)|={

There are 7 + 3 triples in T(0,r + 1) which contain 7 — 2 and r — 1:
{O, S r—1}, {2, 5L r—1},... {r=3,7=2,r =1}, {r=1,7,7+

{l,r; =2}, {8, 28 r—2},... ,{r—4,r-3,7-2},{r—-2,7r—
1,7},
{r=85r—-2,r+1},{r-4,r-2,7},{r-3,7r = 2,7+ 1};

if r > 3, but, if r = 3 there are 4:
{0,1,2},{1,2,3},{2,3,4},{0,2,4}.
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Therefore:

|T0,r + ;7 —2,r=1)| = {|T(0,’I‘+ 1)]-(F+3) (r>3)

|T(0,4)| — 4 (r=3)
_Jir-1)?-3 (r>3)
1o (r=3).

Now consider the case when m is odd. Any additional triples occurring
in the case n = 2 are listed in brackets with a similar modification to the
total number. There are § triples in T(0, 7 + 1) which contain 7 — 1 or r:

{0,5,7}, {2, %2,r},... . {r—2,r - 1,r}.
Hence:
T, + Lir = 1,7)| = [TO,r +1)| - 5
_ {%’r(r -2) (n#2)
Frr-2)+1 (n=2).
There is just one triple in T'(r — 1,2r — 1) which contain 7 + 1:
{r,r+1,r+2}.
Hence:
|T(r-1,2r—1;7+1)|=|T(r-1,2r - 1)| - 1
= %r(r -2)-1

There are (r + 2) triples in T'(0,r + 1) which contain 7 —2 and r — 1:

{0,552,r -2}, {2, 55,7 - 2},... , {r—4,r = 3,7 -2},
{r=2,r=1r},{r—4,r-2,7}

({0,2,5} when r = 4 and n = 2).
Therefore:

ITO,7+1)|-5-1 (n>2o0rr>4)
|T@©,r+1)|-5-2 (n=2andr =4)

_Jirr-2-1 (n#20rr=4)
= Lr(r - 2) (n=2and r > 4).

|T©,r +1;r—2,r—1)| = {

If r > 4, then there are § + 2(+1) triples in T'(r — 2, 2r — 1) which contain
rand r+ 1
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{r,r+1L,r+2},{r,r+2,r+4},... , {r,r+ ’—;2-,27' -2},
{r=2,r=1r},{r-2,r,r+2},{r—-2,r+1,r +4},
({r-2,r,2r—1}).
Note that, in the case n = 2, the additional triple added to T'(r — 2,2r — 1)
is then removed in obtaining T(r —2,2r —1;7,7+1). Therefore, when r > 4:

|T(r—2,2r-1)|-5-2 (n#2)

T(r—2,2r—1; 1)| =
| ("' T T+ )l {IT(,’,_2,2,,._1)|_.2’1_ (n=2)

= %r(r -2)-2.

Recall that, when r = 4, G(r — 2,2r — 1;r,7 + 1) is isomorphic to
G(0,r + 1;7 — 2,7 — 1) and hence:

|T(r—2,2r = ;7,7 +1)| = |TO,7 + 1;7 - 2,7 — 1)
= -;-r(r—2) -1
=0.

It follows that the number of type-2 triangles in the given graphs are
as stated in Table 1. Note that the table shows no distinction between

graph m is even m is odd
G0, r—~1) Fr-1? -2
—2 2
GO.r+1ir=1,r) fer-n?-a {i:::-2;+2 :::2;
2
G(r—1,2r—1;r+1) ‘%(’"1) -2 ::;:)) Irer-2)-2

-12 - -2)-2 2 =4
s tiir=aroy | {FeoDT=s o8 | e o2 > re =

. (r=12-3 (r>3) Mr—2)—-4 (r>4)

G(r—-2,2r=1ir,r+1) é‘ (r = 3) {3 (r = 4)

Table 1: Number of type-2 triangles

the graphs G(0,4;2,3) and G(2,5;4) when m is even. By Lemma 6, each
of these graphs has a unique (type-1) triangle. Indeed it is easy to see,
by simply drawing the graphs when n = 3 (highlighting the symmetry
relative to the triangle), that the graphs are isomorphic. However, when
n > 5, again drawing the graphs in a sufficiently close neighbourhood of the
triangle, it is clearly evident that they are now non-isomorphic. The table
also fails to distinguish between the graphs G(0,r—1) and G(0,r+1;r—1,r)
when m is odd and » > 2. In this case further study is necessary.

Next we use Lemma 8 to determine the number of type-3 triangles. Such
triangles exist only when m is odd and hence r is even. In this case, given
distinct integers a,b modulo (m — 1), the subgraph G, UG} has two type-3
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triangles if and only if either a is even or b is even, and a — b = %(m -1
(mod m — 1). If n > 3, then:

2(r+1)<3r<m—1;
ie. 7+ 1< L(m-1), and hence G(0,r + 1) and G(r — 2,2r — 1) have no

type-3 triangle. If n = 2, then r = %(m —1). In this case Table 2 details
the number of such triangles.

G(0,r-1)
GO,r+1;r—1,7)
Gr-1,2r-1;r+1)
GO, r +1;r-2,7=1)
Gr-22r-1;r,7+1)

NN OoO OO

Table 2: Number of type-3 triangles (n = 2)

It is easy to see directly that the graphs G(0,5;2,3) and G(2,7;4,5)
are isomorphic. These are special cases which we make note of later. For
our purpose we do not need to make any further study of these graphs
in order to establish any additional comparisons between the isomorphism
classes of these graphs. It is now clear that we have verified the assertions
of Theorems 2 and 3 related to this question.

3.2 Connectivity

We now consider the connectedness of the graphs. Our aim is to show that
for each of the given graphs, G, if S is a vertex cut of minimum cardinality,
then |S| = 7. Since such a G is r-regular, |S| < r. Now G\S = AUB, where
[V(4)] > 1, |V(B)] = 1 and V(A) NV (B) = 0. Note that G\S contains no
edges joining V(A) to V(B), and each vertex of S is joined to a vertex of A
and to a vertex of B. It suffices to show that for each of the graphs |S| > 7.
We will use the methods of [6). Recall that V = {0,1,2,...,m — 2}, If
VNV(A) = 0, then V(A) = {0} and hence all  vertices which are adjacent
to oo are in S. Hence we may assume that there exists a vertex i in V(4)NV
and a vertex j in V(B) N V. Choose the integers i and j so that |i — j| is
minimal. Moreover we may assume, without loss of generality, that ¢ and j
are chosen so that i < j and 0 < i < m — 1. By the minimality of j — ¢, the
vertex g belongs to S whenever i < ¢ < j. Thus |§| > j —i — 1. Hence we
may assume that j —i < r. Note that alsom —12r+ 4; for if r > 4, then
m—1>2r >r+4and,ifr =3, thenn > 3 and, sincem—-1=rn 29, the
inequality is trivial. Note also that, since n — 1 and r cannot both be odd,
m —1—7r = (n—1)r must be even. Recall that, if G = G(X) and z,y € V
then z is adjacent to y in G if and only if z +y = z (mod m — 1) for some
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z € X and z is adjacent to co in G if and only if 2z = 2 (mod m — 1) for
some z € X. We now consider each graph individually:

G(0,r —1). This case has already been dealt with in [4, 6].

G = G(0,r +1;7 — 1,7). Sincei and j are not adjacent, i+j =k (mod m—
1), wherer+2<k<m-lork=r—1lork=r. Theni+j—k+(m—-1) =
s(m — 1) for some integer s. In dealing with this graph we make much use
of the following identities:

2i=k—-(j—1) (modm-—1); 2j=k+(-1) (modm-—1).

The argument is now divided into several cases:
(A) 1<j—-i<r—2: Then:
J<i-k+(m-1)<i-k+r-2+(m-1)<i+(m-1),

and moreover, whenever j — k + (m — 1) <gLi~-k+r-2+(m-1),
q is adjacent to both ¢ and j:

z‘+j—k+(m—1)_<_i+q<j+q§i+j—k+r-2+(m—1);
ie.
s(m—-1)<i+g<j+qg<s(m—-1)+r-2.

Since these (r — 1) — (j — i) vertices are distinct from the G-9-1
vertices between ¢ and j, we now have r — 2 distinct vertices in S. To
determine 2 further vertices in S we consider the following subcases:

(a) 3<j—1i<r—2: Thenr >5. It follows that m—-12>r+6.

(i) r+2 < k < m—1: Then, since i —k+r+1+(m-1) <
t~ 14 (m —1), the vertex i — k + r + 1 is distinct from the
above r — 2 vertices of S and is clearly adjacent to i and J and
hence belongs to S. If k < m — 3, then j — k-1 + (m-1) >
J+ 1 and hence (4,4 —k+r,j+ 1,5 — k —1,5) is a path in G.
This path yields a further vertex in S. Note that, if k = m — 3,
then j —k —1=j+1 (mod m —1). In this case we make the
convention that the repeated vertex is not present in the path
so that we really mean the path (i,i — k + 7,5 + 1,). We will
use this convention throughout the paper. If k = m — 2, then
t~=k+r—2+(m—1)=i+4r -1 and hence, since i +r +3 >
i—-3+(m-1) (i,i+r,i—1,i+r+3,i—2,i+r+4,z’—3,...)
is a path which eventually leads to a vertex which is adjacent to
oo. Each vertex of this path is labeled by an integer between i + r
and i — 1+ (m —1). Such a path is called a zigzag. Also, since
2j=j—1i~1 (mod m~—1), jis adjacent to co and hence this
zigzag extends to a path from 7 to j.
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(i) k& =r—1: Then (3,j+2,j—k—2,j+1,j—k—1,j) isapathin G and,
since j—k—3+(m—1) > j+4, (j,j—k—3,j+3,i-k—4,j+4,...)
is a zigzag. Since 2i =7 — 1 — (j — i) (mod m — 1), 7 is adjacent
to oo and this yields a further 2 vertices in S.

(iii) k=7: Theni—k+r—-2+(m-1)=i—2+(m—1)and j—k—2+
(m—1) > j+2, and hence the two paths (¢,i—1,j+2,5—k—2,j)
and (3,5 + 1,7 — k — 1, ) yield the required 2 vertices of S.

(b) j—i=1: Then2i =k—1 (mod m—1)and2j = k+1 (mod m—1).

(i) k=r—1: Theni—k+r—-2+(m-1)=i—-14+(m—1) andiis
adjacent to oo.
r>4: Sincem—-1>r+4,j—-k—-2+(m-1) > j+3 and we
have the zigzag (4,7 +1,j —k—2,7+3,j—k—3,...) and the
path (1,7 +2,5 -k —1,5).

r=3: Thenk =2,n > 3and j—k+(m-1) = i—k+r—2+(m-1) =
i—-14+(m—1). Ifn >4, then m —1 =rn > 12 and hence
i—64 (m—1) > j + 5. Hence we have the path (3,5 + 2,7 -
3,j +1,7) and the zigzag (j,i ~ 2,7 +4,i -6, +5,i—7,...).
Ifn =3, then m = 10 and 2i = 1 (mod 9). Therefore i = 5
and j = 6. In this case we have the paths (5,00,2,7,6) and
(5,8,1,3,6).

(ii) k=7: Theni—k+r-2=i—2andj—k—-1+(m-1)>j+1.In
this case we have the paths (i,i—1,00,j) and (§,j+1,5—k—1,5).

(iii) k=r+2: Theni—k+r—-2+(m—-1)=i—4+4(m—1) and
hence (i,i — 3,7 — 1,j) is a path. Now ¢ and i — 2 are adjacent to
0. Since j—k—-1+(m—-1)>j+1, (i,00,i—2,5+1,j—k—1,5)
is a path. .

(iv) k = m — 2 > r + 3: Then j is adjacent to co. Now i — k +
7 —24+(m—1) =i+r —1. The argument depends on whether
i—k+r+2+(m-1)<i-4+(m-1)ie m—-1=k+12>r+7;
ie. (n—1)r > 7. This clearly holds if n = 2 and r > 7 or if
n=3andr > 4orif n > 4. In this case we have the zigzag
(i 47 +3,i—4,i+7+4,5—5,...). Also we have the path
(G,i+ri—1,i+r+1,4—2,i+r+2,j). We must now consider
the special cases n=2,r =4,6 andn=3,r =3:

n =2, r = 4: In this case the required paths are (¢,i + 4,7 + 6, j)
and (4,3 + 7,3+ 5,00, j).

n =2, r =6: In this case the paths are (i,7 + 9,00,7) and (¢,7 +
6,i+8,37).

n =3, r = 3: The paths are (i,i+3,i+8,i+4,i+ 7,4+ 5,j) and
(Z,1+6,00,])
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(v) k=r+3<m-3: Then m—12>r+5. For the general case we
need j—k—2+(m—1)>j+2;ie. m—1>r+7. The case
m -1 =r+5 cannot occur since then r = 5 and n = 2 (if r is odd
then n must also be odd). Therefore the exceptions only arise when
m=m-1=r+6;ie. n=2,r =6orn =3,r = 3. In the general
case we have the paths ({,1—-4,7+2,j—k—2,j+1,j—k-1,5)
and (4,2 — 1,2 — 3,7 — 2,).
n =2, r =6: The paths are (¢,7 + 11,¢ + 9,¢ + 10,7) and (7,7 +

8,i+3,7).
n =3, r = 3: The paths are ({,7+8,i+6,i+7,7) and (¢, +5,i +
3,7)

(vi) k=m-3>r+4: Thenm—-1>r+6andi—k+r—2+(m—-1) =
i+ r. For the general case weneed i +r+2 <i—-4+(m—1);
iee m—1=k+2>r+8. The case m — 1= r 4 7 cannot occur
since then r = 7 and n = 2. Therefore the exceptions only arise
when rn =7+ 6;ie. n=2,r =6 orn =3, r = 3. In the general
case we have the path (4, +r+ 1,4 - 1,i4+r+2,1—2,i+1r+3,7)
and the zigzag (3,1 + 7 +4,i —4,i+7r+5,i—5,...), which may
be adjoined to the path (o0,j + 1, 7).

n =2, r =6: The paths are (i,i+ 7,i+ 11,00,i+ 2,7) and (3,7 +
10,i + 9, ).

n =3, r = 3: The paths are (i,% + 4,7 + 8,00,% + 2,j) and (3,7 +
7,1+ 6,7).

(vii) k=r+4<m-—4 Thenm—12> r+7 Again we cannot
have m — 1 =r + 7. Therefore m -1 > r+8 = k+ 4. Then
i—k+r—2=i-6and j—k—2+4+(m—1) > j+2. Hence we have
paths (i,i—5,5+2,j—k—2,j+1,j—k—1,7) and (i,i—2,i—3, ).

(viii) k=m—4>r+5: Theni—k+r+2+(m-1)<i-3+(m-1)
and j — k+ (m —1) = j + 3. In this case we have the two paths
Gyi—k+r+2,i—3,i—k+r+1,5)and (i,i—k+r—1,5+2,37).

(ix) m-5>k>r+5 Thenj—k—-2+(m—-1) > j+ 2 and
i—k+r+2+(m-1) <i-3+ (m—1). In this case we have
the paths (4,i —k+r—-1,7j+2,j—k—-2,j+1,j—k—1,5) and
(Gi—k+r+2i-3,i—k+r+1,3j).

() j—i=2<r—-2: Thenr > 4. Also 2i = k-2 (mod m — 1) and
2j=k+1 (modm-—1).

(i) k=r-1: Theni—k+r—2+(m—1) =i—1+(m—1) and and j are
both adjacent to c0. Thus oo € S. Moreover j—k+(m—1) > j+3.
Hence we have the paths (7,5 + 2,5 — k — 1, ).

(i) k=r: Theni—k+r—2=i—2andj—k—2+(m—1)>j+2.
In this case we have the paths (i,i — 1,5 + 2,7 — k — 2,5) and

31



(Za]"'la.?_k_lv])

(i) r+2<k<m-5 Nowi—k+r+1+(m—-1)<i-14+(m-1)
and j —k—2+ (m—1) > j + 2. In that case the paths are
(Gi—k+r—1,j+2,j—k—2,j+1,j—k—1,7) and (i,i — k +
ri—li—k+r+1,5).

(iv) k=m—-2>r+2: Theni—k+r—-2+(m—1)=i+r—-1and
j—k+(m—1)=j+1. Since in this case 2j =1 (mod m — 1), j
is adjacent to oo and also r must be odd. Therefore m -1 > r+6.
Then i +r+3 <i—3+ (m —1) and we have the zigzag (i,i +7+
1,i—2,i+r+3,1-3,...) and the path ({,s+r,i—1,i+7r+2,7).

V) k=m-3>r+2 Theni-k+r—-2+(m—-1)=14i+r and
j—k+(m-1y=3j+2. Alsoi+r+3<i—1+(m—1) and hence
the paths (¢, +r+1,i— L,i+r+3,5) and (i,i +7+2,7+1,7).

(vi) k=m—-4>r+2 Theni—k+r-2+(m-1)=i+r+1
and j—k+(m—-1)=35+3. Sincem—-1>r+5,i+r+3<
i— 2+ (m — 1) and hence we have the paths (i,i +r + 2,7 + 2,5)
and (i,i4+7+3,5+1,7).

(B) j —i=r—1: Then we already have r — 2 vertices in S between ¢ and
j. We need a further 2 vertices in S. Now 2i =k +1—r (mod m — 1)
and2j=k+7r—1 (mod m—1).

(i) k =r —1: Now i is adjacent to co. Sincem —12>r+4,j+2=
i+7r+1 <i—-3+(m-1) and hence we have the path (i,7+2,i—-3,5+
1,i—2,5). fm—1>r+7,thenj+3=i+r+2<i-5+(m-1)
and hence we have the zigzag (j,¢ — 1,7 +3,i — 5,5 + 4,...). If
r+4<m-1=rn<r+6, theneithern=2andr =4,6,orn=3
and r = 3.
n=2r=4: Thenm—-1= 8,k =3, j =i+ 3 and the paths are
(¢,00,i + 4,71+ 6,j) and (¢,%+ 5, 7).

n=2,r=6: Thenm—-1=12, k=5, j =i+ 5 and the paths are
(2,00,i + 6,7+ 10,7) and (¢, + 7, ).

n=3,r=3 Thenm~1=09,k =2, j =i+ 2 and the paths are
(3,00,7) and (i, + 4,7+ 5,¢ + 8, 7).

(i) £k =r: Now 2i =1 (mod m — 1) and hence r must be odd. If n = 3,
r = 3, then we have paths ({,i+3,i+4-6,5) and (¢,i+8,i+4,i+5,i+
7,7). Otherwisem—1>r+10. Inthiscase j+3 =i+r+2<i-8+
(m —1) and hence we have the paths (i,4—1,j+2,i-5,5+3,i—2,)
and (4,7 + 1,7 — 3,7).

(i) r+2<k<m-6:Nowi—k+r+1+(m-1)<i-1+(m—-1)
andi—k+r—4+(m—1)>i+r+1=j+2 In this case we have
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paths (i,i—k+ri—1li—k+r+1,j)and (5,i—k+r—1,j+2,i—
k+r—-4,7+1,i—k+r-3,j).

(iv) k=m-5>r+2: Thenm—-12>r+6and hence j+5=i+r+4 <
i — 2+ {(m — 1). Therefore we have the paths (i,7 + 5, — 1,7 + 6, 5)
and (i, +4,7 +2,j).

(v) k=m—-4>7r+2: Thenm—1>r+5andhence j+4=i+r+3 <
i — 2+ (m — 1). Therefore we have the paths (i,7 + 3,5 + 2,7) and
(4,7 +4,5 +1,5).

(vi) k=m—-3: Thenj+3=i+7r+2<i-2+(m-1), and hence we
have the paths (i, + 2,00,7) and (3,5 + 3,7 + 1,5).

(vii) £k =m — 2: Then j is adjacent to co. If r > 4, then, since j + 4 =
i+r+3 <i-1+(m—1), we have the path (z,7+3, j) and the zigzag
(3, +1,i—-1,j+4,i—2,...). If r =3, then either n =3 or n > 5.
Ifr=3andn=3,thenm=10,k=8,i=3and j = 5. In this case
we have the paths (3,7,2, 00, 5) and (3,1,8,5) joining i to j. If r =3
andn > 5,then m—1 > 15 and hence i +8 < ¢— 7+ (m —1). In this
case, since j = i+r—1 = {+2 we obtain the path (i,i+4,1—1,+5, )
and the zigzag (i, + 7,1 — 4,1+ 8,i—-35,...).

(C) 7 —i =r: In this case we already have r — 1 vertices in S and hence
we require just one more. Now 2i =k —r (mod m-1)and 2§ =k +r
(mod m — 1).

(i) k=r—1: Then2i+1=(i+j)—(j—i)+1 =0 (mod m—1). Hence
m — 1 is odd and therefore r and n are odd. Thus r > 3 and n > 3.
Thenm-1>r+6. Hence j+2=4i+r+2<i-3+(m—1) and
we have the path (4,7 +2,i - 3,7+ 1,i — 2,5).

(ii)) k=r: Nowj+1=i+r+1<i—3+ (m—1). Then we have the

(iii) r+2 <k <m —1: Then:

j=t+r<i—-k+r+l+(m-1)<i-14(m-1).

Hence, since j —k+1 =1 —k+r + 1 is adjacent to both i and j,
i—k+r+1€S.

G =G(r—1,2r — 1;7 +1). Since ¢ and j are not adjacent,i+j—r+1=k
(mod m—1), wherer+1<k<m-lork=2. Theni+j—k+(m-1)=
r — 1+ s(m — 1) for some integer s. In this case we consider the identities
2i=r—1+k—(j—1i) (mod m—1)and 2j = r—1+k+(j—:i) (mod m—1).
The main argument is divided into the two cases, r +1 < k<m —1 and
k=2:
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(I) r+1 < k < m - 1: This case is again separated into various special
cases:

(A) 1<j-i<r-3: Thenr >4 and:
J<ji=-k+3+(m-1)<i-k+r+(m-1)<i+(m-1),

and moreover, whenever j —k+3+(m—-1) <g<i—-k+r+(m-1),
q is adjacent to both ¢ and j:

i+j-k+34+(m-1)<i+g<j+g<i+j—-k+r+(m-1)
i.e.
r+24+s(m-1)<i+qg<j+g<s(m-1)+2r-1.

Since these (r — 2) — (j — ) vertices are distinct from the (j —1) — 1
vertices between 7 and j, we now have r — 3 distinct vertices in S. To
determine 3 further vertices in S we consider the following subcases:
(a) 3 < j—i < r—3: The vertices j—k+(m—1) and j—k+1+(m—1)
are distinct from the above r — 3 vertices of S and are clearly
adjacent to both ¢ and j and hence both belong to S. Moreover,
fk>r+2,theni—-k+r+1+(m—-1)<i-1+4(m—1), and
hence (i, — k+r+ 1,1 — 1,5 — k + 2,5) is a path and hence at
least one of its vertices must be a further vertexin S. fk =r+1,
then (i, — 1,5 —k+2,7) is a path in G.
(b) j—i=1<r-3: Thenr >4.

(i) k=7+1 Theni—k+r+(m-1)=i-1+(m—1)and?
is adjacent toco. Nowm —-1>r+4. f m—1=r + 4, then
n =2 and r = 4; otherwisem — 1> r + 6.

n =2, r = 4: In this case we have the paths (i,00,i+2,i+86, ),
(4,24 7,5) and (5,2 +5,i +3, 7).

m—12>r+6: Thenm—1 > k+5 and hence j—k—1+(m—1) >
j+4. Hence (4,j —k-1,7+4,j—k—-2,7+5,...)is a
zigzag. Also we have paths (4, —k+ 1,7+ 1, —k+2,7)
and (1’] -klj)'

(i) r+2<k<m-3. Theni—k+r+1+(m-1)<i-1+
(m-1andj—-k -1+ (m—1) > j+ 1. Therefore we have
the paths ({,i—k+r+1,i—- 1,7 -k +2,7), (5,5 — k,5) and
(Gi-k+1,5+1,7—k-1,j).

(i) kK =m—2: Theni—k+r+(m-—1) = i+r+1, j—k+3+(m-1) =
jt+4and j+r+1=i+7r+2<i-2+(m—1). Hence we
have the paths ({,7 +r+ 1,4 - 1,5+ 3,7), (4,5 + 2,00,7) and
(6,5 +1,9).
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(c) j—i=2>r—23: Thenr >5. It follows that m — 1 > r + 6.

(i) k=r+1: Then m—5 > k+5. Moreover i —k+r+(m—1) =
i—1+(m—1), 1 is adjacent to oo and j—k—2+(m—1) > j+3
and hence we have the zigzag (j, j—k—1,j+3,i—k—2,j+4,...)
and the paths (3,5 — k+1,7) and (4,5 — k,5 +1,§ =k +2,5).

(i) 7+2 < k<m—4 Theni—k+r+1+(m—1) <i-1+(m-1)
and j —k -2+ (m—1) > j+ 1. Hence we have the paths
(Gi—-k+r+1,i-1,j—k+27), (4,j=k,j+1,i—-k—2,9)
and (i,j — k+1,5).

(iii) kK =m=—3, theni—k+r+(m—1)= i+r+2, j—k+3+(m-1) =
j+5and j+r+1=i+r+3 <i-1+(m—1). Hence we have the
paths (i,j+7r+1,i—1,j+4,5), (,7+38,5) and (4, j+2,5+1,5).

(iv) k = m—2: Theni—k+r+(m—1) = i+r+1, j—k+3+(m-1) =
j+4and j4r+1=i+r+3 <i—1+(m—1). Hence j is adjacent
to oo and we have the zigzag (i,i +7r+2,i —1,i+7+3,...).
Also we have the paths (4,5 + 1,7 + 3,7) and (3,5 + 2, 7).

(B) j —i=r —2: Then there are 7 — 3 vertices in 5.
(a) r > 5: Thenm—1>r+6. Hence j+1=1i+r—-1< i—-7+(m-1).

(i) k =7+ 1: Then we have paths (i,00,i — 1,7), (¢,2 — 3,7) and
(,i—2,7).

(ii) k¥ = r +2: We have paths (3,5 — 1,4 — 2,7), (i,¢ — 3,j) and
(2,2—4,])

(i) k>r+3: Thenj—k+3+(m—1)<i—2+(m—1) and we
have paths (%J - k+ l,j), (1').7 - k+3,1—2,] - k+21.7) and
(ivj_k'»j)'

(b) r = 4: Then j—% =2 and mis odd. Now 2i—1 =k (mod m—1).

Thus & is odd.

k = 5: Then i and i — 1 are both adjacent to co and, since j +1 =
i+3 <i-5+(m—1), we have paths (i,00,i -1, j), (2,1-2,7)
and (4,i — 3,5+ 1,i —5,7).

7<k#m—4 Thenj—k+6+(m—-1)<i—1+(m~—1)and
j—k—2+(m—1) > j+1and hence we have paths (i,j — k+
4,i-1,j—k+2,7), (Gi,j—k+1,5) and (3, j -k, j+1,5 - k—2,5).

k=m—2: Thenj+5=1i+7 <i—1+(m~-1)and hence we have
paths (11.7 + 1’007.7)a (Il'v] +2v.7) and (1".7 + 5’7' - 1).7 +3a.7)

(¢ r=3:Thenj—i=1landm—-12>9. Nowd <k<m-1

(i) k = 4: Since i —5+ (m — 1) > i +4 = j + 3, we have paths
(3,00,4 — 1,7), (i,i — 2, + 2,5 — 4,7) and (i,i — 3,5).

(i) k = 5: Again, since i — 5 + (m — 1) > j + 3, we have paths
(4,4 -1,i—2,j), (,i—3,j+1,i—5,j) and (2,1 —4,7).
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(iii) 6 <k<m-3:Thenj—k+3+(m-1)<i-2+(m-1)
and j —k—14(m —1) > j+ 1 and hence we have paths ;
(iaj_k+1sj+1aj_k_1:j)a (i,j—k+3,i—2,j—k+2,j)
and (4,7 — k, 7).

(iv) £ =m—2: Then j is adjacent to 0. Since i—3+(m—1) > i+86,
we have the zigzag (i,7+ 5,71 — 3,7+ 86,...). Moreover we have
paths (i,i + 3,4 — 1,7+ 4,5) and (i, + 2, j).

(C) j —i=r—1: Then we have r — 2 vertices in S.
(a) r > 4: Then j—k+1+(m—1) =i—k+r+(m-1) <i-1+(m-1).

Hence j — k and j — k + 1 are both adjacent to ¢ and to j.

(b) r=3: Thenj=4i+2and m—1>9. Hence j—k+1+(m—-1) <
i—1+(m—-1)andi—3+(m—-1) >i+6.

(i) k=m —2: Then j + 2 =i+ 4 is adjacent to both ¢ and j and
hence belongs to S. Now j is adjacent to co. Also we have the
zigzag (1,1 + 6,1 — 3,1+ 7,...).

(ii) k =m —3: Then j+3 =i+ 5 is adjacent to both ¢ and j.
Moreover we have the path (i, + 4,7+ 3, 7).

(iii) k<m—4: Thenj—k—2+ (m—1) > j+ 1. In this case we
have the paths (4,5 —k+1,5) and (4,j -k, 7+ 1,5 — k — 2, 7).

(D) j —i = r: In this case we already have r — 1 vertices in S. Note
that j <j—k+(m-1)=i+r—k+(m-1)<i—-1+(m—1)and
moreover that j — k is adjacent to both ¢ and j.

(II) k =2: Again the argument is separated into various special cases:

j—i<r—3: Nowi+j=r+1 (mod m—1). Whenever
<g<i-2+r,qis adjacent to both ¢ and j:

i+j+1<i+qg<j+q<litj—-2+m

Since these (r — 2) — (j — ©) vertices are distinct from the (j —i) — 1
vertices between ¢ and j, we have r» — 3 distinct vertices in S. Note
that, since:

=@E+H+EF-9)=0-9)+r+1 (modm-1)

and 1 < j—1i <r -3, jis adjacent to co. To determine 3 further

vertices in S we consider the following subcases:

(a) 3<j—i<r—3:Sincer >6,m—1>r+6. Hencei+r+2<i—
4+(m—1). Then we have paths (¢,i+7,i-2,§), ({,i+7r-1,i—1, )
and the zigzag (i,i+r+1,i —3,i+7+2,...).
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(b) j—t=1<7-23: Then r > 4 and i is adjacent to co. Thus
00 € S. Nowi+r—1<:—2+(m—-1) and hence, provided r > 5,
we have the paths (i,i—1,j) and (i,i+r —1,2—2, 7). If, however,
r=4,thenm—12>8and hence i +5 < ¢ — 3+ (m — 1) so that
we have the paths (¢,4—1,7) and ({,i + 3,7 —3,i + 5,1 — 2,7).

(¢c) j—i=22>r—3: Thenr > 5and {is adjacent to co. Thus oo € S.
Now i+7r < i -2+ (m—1) and we have the paths (i,7+7,7—2, j)
and (¢,i+7—1,i—1,7).

(B) j —¢ = r — 2: Then there are r — 3 vertices in §. Moreover j is
adjacent to co.

(a r >5 Thenm—-1>r+6. Hence j+5<i—-3+(m—-1).
Therefore we have the zigzag (¢,5 + 1,7 — 3,5 + 5,1 — 4,...) and
the paths (i, +2,i—1,7) and (3,5 + 3,7 — 2,j).

(b) r = 4: Then j —¢ = 2 and m is odd. Now 17 is adjacent to co.
Thus oo € S. Alsom—-1>8andhencei+5<i—-3+(m~1).
Thus we have paths (¢,7 + 4,7 — 1,7) and (¢,7 + 3,7 — 2, 7).

{(¢) » =3: Then j—i=1and m is even. Hence m — 1 > 9. Again
i is adjacent to oo so that oo € S. In this case we have paths
(i,7+ 2,1 —2,5) and (4,1 — 1,).

(C) j—i =7—1: Then we have r—2 vertices in S. Note that j = i+r—1.

(a) r>4: Thenj+2=1i+r+1<i-3+ (m —1). Hence we have
paths (i,j +2,i — 1,7) and (4,5 + 1,4 — 2,5) ]

(b) r = 3: Then j = i+ 2 and hence, sincem -1 2> 9, j+3 <
i—4+(m—1), we have the path (¢, j+1,i—2, j). Alsoi is adjacent
to co and we have the zigzag (j,i — 1,7+ 2,i—-4,5+3,...).

(D) j—1i=r: In this case we already have r — 1 vertices in S. Note that

j <i—2+4 (m—1). Hence we have the path (i,5 + 1,7 — 2, j).

G=G0,r+1;r—2,r—1). In the case r = 4, n = 2 the graph G (G =

G(0,5;2,3)) is not r-connected, i.e. 4-connected, but only 3-connected
({1,5,00} is a vertex cut). We exclude this case in the argument which
follows. Now, if n = 2, then, since m is odd and hence 7 is even, r > 6 and
therefore m—1=2r > r+6. If n > 3, then, sincer >3, m—1> 3r > r+6.
Therefore with the exclusion we have in general m — 1 > r + 6.

Since ¢ and j are not adjacent, i + j = k (mod m — 1), where r + 2 <

k<m-lork=r—-2ork=r-1 Theni+j—-k+(m-1)=s(m~-1)
for some integer s. In this case we consider the identities 2 = k — (j — 1)
(mod m — 1) and 2§ = k + (§j — i) (mod m — 1). The argument is now
divided into several cases:

(A) 1<j—i<r—3: Then:

j<i—-k+m-1)<i-k+r-3+(m-1)<i+(m-1),
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and moreover, whenever j —k+ (m—-1)<g<i—-k+r—-3+(m-1),
g is adjacent to both i and j:

i+j—k+(m—-1)<i+g<j+g<i+j—k+r-3+(m-1)
ie.
s(m—-1)<i+g<j+qg<s(m-1)+r-3.

Since these (r —2) — (j — ) vertices are distinct from the (j —¢) — 1
vertices between 7 and j, we now have r — 3 distinct vertices in S. To
determine 3 further vertices in s we consider the following subcases:

() 4<j—i<r—3: Thenr>7and hence (m—1)>2r >r+7.

(i) r+2<k<m-1: Theni—k+r+1+(m—-1) <i—-1+(m-1) and
hence the verticesi —k+r+(m—1)and i —k+r+1+(m—1) are
distinct from the above r — 3 vertices of S and are clearly adjacent
to ¢ and j and hence both belong to S. Moreover, when k < m -3,
j—k—14(m-1) > j+1 and therefore we have the path (i,i —k+
r—1,j+1,j—k—-1,j),and, when k=m—2,since 2j = j—-i—1
(mod m-1)andi—k+r+2+(m—-1) =i+r+3 <i—4+(m—1),
j is adjacent to oo and (¢,i+r—1,i—1,i+r+3,i—2,i+7+4,...)
is a zigzag.

(i) k=r—2 Thenj—k—-4+(m-1)=j-r-24+(m-1) >
j+5 Hence (4, +2,5j—k—2,5) and (1,5 + 3,7 — k- 3,7)
are paths. Moreover ¢ is adjacent to co and we have the zigzag
G,j—k—4,7+4,j—-k-5,7+5,...).

(iii) k=7r—1: Then, j—k—3+(m—1)=j—r—24+(m—1) > j+5.
Hence we have the paths (,j+1,j—-k-1,7), ({,7+ 2, —k—2,7)
and (4,1 —-1,7+3,5—k—3,7).

(b) j—i=1<7r-3: Thenr > 4.
i) k=r—-2: Theni—-k+r—-3+(m—-1)=i—-1+(m—-1) and
i is adjacent to co. Note that r cannot be even. For otherwise
m — 1 and k are both even but this contradicts the fact that 2i =
it+j—1=k—-1 (mod m—1).
r>7 Then j—k—2+4 (m—1) > j+ 4 and we have the zigzag
(G,j+1,j—k—2,j+4,j~k-3,...) and the paths (¢,j +
31j —k- la]) and (zi.] +27.7)

r=5 Thenj—k+(m—-1)=i-2+(m—1) and, sincem—1=
5n > 15,1 —4 4+ (m — 1) > i + 11. In this case we have paths
(i,i+3,5), (i,00,i +2,7) and (i, + 4,5 — 4,i + 7,5 — 3, 7).

(i) k=r—1: Theni—k+r-3+(m-1)=i-24+m-1and
j—k-1l+(m-1D=i-r+1+(m-1).
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r > 5: Then, since (m—1) > r+5,i—r+1+(m—1) > i+6 = j+5.
In this case we have the paths (i,i—1, 00, 7), (3,7 +2,j—k—1,j)
and (4,7 + 1,7).

r = 4: Then, since n cannot be equal to 2, m—1 = 4n > 12. Hence
i—4+(m—-1)>i+8=j+7 and we have the paths (i, 00, j),
(4,5 +2,i—4,j+5,4—3,j) and (3,5 +1,5).

(iil) k=r+2: Theni—k+r —3 =i—5. Therefore, sincem —1 2>
r+6=k+4,j—k—2+(m—1) > j+ 2. Hence we have
paths (i,i -4, +2,7-k—-2,j+1,j—k-1,5), (4,i—1,j) and
(’l:,OO,'l:—z,j)-

(iv) k=7r+3: Theni—k+r—3=1-6. Sincem—-12>r+6=5k+3,
j—k—=1+(m—1) > j+2. Hence we have paths (i,i — 2,7),
(4,i—5,j+2,i—4,5+1,j—k—1,j) and (5,i — 1,00,i = 3, 7).

(v) k=r+4: Theni—k+r-3=1i-7. Sincem—-1>r+6=%k+2,
j—k—-14(m—-1) > j+ 1. Hence we have paths (i,% — 3,7),
(4, —2,i—4,7) and the path (,i ~ 6, — 1,00) together with the
zigzag (j,j—k—-1,j+1,i—k—2,...).

(vi) k=r+5<m-3: Theni—k+r-3=i—-8andm-12>k+2.
Hence j —k—1+4 (m — 1) > j + 1 and therefore we have paths
(3,i-17,i-1,i-6,j+1,j—-k—1,5), (4,i—3,i—5,5) and (i,i—4,7).

(vii) k=r+6<m-3: Theni-k+r—-3=i-9andm-12
k+2. Then j —k—1+(m—1) > j+ 1 and hence we have paths
(3,7 — 4,00, — 2, — 6,7), (4,i-8,i—-1,i—-7,j+1,j-k-1,5)
and (i,i — 5, 7).

(vii) r+5 < k<m-3 Thenj—k—-1+(m-1) > j+1and
i—k+7r+2+(m—=1) <i-3+ (m—1). In this case we have the
paths (i,i —k+r+1,j), (i—k+r—2,i—2,i—k+r,j) and
(Gi—-k+r+2,i-1i—-k+r—-1j+1,j—-k—1,7).

(ix) ¥ = m — 2: In this case j is adjacent to co. The argument
depends on whetheri —k+r+2+(m—1) <i—5+(m—1);ie.
m—-1=k+1>r+8;ie (n—1) > 8. This clearly holds if
n=2andr>8orifn=3and r>4orif n > 5 We therefore
must consider the special case n =2, r = 6:

m —1>r +8: We have the zigzag (i,i+r+3,1—5,i+7r+4,...)
and also the paths (i,i+r—1,4—1,i+7r,i—2,i+7+1,5) and
(G,i+r+2,7).

n = 2, r = 6: In this case the paths are (4,7 +5,%+ 10, 00, j), (4,7 +
9,i+7,5) and (¢, + 8, j).

(c) j—i=2<r—3: Thenr >5.

()k=r-2 Theni—-k+r-3+(m-1)=i-14+(m-1).

Moreover i and j are both adjacent to oo. Thus oo € S. Also
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j—k+(m—-1)=i-r+4+(m—1)and, sincem—1>r+6,
i—r+1+4+(m—-1)>4i4+7=j+5 Hence we have the paths
(6,j+2,i—r+2,5)and (5,5 +3,i—r+ 1,7 +1,7).

(ii) ¥ = r — 1: Then again ¢ and j are both adjacent to oo and
henceco € §. Nowi—k+r—-34+(m—-1)=i—24+m—1and
j—k+(m-1)=i-r+3+(m-1). Againi—r+1+(m-1)>
j + 5. In this case we have the paths (i, + 1,4 —r + 2,5) and
(7'7.7"'2,.7 -r+ 11.7)

(i) k=742 Theni—k+r-3+(m-1)=i-5+(m—1).
Then, sincem —1>r+6=k+4,j—k—-2+(m—-1)>j+2.
Then 1 is adjacent to co and we have paths (¢,7 — 4,7 — 1,) and
(4,2 — 3,4 —2,7) and the zigzag (7, — k-1, +1,j - k—2,...).

(iv) k=r+3: Theni—k+r—-3+(m—-1)=¢-6+ (m—1). Since
m—-1>r+6=k+3,j—k—1+4+(m—1) > j+2. Hence the paths
are (’l:,’l:—l,’i—3,j), (1:,00,1:—2,j) and (i’i_4’j+1,j-k-1,j)‘

(v) k=r+4: Theni—k+r—-3+(m—-1)=i—7+ (m—1). Since
m—1>r+6=k+2,j—k—1+(m—1) > j+1. Hence the paths
are (1,i—1,i—4,7), (4,1 2,i-3,j) and (3,i—5,j+1,j — k-1, ).

(Vi) k=m-22>r+5 Theni-k+r—-3+(m—-1)=1+r—-2
and j—k+(m—1)=j+1. Also j is adjacent to co. fm —1 >
r+8,theni+r+4<i—4+(m—1). Then we have the zigzag
(t,i4+r+3,i—4,i+r+4,...) and the paths (¢,7+7,i1—2,i+7+2, 5)
and (i,i+r—1,i—1,i+7r+1,5). Otherwise, sincem—-1>r+6
and r > 5, the only other possibilities occur when m — 1 —r = 6;
i.e. when (n —1)r = 6; i.e. whenn =2 and r = 6. In this case we
have the paths (2,745, 00,7), (§,4+9,1+8,j) and (¢,i+10,i+7, §).

(vii) r+5<k<m—-3: Nowi—k+r+2+(m—-1)<i—-3+(m-1)
and j—k—-14+(m—1) > j+ 1. In that case we have paths
(yi—k+r—2i—Li—k+rj), Gi-k+r—1,5+1,j—k—1,5)
and (4,i—k+7r+2,i-3,i—k+7r+1,5).

(d) j—i=83<r—3. Thenr >6.

(i) k=r—2: Theni—k+r—3+(m—1) =i—1+(m—1). Alsoi and j
are adjacent to co. Thusco € S. Now j~k+(m—1) =i—-r+5+
(m—1)and,sincem—1>r+6,i—r+2+(m—1) >i4+8=j+5.
Hence we have the paths (¢,7+2,t—7+3,7) and (¢, 7+3,1—r+2, 7).

(i) k=r—1: Nowi—k+r—-34+(m-1)=i-24+m—1and
j—k+(m-1)=i—r+4+(m—1). Since (m—1) > r+86,
i—r+14(m—1)>i+7=j+4. In this case we have the paths
(i,j+1,1:—1‘+3,j), (ivj+2:":_r+2vj) and (i,i—l,j+3,i—1‘+1,j)-

(i) k =m—-2: Theni—k+r—-3+(m—-1) =i+r—2 and
j—k+(m—-1)=j+1. Also jis adjacent to co. fm —1 > r+8,
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then i +r +4 < i —4+ (m — 1). Hence we have the zigzag
(i,i+7r+4,i—4,i+7+5,...). Also we have the paths (i,i+7+1,7)
and (4,i+7r—1,i—1,i+7+2,5). Otherwise, sincem—12>r+6
and r > 6, the only other possibilities occur when m —1 —7 = 6;
i.e. when (n—1)r = 6; i.e. when n =2 and r = 6. In this case we
have the paths (4,4 + 11,00,3), (i,i + 10,i +8,7) and (3,7 + 7,5).
(iv) 742 < k <m—3: Nowi—k+r+1+(m—-1) <i—1+(m—1) and
j—k—=14+(m—1) > j+1. In that case we have paths (¢,i—k+r,j),
(i,i—k+r-1,j+1,j—k-1,7) and (3, i—k+r-2,i—-1,i—k+r+1,7).

(B) j —i=r—2: Then we have r — 3 vertices in S.

(a) k = r — 2: Then, since 2¢ = 0 (mod m — 1), ¢ is adjacent to oo.
Now m — 1 > r 4+ 4. We will consider the cases m — 1 =r + 4 and
m—1 2> r + 5 separately.

r > 5: It is easy to show that m —1>7+8 unlessn =2, 7 =6. In
the general case j +4 =i+r+2 < i—6+ (m— 1) and hence
we have paths (3,7 + 2,7 — 3,7), (3,7 + 3,i — 1,5) and the zigzag
(,i—2,j+4,i—6,j+5,...). If n =2, r = 6, then we have paths
(i,i + 6,4+ 8,1+ 10,7), (3,4 + 7,4+ 11,5) and (4,00,i + 9, ).

r =4: Thenm—1> 12 and hence j+5 < i —3+(m—1). In this case
we have paths (4,5 + 3,4 —1,7) and (i,j + 3,4 — 3,5 + 5,1 — 2,).
Also, since 2j = 4 (mod m—1), j is adjacent to co so that co € S.

r = 3: In this case 2j = 2 (mod m—1) so that i +2 = j+1is adjacent
to 0o. Therefore we have paths (i, + 3,7), (4,4 +4,: — 1,5) and
(i,00,i + 2,5).

(b) k= r —1: Then 2i = 1 (mod m —1). It follows that m — 1 and
hence 7 is odd.

r > 5: Then i is adjacent to co. Sincem—12>7+6, j+3 =i+r+1<
i— 54 (m —1) and hence we have the paths (i, + 1,i — 3,7)
and (4,i—1,j+3,i—2,7). f (n—1)r =m —~1—r =6, then
n=2r=6. Butrisodd Hence m -1 > r+8. Then
j+6=1i+r+4<i—4+ (m—1) and hence we have the zigzag
(G,i—4,j+6,i—5,...).

r=3: Then k = 2 and j = ¢ + 1. In this case j is adjacent to co.
Nowm—1=3n>9. Hence i +4 <i—5+ (m — 1) and we have
the paths (4,4 — 1,7+ 4,4 — 2,j) and (4,7 + 2,7). If n = 3, then
m—1 = 9 and we have the path (i,i+3,i+5,i+6,00,7). If n > 5,
then m—1> 15and i +7 < i—4+ (m — 1) and hence in this case
we have the zigzag (i,i + 3,1 —4,i+8,i—5,...).

(c) r+2<k<m-1
(i) r>5Nowi—k+r+1+(m-1)<i-1+(m-1).
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k <m —5: Theni—k+r—3+(m~-1) > i+r+1 = j+3. In this case
we have paths (i,i—k+r,7), (i,i—k+7—2,j+3,i—k+r—3, )
and (i,i—k+r—-1,i—1,i—k+r+1,j).

k=m—4: Theni+r+4<i+k+2=i—1+(m—1), and hence
the paths (i,i +7 4+ 3,5), (5,i +r + 2,5 — 1,i +7 + 4,5) and
(h,i+7r+1,00,7)

k=m-—3: Theni+r+3<i+k+1=1%—1+(m—1), and hence
the paths (i,i +r+2,5), (i,i+r +1,i — 1,i + 7 + 3,5) and
(4,74 r,00,7)

k=m-2: Theni+r+2<i+k=i—1+(m—1) and, provided
r > 6, we have the paths (i,s +r +2,5), (i,i+r+1,5) and
(1,i+7r,00,7). Ifr=>5,thenm—1>15and j =i+ 3. In this
case ¢ +10 < i — 1+ (m — 1) and we have the paths (i,i +6, j),
(3,4+10,i — 1,i 4+ 7,7) and (4,4 + 5, 00, j).

(ii) r =4 Thenj =i+2and 6 <k <m-1. Alsom—1is
even and, since k = 2j — 2 (mod m — 1), k must be even. Now
m—1=4n2>12. Hencei +5<i— 7+ (m —1).

k = 6: We have paths (i,00,i — 2,7), (3,4 — 4,5 + 5,4 — 5,7) and
(4, —3,i—1,7).

k = 8: We have paths (3, — 1,00,i — 3,5), (5,3 — 6, + 5,3 — 7, )
and (3,7 — 2,7 — 4, 7).

10<k<m-5 Theni—k+6+(m—-1)<i—4+(m—1)and
i—k+1+4+(m—1)>i+5=j+ 3. In this case we have paths
(Gi—k+3,j+1,i-k+4,5), (G,i—k+2,j+3,i—k+1,7)
and (4,i —k+6,i—3,i—k+5,7).

k =m — 3: Then, since i+8 < i -4+ (m — 1), we obtain the paths
(¢,i+4,00,7), (4,445, —1,i+6,7) and (3,i+8,i—3,i+ 7, §).
(i) r=3: Thenj=i+1land5<k <m—1.
k=5 Nowm—1=3n > 9. Hencei+4 < i—5+(m—1). Therefore
we have paths (i,00,i-2, j), (¢,i—1, 5) and (¢,i—4,i+4,i-5, j).

6<k<m-5 Theni—k+5+(m—-1)<i—1+(m-1)and
i—k+(m-—1) >i+4=j+3. In this case we have paths
(i,i—k+1,5+3,i—k,5), (,i—k+5,i—1,i—k+2,j+1,i—k+3, 5)
and (i, - k+4,7).

k=m —4: Then,ifn>4,i+9<i—3+ (m— 1), and hence we
obtain the paths (i,74+4,i+3, ), (¢,i+8,:—1,i+9,i—2,i+6, j)
and (4,447, ). If n = 3, then m = 10 and, since 2i+1 = i+j =
6 (mod 9), i = 7 and j = 8. In this case we have the paths
(7,5,8), (7,2,1,8) and (7,6, 0,0, 4, 8).

k=m—3: Then,ifn>4,i+9<i-3+ (m—1), and hence we
obtain the paths (3,i+7,i~1,i+4,i+2,j) and (4,i+6, j) and
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the path (i,i + 3, c0) together with the zigzag (j,4+ 5,4 — 2,1+
9,i—3,...). If n = 3, then m = 10 and, since 2i+l=3+5=7
(mod 9), ¢ = 3 and j = 4. In this case we have the paths
(3,0,4), (3,1,8,4) and (3,6,00,2,7,5,4).

k =m —2: Then, since s + 6 < i — 3 + (m — 1) we have paths
(4,6 +5,5), (5,5 + 2,6 +4,5) and (4,5 +6,i — 1,i +3,00,5).

(C) j —i =r —1 Then we have r — 2 vertices in S.

(a) k=r—-2 Then 2i + 1 = 0 (mod m — 1). Hence m — 1 and r are
odd.

r>5: Sincem—1>r+6,j+3=i+r+2< i—4+(m—1) and hence
we have the paths (i, +3,4—1,7) and (4,5 +2,i—3,7+1,i—2,7).

r=3:Ifn>4,then jis adjacent to co and i + 8 <i—4+ (m —1).
Hence in this case we have the path (i,i+5,7—1,j) and the zigzag
(6,5 +4,i—3,i+8,i—4,...). fr=3 and n = 3, then, since
2%4+2=i+j=1 (mod9), =4 and j =6. In this case we have
the paths (4,0,3,6) and (4,8,1,2,00,6).

(b) k=7 —1: Then 2 =0 (mod m — 1). Hence m — 1 and r are even.
In particular r > 4. Since m —1 > r + 6, j+3=i+r+2<
i — 4+ (m — 1) and hence we have the paths (i,j + 1,i — 3,7) and
(G,5+2,i—-1,j+3,i—-2,7).

(¢c) r+2<k<m-1
(i)r>5 Nwi—k+r+1+(m-1) < i-1+(m-1) and

i—k+r—1+(m—1)>i+r=j+1. In this case we have paths
(3,i—k+r+1,j) and (i —k+71,7).
(i) r = 4: Then j =i+ 3 and 6 < k<m-1 Ik >9, then
i-k+8+(m-1)<i—-1+(m-1), and hence we obtain the
paths (i,i —k +4,j) and (4, —k+8,i —1,i — k +5,7). Since
m—1iseven and k =i+j = 2i+3 (mod m —1), k must be odd.
Therefore we need to consider the case k = 7. In this case we have
paths (i,7 — 3,7) and (¢,00,% — 2,7).
(iii) r = 3: Thenm —1isodd, j=i+2and 5<k<m-1
k = 5: Then i is adjacent to co. Now m — 1 = 3n, where n is odd.
Ifn>5theni+6<i—94(m—1), and we have the path
(i,i — 3,i+3,i—2,7) and the zigzag (j,i — 5,i +6,i —6,...).
If n = 3, then, since 2 = 3 (mod 9), i = 6, j = 8 and we have
the paths (6,00,0,4,8) and (6,3,1,8).

k = 6: Then i and i — 2 are adjacent to co and we have the paths
(4,4 — 1,5 - 3,j) and (4,00,i—2,7).

k=7 Theni+3 <i—6+ (m—1) and hence the paths (i,i —
2,i—3,7) and (4,6 — 5,6+ 3,i — 4, 7).
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k=28 Theni—1 and 7 — 3 are adjacent to co. Nowm —1 > 9
so that j +1 < i— 6+ (m — 1) and hence we have the paths
(i,i— 2,i—4,5) and (4,3 — 3,00,i — 1,5 — 5,5).

k=9: Thenm—12>11sothat j +2 <i— 7+ (m—1) and hence
the paths (3,7 — 3,i — 1,7 —6,5) and (j,7 — 5,7 — 2, 00) together
with the zigzag ({,i — 7,5 +2,i - 8,...).

k = 10: Then i — 2 and ¢ — 4 are adjacent to co. Now m —1 > 11
so that j +1 <i— 8+ (m — 1) and hence we have the paths
(i, —5,i —3,i — 1,i— 7,5) and (i,i — 4,00,i — 2,i — 6, §).

k>11: Theni—k+8+(m—-1)<i—-3+(m—1)andi—k+2+
(m—1) > j+1, and hence we obtain the paths (3, —k+6,i —
1,i—k+3,5) and (§,i —k+5,i—3,i—k+8,i—2,i—k+4,j).

(D) j —i =r: In this case we already have r — 1 vertices in S and hence
we require just one more.

(a) k=7r—1: Then2i+1=0 (mod m — 1) and hence r and n are odd.
Thusr >3 andn >3. Sincem-1>r+6,j+3=7i+r+3<
it — 3+ (m — 1) and we have the path (¢, + 2,2 — 1,5+ 3, — 2, 7).

(b) k=r—2: Again j+3 <i—3+ (m — 1). Then we have the path
(Z,7+3,i-1,5).

() r+2<k<m-1: Then

j=i+r<i—-k+r+(m-1)<i-2+(m-1).
Hence, since j —k = i—k+r is adjacent to both ¢ and j, i —k+7 € S.

G=G(r—2,2r—1;7,r +1). In the case it suffices to assume that m is
odd, r is even and r > 6. Then m —1 > r + 6. Since 7 and j are not
adjacent,i+j—r+2=k (mod m—1),wherer+2<k<m-lork=2
ork=3 Theni+j—-k+(m—1)=r—-2+ s(m— 1) for some integer s.
In this case we consider the identities 2i =r—-2+k—(j —1) (mod m —1)
and 2j =r - 24k + (j — i) (mod m — 1). The main argument is divided
into the three cases, r+2<k<m-1,k=2and k=3

(I) r+2 <k <m—1: This case is again separated into various special
cases:

(A) 1<j—i<7r-2 Then
J<i-k+3+(m-1)<i-k+r+1+(m-1)<i+(m-1),

and moreover, whenever j —k+4+(m—1) < ¢ <i—k+r+1+(m-1),
q is adjacent to both ¢ and j

i+j—k+4+(m-1)<i+gqg
<j+qg<Li+j~k+r+1+(m-1)



i.e.
r+24+sm-1)<i+qg<j+g<2r—1+s(m-1).

Since these (r — 2) — (j — i) vertices are distinct from the (j — i)—1
vertices between i and j, we now have r — 3 distinct vertices in S. To
determine 3 further vertices in S we consider the following subcases:
(a) 4 < j—i < r—2: Then the vertices j—k and j - k+1 are distinct
from the above r — 3 vertices of S and both are clearly adjacent
to i and j and hence belong to S. To obtain a further vertex in S
we consider the following cases separately:
@) j—isr-3:

E>r+3 Theni—k+r+2+(m-1)<i-1+(m-1), and
hence we have the path (4,5 — k+7+2,i— 1,5 — k +2,5).

k = r + 2: Then i is adjacent to oo and we have the zigzag (j, j—
k+2,j+1,j—-k-1,7+2,...).

(i) j—i=r—2:

k =7+ 2: Then i is adjacent to co. Since m —1 > r +6,
j—k—1+(m—1) > j+3. Hence, since r > 6, we have the
zigzag (j,j —k+2,j+ 1, —k-1,j+2,...).

k=r+3 Theni—k+r+2+(m—-1)=i-1+(m—1)and
we have the path (i, — 1,7 — k +2,7).

k>r+4 Theni—k+r+3+(m-1) <i-14(m-1)and
hence we have the path (3,4 —k+7+3,i— 1,5 —k +2,7).

(b) j —4 = 1: Then j — k is adjacent to both i and j. We need 2
further vertices in S. Note that 2j = k +7 — 1 (mod m — 1) and
hence k is odd. Thenr+3 <k <m—2.
k=m—2: Then2j=r—2 (mod m—1). Nowj—k+(m-1)=

j+landi—k+r+1+(m—1) =i+r+2<i-4+(m-1).

Hence we have the paths (i,j + 2,00,5) and (4,4 + 7 + 3,1 —

1,i4+7+4,i—2,j+4,7).

k=r+3 Theni—-k+r+1+(m—-1)=i-2+(m—1) and
j—k+(m—1) > j+3. Hence we have the path (¢,j—k+1,5+
2,j—k+2,j41,7—k+3,7). Also we have the path (3,4—1,00).

Now j—k—1+(m—1) > j+6;ie. m—12> k+7 = r+10, unless

n=2r=6orn=2,r=8orn=3,r=4. Ifm-12>r+10,

then we have the zigzag (j,j—k—1,j+5,j—k=2,...). fn =2,

r = 6, then the path and the zigzag become (3,5 + 4, + 2,J)

and (4,3 — 1,00,5 + 1,7 +6,7) respectively. If n =2, 7 = 8, we

have the paths (,5 +6,j +4,j) and (¢, —1,00,7+ 2,5 + 8,7)-

If n = 3, r = 4, we have the paths (3,7 +6,7+3,7 + 1,5 +4,5)

and (4,i — 1,00,5 +8,7).
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k=m-4>r+5 Thenm—-1>r+8. Nowi—k+r+1+(m—1) =
i+r+4and j—k+44+(m—1) = j+7. Theni+r+5 < i—-3+(m—
1). Hence we have the paths (i,i+r+5,i—1,j+5,j+1,5+6,5)
and (i, +4,5 +2,7).

r+5<k<m-5 Theni—-k+r+3+(m-1)<i—-2+(m—
1) and j—k -2+ (m —1) > j+ 2. Hence we have paths
Gi-k+r+2i-1i—-k+r+3,i—2,7—k+3,7) and
(?:,j—k+1,j+2,j—k""2,j+1,j-k—l,j)'
(¢) j—i=2<r—2: Since 2§ = k+r (mod m — 1), k is even. Then
r+2<k<m-3.
k=r71+2: Then 2i = 2r — 2 (mod m — 1). Thus ¢ is adjacent to
0o. Then we have the paths (i, —k+1,5+ 1,7 —k+3,j) and
(G, j—k,j+2,j—k+2,j) Nowm—-1>r+6. fm—-1>r+8=
k+6,j—k—1+(m—1)> j+5 and hence we have the zigzag
(G,j—-k-1,j+4,j-k-2,...). fm—-1=r+6,thenn=2
and r = 6. In this case the zigzag becomes (j,7 — k — 1, 00).

k=m—3: Then 2j = r — 2 (mod m — 1). Thus j is adjacent to
o0. Nowi—k+r+14+(m—-1)=i+r+3+ (m—1) and
j—k+4+(m—-1)=j+6.Sincem—-1>r+6,i+r+4<
1— 2+ (m — 1) and we have the paths (,7 + 2,j + 4,j) and
(¢,7+3,7+1,5+5, 7) and the zigzag (¢, i+r+4,i—1,i+7+5,...).

k=r+4<m-5Thenm-1>r+8=k+4. Nowi—Fk+
r+l+(m-1)=i-3+(m-1)andj-k+(m-1) >
j + 3. Hence we have the paths (i,5 — &k, + 2,5 — k + 2,5)
and (4,j —k+1,j+1,j —k+3,j). Since 2 —2 = 2r -2
(mod m — 1), we have the path (¢, —1,00). Hm —1> 7+ 10,
then j —k—1+4(m—1) > j+5, and hence we have the zigzag
(4,d—k—-1,74+4,7—-k—-2,...). Otherwise m —1 =r+8 and
hence n = 2, r = 8 in which case, since 2j + 6 = 10 (mod 18),
7 + 3 is adjacent to co. In this case the zigzag may be replaced
by the path (4,j + 3, 00).

r+6<k<m-5 Theni—k+r+3+(m—-1)<i-2+(m-1)
and j —k— 24+ (m — 1) > j + 2. Hence we have the paths
(G i—k+r+3,i—2,j—k+3,7), (G,i—k+r+2,i—1,j—k+2,5)
and (5,7 —k+ 1,5+ 1,5 — k—2,5).

(d) j—i=3<r-2:Since2j =k+r+1 (mod m — 1), k is odd.
Then j — k + 1 is adjacent to both 7 and jso that j —k+1€ S.
Moreover we have the path (¢,j—k,j+1,5—k+3,7). fk > r+3,
theni—~k+r+2+(m—1) <i—1+(m—1) and we have the path
(Gi—k+r+2,i-1,j—k+2,j). Ifk=r+2,then2i=2r-3
(mod m—1) and hence 7 is adjacent to co. Also r is odd and hence
m—1>r+14 =k +12. Therefore j —k -2+ (m —1) > j + 10.
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Hence we have the zigzag (j,j — k-2, +4,7—k—3,...).

(B) j —i=r—1: Then we have r — 2 vertices in S. Note that j — k +
1+(m-1)=i-k+r+(m-1)<i—2+(m-1). Then j—k and
j — k + 1 are both adjacent to ¢ and to j.

(C) j—1 =r: In this case we already have r — 1 vertices in S. Note that
J<j-k+l+(m-1)=i+r—k+1l4+(m-1)<i-1+(m-1).
Then j — k + 1 is adjacent to both 7 and j.

(I1) k=2: Nowi+j=r (mod m—1). Then j—i=r —2¢ (mod m — 1)
and hence j — ¢ is even. Again the argument is separated into various
special cases:

(a) 2<j—t1<r—~4: Whenever j+2<¢g<i-1+r, ¢qis adjacent to
both ¢ and j:

i+j+2<itq<j+q<i+ji—1+m

Since these (r — 2) — (j — 1) vertices are distinct from the (j —i) — 1
vertices between ¢ and 7, we have r — 3 distinct vertices in S. Note
that, since:

2 =@+ +(G-9)=(G—i)+r (modm-—-1)

and 2 < j—i<r-—4, j+1is adjacent to co. To determine 3 further

vertices in S we consider the following subcases:

(i) 4 <j—1i <r—4: Then j is adjacent to co. Since m —1 > r + 6,
i+r+3<i—-3+4(m—1). Then we have paths (¢,7i 4+ r,i — 1, 7),
(,i+r+1,i—2,7) and (4,i+r+2,i— 3,5 + 1,00,7).

(ii) j —i=2<r—3: Both i and j are adjacent to co. Thus oo € S.
Now i+r+1 < i—2+4(m—1) and we have the paths (¢,i+7,i—1, j)
and (¢,i+7+1,i—2,7).

(b) j—i=r7—2: Then there are r — 3 vertices in S. Sincem—1>r+86,
j+5 <i-3+(m—1). Therefore we have the paths (¢,7+3,i -1, 5),
(Z,j + 477' - 2,.7) and (23.7 + 2)7' - 31.7 + 1’.7)

(c) 7—1i=r: In this case we already have r — 1 vertices in S. Note that,
sincem—-12>7r+6,j+2=i+r+2<i—4+(m—1). Hence we
have the path (3,5 + 2,7 - 3,5 + 1,7 — 2,7).

(III) k=3: Nowi+j=r+1(modm—1). Thenj—i=r+1-2i

(mod m — 1) and hence j — ¢ is odd. Again the argument is separated
into various special cases:
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(a) 1<j—i<r—3: Whenever j +1<¢q<i-2+r, qis adjacent to
both ¢ and j:

i+j+1<i+g<j+q<i+ji—2+m;

Since these (r — 2) — (j — ¢) vertices are distinct from the (j —i) — 1
vertices between ¢ and j, we have r — 3 distinct vertices in S. Note
that, since:

2=+ +@F-)=@G-9)+r+1 (modm-—1)

and1 < j—t<r-—23,jis adjacent to co. To determine 3 further

vertices in S we consider the following subcases:

(i) 3<j—i<r—-3: Sincem—-1>r+6,i+r+2<i—4+(m-1).
Then we have paths (¢,% + 7,7 —2,7) and (3, +7+ 1,7 —3,5) and
the zigzag ({,i+r—1,i—1,i+r+2,i—4,i+7+3,...).

(ii) j—t=1<r—3: Then r > 4 and both i — 1 and j are adjacent
to co. Hence we have the paths (i,7 — 2,5) and (3,7 — 1,00,7). If
7 =4,thenn > 3sothat m—1>12. Hencei+6 <i—6+(m—1)
and we have the path (¢,7 + 3,1 — 4,i + 6,7 — 3,7). If r = 5,
then m — 1 > 15 and hence i + 7 < i — 8 4+ (m — 1) so that we
have the path (i,i +4,i — 5,i+ 7,i — 3,7). If r > 6, then, since
i+r—1<1i-74+ (m~- 1), we have the path (i,i+7—1,7-3,7).

(b)  —¢ = r —1: Then we have r — 2 vertices in S. Sincem — 1 >
r+6,j+3=1i+r+2<i—3+ (m—1). Hence we have paths

(G, +2,1-1,7+3,:—2,7) and (¢,j + 1,i - 3,7).

a
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