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ABSTRACT. In this paper we present algorithms for locating
the vertices in a tree of n vertices of positive edge-weighted
tree and a positive vertex-weighted tree from which we broad-
cast multiple messages in a minimum cost. Their complexity
is O(n?logn). It improves a direct recursive approach which
gives O(n3). In case where all the weights are equal to one the
complexity is O(n).

1 Introduction

Efficient broadcasting is a key component in achieving high performance
(throughput) from parallel and distributed processing.

The motivation for this work was triggered by our interest in investigating
the problem how to perform optimal query on distributed database on
diverse MIMD multiprocessor architectures [1]. There we investigated how
to schedule and evaluate query with minimal cost.

Broadcasting has become popular in recent years with the introduction of
new, very fast networks and their extensive use by parallel and distributed
systems. Utilizing efficiently the underlying network in a massively paral-
lel/distributed system is a major challenge. Recently, new demanding ap-
plications of broadcast and group communication have evolved. Video con-
ferencing and database processing, wide scale distribution of audio, video
and data via commercial television digital networks (video on demand),
multi-user games, on line multimedia databases and remote tutoring are
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typical examples which are very demanding in terms of bandwidth require-
ments.

Edge/Vertex-weighted topology is applicable when we want to rate differ-
ent locations in heterogeneous distributed network. Edge/Vertex-weighted
topology can also resembles transmissions to a subset of the processors
called hereinafter multicast, where we broadcast to vertices such that their
weight is greater than a given threshold. Moreover, this topology enables
us to take into consideration the delay of processing a message prior to its
transmission and the edges capacity. Therefore, having efficient algorithms
for broadcasting in positive edge/vertex weighted-tree are of great use in
parallel/distributed networks.

We define broadcasting from an originator(s) source to be the process
of passing one (many) unit(s) of information from that source to a set
of destinations which are connected via a network. This is accomplished
by a series of transitions over the network. The messages are distributed
over the network and spread using the communication network, where each
node transmits a message to its neighbors upon receiving it regardless to the
activity done in other nodes (beside for the node that receives the message
that should be idle). The broadcasting problem is usually described by the
following rules:

1. A vertex in the network may send a message to an adjacent vertex
only.

2. Time is discrete. At a given time each vertex will do exactly one of
the following:

(a) receive a message,
(b) send a message to one neighbor,
(c) beidle.

Eventually, broadcasting should be logically viewed as a many-to-many
communication.

Formally, we can view the communication network as a. finite connected
undirected graph where the set of vertices stands for processors and each
edge which connects two vertices stands for a direct communication link
between these vertices. Then, we define broadcasting from a vertex v (the
originator) as transmission of a message (messages) from v to every vertex
in V'\ {v} using the above rules. This problem, that was introduced and
solved in [15], is a variation of the gossiping problem [8].

The problem of broadcasting in a general graph is NP-complete [7]. On
the other hand, on a tree with equal weights it is known to be linear [15].
In addition, the cost to broadcast a message from any other vertex, say v,
was shown to be the summation of the minimal broadcasting costs and the
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distance from v to a vertex in the set of vertices from which the broadcast
cost is minimal. In other topologies except trees there are known results
in a two and three dimensional grid [16], complete graph and hypercubes
(see [5], [6] and [10]). Recently, planar graphs were treated as well [9]. A
conjecture concerning minimum broadcasting time starting from a given
vertex in a d-dimensional grid (d > 3), was posed in [16]. This conjecture
was recently validated in [12]. The concept of time-relazed broadcasting
was introduced in [13] and results obtained for trees and general graphs in
[13,14] and [2, 3].

The main goal of this paper is generalization of the result in [15] by pre-
senting algorithms which enable efficient broadcasting of multiple messages
in parallel/distributed multiprocessors on a positive weighted tree topology.

Multicast communication which has been recognized as an important
and useful mechanism since the mid-seventies can be defined as a mes-
sage(s) transmission mechanism that delivers a message(s) from a single
(many) source(s) to a set of destinations (many-to-many communication)
[11]. Broadcast (many-to-all communication) is a special forms of multicast.

The goals of the algorithms:

1. To identify the set of vertices from which the cost! to broadcast is
minimal. This set is called hereafter broadcast center.

2. To evaluate the cost! to broadcast messages from any vertex in the
tree, and

3. To evaluate the cost! to broadcast m > 1 messages from any vertex
in the tree.

Denote by T the tree the tree and n its size. Our algorithms have time
complexity of O(n?logn). In the case where all the weights are equal, the
time complexity is O(n) as in [15]. If we calculate directly the cost in each
vertex we get O(n?) so that the total cost is O(n3).

The paper is organized as follows: The algorithm that deals with weights
which are assigned to edges is presented in section 2. In section 3 we present
the algorithm to do the same when the weights are assigned to vertices.

2 Broadcasting in Edge-Weighted Tree
2.1 Formal Definition of the Cost

For a given graph G = G(V, E) and a weight w(e), e € E(G), we define the
broadcast number of v € V(G), denoted by b(v, G), as the minimum cost

1The notion of cost is defined in section 2.1 for the edge-weighted tree and in section
3.1 for the vertex-weighted tree.
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that is required to broadcast one message from v. Let e = (u,v) be an edge
and let ¢(e) be the time a message is transmitted from u to v. The value
w(e) x t(e) presents in some sense the edge priority related to the arrival
time of the message.

The cost to broadcast a message is calculated by one of the following
measures:

2.1.1 maxeeg{w(e) x t(e)}.

This cost function represents the maximum value of the edge weight
related to the message arrival time. Its aim is to minimize the maxi-
mum time a vertex “waits” for a message related to its priority to get
it.

2.1.2 —Ll—l_ze s LA}
This cost function represents the average value of the edge weight
related to the message arrival time. Its aim is to minimize the average
time a vertex “waits” for a message related to its priority to get it.

The broadcast center of G, denoted by BC(G), is defined, as in [15], to be
the set of all vertices having minimum broadcasting number. The broadcast
number of G is b(G) = b(u, G) where u € BC(G).

2.2 Locating the Broadcast Center in Edge-Weighted Tree

The proposed algorithm for locating the broadcast center in an edge-weighted
tree is based upon the following:

Denote TS*™ to be the tree in the forest T \ {(»,v)} that contains v.
Define f(T,v,t) to be the cost function that expresses the minimum cost
to broadcast from v in T when broadcast starts at time ¢. The edge (v, u;)
is denoted e¥:.

Observation I: For a given vertex v € V(T), let Uy, Us, ..., U be the
set of neighbors of v. The value of f(T,v,t) is computed based upon the
value of the cost function of its adjacent vertices and the weight of the
edges connecting v to them. Namely, it is computed using f(T$""*9, u;, t)
and w(ey¢), ¢ = 1,...,k. The order of transmitting the message from v
to u;, i = 1,...,k is as follows: assume, without loss of generality, that
FTE U e, v, t) > f(Té".';':"“) U ey**!,v,¢). Then, the optimal cost to
broadcast a message from v is achieved by sending the message to u; first
then to u2 and so on until it reaches uy. (m]

Example: The idea is to assign the value of the cost function to each
vertex starting from the leaves using the value of the cost function of its
adjacent vertices.
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Assume u € V(T') and v is its father. Then, starting from the leaves of

T, we assign to each u € V(T) the value f(T{"™),u,t). The cost function
assigns zero to a leaf since the cost to broadcast in a subtree that includes
only one vertex (the leaf) is zero. In Figure 1A there is an example for
the cost measure defined in 2.1.1. The values of the cost function in the

vertices adjacent to the leaves are:

F(TE) g, t) = max{f(T12), vy, t 4 1),
wle?) x (t+1)} =max{0,2x (t +1)} =2t +2
and,
F(T5), v, t) = max{f (TS, vq,t + 1),
wleyd) x (t+1)} =max{0,1x (t+ 1)} =t+1.
Notice that we take the maximum between the cost to broadcast in the
subtree T or TS5 and the cost to transmit the message over the
edge (v1,v2) or (vs,vs), respectively

'
1
]
v ) ]
1}
'
.
[l

Figure 1A. Edge-weighted tree

We transmit the message from vy to vz and then to v, since
ST U e, v, t) = max{w(el) x (t+1),
FTGo), 01,64 1)} = max{1(¢+1),2(t + 1)+ 2)} = 2t +2)

and
FTG") U €33, vo, t) = max{w(el) x (£ +1),
ST ya, t 4+ 1)} = max{100(¢ + 1), ¢ + 2} = 100(t + 1)
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Therefore,
f(Té:o.vs) U ezg, o, t) > f(Té;'o,vl) U 6:;,’00, t).

In the above we calculated the cost to broadcast a message from vo to
the trees rooted by only one of its adjacent and found that the optimal
transmission order is by sending the message first to vo and then to v;.
Therefore, f(T,v,t) =

max {ma.x (f(T,S;”'”’), vg,t+1),100 x (¢ + 1)) ,
max (f(T,syo»”'>,v1,z+ 2),1x (t+ 2))} =
max{max((¢ + 1) + 1,100 x (¢ + 1)) max(2(t + 2) + 2,1 x (¢t +2))}.
Since o is the originator we have ¢ = 0 and the cost to broadcast from v is

f(T,vop, 0) = max{max(2, 100), max(6,2)} = 100.

In Figure 1B there is an example for the cost measure defined in 2.1.1.
The values of the cost function in the vertices adjacent to the leaves are:

FTE") vy, £) = 100¢ + 100

and,
F(To™™), g, 1) = max{0,1 x (¢ + 1)} =t +1.

Figure 1B. Edge-weighted tree
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We transmit the message from vo to v; and then to vz since

F(TLo) Y el vg, t) = 100(¢ + 1) + 100 = 100t + 200

v

and
ST U €23, ug, £) = 100(t + 1) = 100t + 100
Therefore,
FEEe™) Uell, v, t) > FITEO") Uels, vo, t)
and

F(T,vo,t) = max{max(1(¢+1),100(¢+1)+100) max(100(¢t+2), (t+2)+1)}.

Since v is the originator we have ¢ = 0 and the cost to broadcast from wvp

is
F(T, vo,0) = max{max(1, 200), max(200, 3)} = 200.

Remark: We need to keep track of all possible values of the time ¢ in
which the vertex receives a message since ¢ is unknown while the algorithm
in progress and the cost function f(7T',v,t) depends upon . (]

In the following we assume that “cost” means either 2.1.1 or 2.1.2.
We use the following notations:

U the set of labeled vertices that were removed from T'.
Lﬁ the set of labeled vertices that were not removed from T'.
Ty the tree T\ U.

t82 time interval from time ¢; to to. The interval t° stands for any time.
t1 0

T(™") the tree in the forest T \ {(u,v)} that contains v.

f(T,v,t) cost function that expresses the minimum cost to broadcast from
v in T when broadcast starts at time ¢.

W (v) ordered list of pair ({2, f(T,v,t)) where T is a given tree and ¢ € te2.
Vop vertex from which broadcast is optimal.
Center(T') set of vertices v,, that was chosen by the algorithm.

Number(T) the value of f(T,vop,t) in the time interval ¢;* at time ¢ = 0.

In the following algorithm, Broadecast I, we compute in each step the
cost to broadcast from a vertex to its sons, starting from the leaves. This
algorithm is a generalization of the algorithm presented in [15].
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Algorithm Broadcast I:

1 (Label the leaves of T with cost 0 for t&°)
Let U be the set of leaves of T,
for each u € U do:
W(u) — {(t,0)};
end for
Ty «T\U.

2 (Label the leaves of Ty.)
Let Ly be the set of leaves in Ty;
for each u € Lz do:
Let v be the father of v in Ty.
2.1  for each ¢} which gives different value of AT, ut), t e ts2, do:
W (u) — W)U {(t2, (T, u,t)};
end for each
end for

3 (Select the next vertex to be deleted and the next vertex to be labeled,
until there is only one vertex left)
While |[V(Ty)| > 1 do:
3.1 (select the next vertex v which is the father of a vertex u in Ty)
Let u € Lg; where f (T8 4, t) = minge Ly f (T ,u,0)}
where v is the father of u in Ty.
3.2 (Delete u from Ly and Ty and add it to U)
Ly — Ly \ {u};
U—~Uu{u};
Ty < Ty \ {u};
3.3  (Label the next vertex.)
if v is a leaf of Ty then
Let w be the father of v in Ty,
3.4 for each tff which gives different value of f(T,S“'") yu,t), t € t2, do:
W(v) = W) U{(t2, ST, 0,0));
end for each
L — LU {v};
end if
end while

4 (There is one vertex left in Ty.)
vop — V(Tv);
Number(T) «+ f(T,vop,0).
Center(T) « {vop};
4.1 (pick vertices v € V(T') where b(u,T) = b(vop, T"))
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Let uj,us,...,ux be the neighbors of v in T'.
for each u;, 1 <i <k do:
W (u;) — {(t3, f(T,u;,t)} where z > 0;
if f(T,ui, 0) = Number(T) then:
Center(T) «— Center(T) U {u;};
end if
end for each

Let v be any vertex in V' with u,,usg,...,ux as its neighbors. Then, as
was done in the previous example we compute the cost functions according
to the following:

1. The cost function C(T,v,t) of v computed according to 2.1.1 in the
following way:

C(T,v,6) = max, {max {C(T,ﬁg»"-'>, g+ 5), w(e) x (¢ + z)}} :

where the neighbors of v are ordered such that C(T,S:’"“) Ueyi,u,t) >
C(TS‘.',’::‘“) Uey'*',vu,t),1 <i<k—1and e¥ = (v,u;). For aleaf v

in the tree T, C(T,v,t) = 0.

2. For the cost function AC(T, v, t) of v computed according to 2.1.2, we
keep the value of the cost function of each vertex of the tree, and the
number of vertices in which this function was calculated. The cost
function AC(T,v,t), is computed in the following way:

S (AC(TY™), it + 3) + w(ed) x (¢ +1))
22;1 Ty + 1

where the neighbors of v are ordered as in 1 and n,, is the number
of vertices in T{"*). For a leaf v in the tree 7, AC(T,v,t) = 0 and
ny = 1.

AC(T, v,t) =

Remark 1: Algorithm Broadcast I we assign the functions AC or C instead
of f according to the required cost measurement type (2.1.1. or 2.1.2.).

Remark 2: For the case where {w(e;1) = w(ez), Ve1, ez € E} we get only
one time interval (t§°). Therefore, steps 2.1 and 3.4 of the algorithm are ex-
ecuted only once and this algorithm coincides with the algorithm presented
in [15] which can be viewed as a special case of the algorithm Broadcast

a

Example: A detailed example how to find the broadcast center for an edge
weighted tree is presented in Figure 2 and Table 1 for the cost function
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C(T,v,t). Figure 2 presents the steps of the algorithm where the white
vertices are the vertices in Ty, the gray vertices are in U and the partial
gray vertices are in L. In Table 1 we present the values of W(v), v €
V(T), and the transmission order from v to its adjacent vertices, when the
time is recorded as the time when the message was received. The vertices
are ordered according to the way they are accessed by the algorithm (see
column 1 in Table 1). Notice that v, is the last vertex that remains in Ty.
Therefore, it belongs to the broadcast center. vy was visited twice. The
value of Number(T) is the value of the second coordinate of W(v7) at time
t = 0. Hence, (5 x (t+7) |t = 0) = £ and BC(T) = {vr,v10}. The
vertex vyo is added to BC(T) in step 4 of the algorithm.

vy .| V1o Vi
N 10| s
O o i
viz T vy vi4
10|
vis vis

A: Initial configuration of the edge weighted tree.

WV o W(v2) s
10

0%
vo ] vio vil

W(VI2) 7 WY1 _« W(V14)

@. ,_w_‘_.w_

vid

vis
C: The tree after step 2 D: The tree after the first iteration of step 3.

Figure 2.
Demonstration how to locate the broadecast center in edge-weighted tree
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WV s W(V2)

VIS vis

E: The tree after the second iteration of step 3. F: The tree after the third
and fourth iteration of step 3.
WV 4 W(V2)

1 W(VY) W(VI 4 W(V2) 3 W(V3) w(v4H
w0 A% ) 7

3
Vil

w
W(VI2) 3 WV

S WV

Vis
G: The tree after the fifth iteration of step 3. F: The tree after the sixth iteration of step 3

Figure 2. cont’d
Demonstration how to locate the broadcast center in edge-weighted tree
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[ Seq. | Alg. step No.- | Vertex | W(v;) | transmission order |

1 1 v1 {(t8,0)}

2 1 s {(t8°,0)}

3 1 vg {(t8°,0))

4 1 V12 {(t°,0)}

5 1 V15 {(t&°,0)}

6 1 Viq {(te,0)}

7 1 v {(t°,0)}

8 1 2 {(t5°,0)}

9 2 vg {(#8° 75 x E+ 1))} | 8): v

10 2 V13 {L(tg, % X (t + 3)) (t(o)o): V12, V15, V14
(ti’x 10 X (t + 2))
(tgo, g X (t + 1))}

11 12 vg {(t6° 55 x ¢+ 1)} | (6):va,v11

12 34 v3 {(tge, 1g X (t+2)} (t&°): vo

13 34 Vg {(té, fo X (t +3)) té):’lls,’l)g, Vs

(t 56 % (¢ +5)) | (¢°):ve,v5,v3
(tg: T0'7x (t + 2))

(&, 35 x (¢ +1))}
14 34 Y10 {(tg, ’% X (t + 4)) (t8°):'v13
RPN

tgo’ 1g X t+
15 34 vy {(tg, —% X (t +4)) (t8°):'us,'vs
(55, 5 x (¢ +6))
(3, 1 % (ta))
(tgo’ 0 X (t + 2))}
16 34 vy {(t5, -fo- X (t+7)) (t8°): v10, vs, v8
(t%, 1qQ X (t + 4))
(13, 15 X (¢ +3))}
17 4 V10 (0, %) b4 (t +7)) v7, V13

Table 1.
The value of W(v;) which corresponds to the example in Figure 2,
ordered according to setup time of the algorithm in column no. 2.

2.2.1 Correctness of the Algorithm Broadcast I

In the following analysis we prove the correctness of Algorithm Broadcast I.
Since the case where |V(T')| < 2 is correct and the proof is straight forward
we assume that |V(T)| > 2. In addition, note that 7y is a subtree of T and
hence it is connected.

We need additional notation:

172



b*(u,T)— the cost to broadcast from u a message received at time &.
b°(u, T) is denoted by b(u, T).
The following theorem deals with the cost to broadcast from v to T,S"'“) .
The cost is shown to be dependent on the cost to broadcast from its sons.

We remark that the function f(T',v,t) used in the lemmas below stands for
either the cost function C(T',v,t) or AC(T,v,t).

Theorem 2.1. Let u;,us,...,ux be the neighbors of v € V(T). Suppose
that b(us, TS™) U €s) > b(ui.,.,T,S':::‘“) Uel ) fori=1,2,...,k then:

Ui41

1. For the cost defined in 2.1.1:

b, T) = mmax {max{bt**(us, T84, w(el) X (6+)}}.

2. For the cost defined in 2.1.2:

E?=l(bt+i (ul') Tér,u')) + 'U)(C:i) X (t + i))
E?=1 Ny + 1

b (v,T) =

where nu, = [V(TS™))).

Proof: The vertex v transmits the message from time ¢+1 until ¢+k to all of
its adjacent vertices u; to ug. Since b(ui, Ty ey;) > b(ni+1,T,£:.'f;"“) U
€uiyq) for i = 1,2,...,k, and Observation I it follows that the value of

bt(v, T') is minimum in the cases 1, 2 of the theorem as required. o

The next lemma proves that the value of the cost function assigned to the
vertex v € V(T) in the algorithm Broadcast I equals the cost to broadcast
from v to its sons.

Lemma 2.1. Let u € Lg; be the vertex selected in step 3.1. Let v be the
father of v in Ty and assume that u receives the message at time t. Then,

f(T&U.‘U),u, t) = bt(u’ T"S‘u,u)).

Proof: This follows from the definition of f(T,v,t) which is defined ac-
cording to the requirements of theorem 2.1, and from the subtree 7" on
which the algorithm operates in steps 3.1 and 3.4. Namely, in step 3.1 we
choose the father of v with the minimum value of the cost function f and
update its value according to step 3.4. Therefore, conditions of Theorem
2.1.

The initial value of W(u), which is {(t§°,0)} in the case where u is a leaf,
matches the initial value zero of f(T,v,1). ]
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The following lemma shows that the cost function at time ¢ = 0 is as-
signed non-decreasing values by the algorithm.

Lemma 2.2. Let f(T,u;,t) be the cost functions for the pair (t§, f(T,ui,t)) €
W(u;) at t € t§,z > 0 and let v; be the father of w; inTy,i=1,...n—1.
If uwy, us,...un_y is the sequence of vertices selected in step 3.1 of the al-
gorithm Broadcast I and wu,, is the vertex that was remained after the end
of step 4, then,

FTE) ug,0) < FITE),149,0) < ... £ F(T,un,0)

Proof: Let I, m be integers such that 1 <[ < m < n. It is sufficient to
show that f(TS™) u;,0) < F(TEU™*™), 1y, 0). The vertex u; was selected
during the l-th iteration of step 3.1 and the vertex u,, was selected during
the m-~th iteration of step 3.1. If all adjacent vertices of »; in T and all
adjacent vertices of un, in .E',’,."”“"‘) were in L before u; was selected then
according to the way the vertices are selected in step 3.1 and by the cost
function which is non-decreasing with time increase we have f(T,u,0) <
F(T,um,0). If the above adjacent vertices were not included in the same
time in Ly then because u; was selected before u,, and because the cost
function which is non-decreasing with time increase we have f(T,u;,0) <
f(T,um,0). |

Lemma 2.3. Let u and v be adjacent vertices in T, and assume that
b(u, TS™) < b(v, TS*™), then:

b(u, T) > b(»,T)

Proof: The cost b(u, TS"™) does not take into consideration the cost to
broadcast from u to TS, Since b(v, TS*™) > b(u, TE&"™) and since the
cost function is assigned non-decreasing values then b(u,T) > b(»,T). O
We prove now that a vertex of the broadcast center of T remains in the
sub-tree Ty during the execution of the algorithm, namely,
Theorem 2.2, Center(T) = BC(T).
In order to prove the theorem we need the following lemmas.

Lemma 2.4. In steps 3 and 4 of the algorithm, the broadcast center of T
contains a vertex of Ty.

Proof: Let u be a vertex selected in step 3.1 and let » be the father of »
in Ty. It is sufficient to show that b(v,T) < b(w,T). Namely, the vertex
with the lower broadcast value remains in Ty .

First, we show that b(u, TS"™) < b(w, T, I V(Ty) = {u,v} (only
two vertices are in Ty), then according to lemma 2.1 the values of the

174



cost function f for u and v are b(u, Ts™™) and b(v, T$"™), respectively.
Moreover, according to the vertices selection condition in step 3.1 of the
algorithm we get f(T,u,t) < f(T,v,t). Hence, b(u, TS"™) < b(w, TS,
Second we treat the case where |V (Ty)| > 2. Suppose that Ty has a leaf
z ¢ {v,u} and let y be the father of z in Tyy. By lemmas 2.1 and 2.2 and
since u was selected in step 3.1 we have b(z, T&¥®) > b(u, T5"™). Since
T is a subtree of TS*") (u is a leaf in Ty) and since the cost function
assign non-decreasing values, we have b(u, T,S"'")) < b(w, T,S""’)). Therefore,
by using lemma 2.3 we get b(u, T') > b(v,T). 0

Corollary 2.1. Let v be the vertex remained in V (Ty) after step 3. Then,
v € BC(T).

Proof: Let v € V(Ty) be the vertex that was remained in V(Ty) after step
3 of the algorithm (|[V(Ty)| = 1). By lemma 2.4 this vertex is in BC(T). D

Lemma 2.5. After step 4 of the algorithm, Number(T) is the broadcast
number of T'.

Proof: Let v € V(Ty) be the vertex that was remained in V(Ty) after step
3 of the algorithm. By lemma 24 v € BC(T'). Hence, by lemma 2.1 and
lemma 2.2 b(v,T) is the broadcast number of T. Number(T) is assigned
the value of f(T',v,0) which is equal to 4°(v, T") by lemma 2.1 (recall that
b(v,T) is denoted as b%(v, T)). o

The next lemma confirms that the value of b(v, T') is minimal for v which
is the last vertex that was remained after step 3.

Lemma 2.6. Let v be the vertex that was obtained in step 3. Suppose
u € Ly is its son and w € V(TS"™) \ {u}. Then, b(v, T) < b(w, T).

Proof: Let z be an adjacent vertex to » in the path (u — w). Obviously,

b(v, T U {v}) > bu, TSW) > bz, TE). By lemma 2.3 we have:
b(v,T) < b(w,T) < b(z,T).

If there is at least one sharp inequality in the above inequality then we

are done. Otherwise, b(v,T) = b(w, T) = b(z, T). If b(v, T') is obtained in

T$“"), then, b(u, T) > b(v, T) since u has to transmit the message to v and

only at the next time unit it is transmitted to its adjacent vertices, which
is a contradiction. The same is true for » and z. Hence, if b(z,T) was

obtained in TS*® then b(z, T) > b(u, T) which is a contradiction.
If b(v,T) is obtained in T$"™ and b(z,T) is obtained in T8 U {u},
then, by the same arguments we have b(w, T') > b(z, T') as required. o

Finally, we equate both notions of Center(T) and the Broadcast center
of T.
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Proof of Theorem 2.2: The size of BC(T) is at least 1 since there exists
a vertex such that its broadcasting number is minimal.

First, we show that each w € Center(T) is in BC(T). Let v € V(Ty)
be the vertex which remained in V(Ty) after step 3. Then, v € Center(T)
(step 4) and v € BC(T) by lemma 2.4. Assume that |Center(T)| > 1,
w € Center(T) and w # v. Then, b(w,T) = b(v,T). By lemma 2.5
Number(T) = b(v, T), therefore, w € BC(T).

Second, we show that for any w € V(T) and w ¢ Center(T) we have
that w € BC(T). Let w € V(T), w & Center(T). We have the following
two cases:

1. Vertex w is adjacent to v: Since w was not selected to be in
Center(T) in step 4 of the algorithm then, b(w, T) > b(v,T).

2. Vertex w is not adjacent to v: b(w,T) > b(v,T) according to
lemma 2.6.

2.3 Complexity Analysis

In this section we show that the algorithm Broadcast I has time and space
complexity of O(n?logn).

In step 1, we assign a value to W(v) for each v € U where U is the set
of leaves of T'. Since |U| < n this step requires at most O(n) time.

In step 2 the leaves in Ty are located in O(n) time. In addition, clearly
|Lz| < n. Therefore, this step is performed at most O(n) time. In addition,
for each v € Ly we need the value of the cost function f(T,v,t). This is
done by sorting the set U in O(nlogn) in the beginning of step 2. In
this step the value of f(T,v,t) gets only one maximum value for the time
interval t§, therefore, the loop in step 2.1 is executed only once. Hence,
step 2 requires O(nlogn) time.

The loop in step 3 is executed at most O(n) times since in each iteration
one vertex is removed from Ty. The value of f(T,v,0) is kept in the list
(step 3.2). Each time a vertex is assigned with this value it is added to list.
Since the cost function f(T,v,t) have non-decreasing values, then the first
vertex in the list has a minimum cost. Therefore, step 3.1 requires O(1)
time. Clearly, step 3.2 requires O(1) time.

Before examining step 3.4 we note that at most O(1) vertices may be
adjacent to O(n) vertices in the tree. Therefore, the cost to sort the costs of
the sons of a vertex is O(nlogn) in O(1) times. Since the time to broadcast
in a tree is bounded by n — 1 (see [4]) we may have up to n — 1 different
maximum values for f(T,v,t) for different time intervals. Therefore, step
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3.4 requires O(n?logn) time for O(1) vertices. In all other cases it requires
up to O(n). Hence, the time complexity of step 3 is O(n?logn).

The time complexity of step 4 depends on the number of neighbors, say
k, of the last vertex v which was remained in Ty after step 3. Then, k is
at most O(n). Since we need to calculate f for each adjacent vertex where
their list of adjacent vertices were sorted during step 3, the complexity
of step 4.1 is O(nlogn). Hence, the complexity of step 4 is O(nlogn).
Therefore, the total complexity of the algorithm Broadcast Iis O(n?logn).

Note that for the case where all weights are equal we get only single time
interval (t§°). Therefore, steps 2.1 and 3.4 of the algorithm are performed
only once. In addition, we do not need to sort U, the set of leaves of T,
prior to step 2 and we maintain a list of handled vertices for each v € V(T
as in [15]. Therefore, steps 2, 3 and 4 require O(n) time and the time
complexity of the algorithm is O(n).

2.4 The Cost to Broadcast from Any Vertex

The cost to broadcast from any vertex is computed using the values of
W(v), v € V(T), which was computed in algorithm Broatcast I.

The following lemma, enables us to compute the minimum cost to broad-
cast from any vertex by updating the cost on the path from the originator
to a vertex in BC(T).

Lemma 2.7. Let u € V(T) be such that u ¢ BC(T') and let v € BC(T) be
the vertex which has the shortest path to u. Let z;, T, ...,Zk, k > 2, be the
vertices in the path from v to u (v = z1,u = zi), where (z;,zi+1) € E(T).
Then, the cost to broadcast from u is obtained by recomputing W (z;) for
i=1...k

Proof: Since T is a tree, where only one path exists between any two
vertices, then, xy,zo,. ..,z are the only vertices that their cost functions
are modified. Namely, the value of f(T,w,t) where w € V(T), w & {z:}%.,
is the same as the value while broadcasting from v. The cost to broadcast
from z; (= u) is evaluated by the cost to broadcast to the sub-trees rooted
by its adjacent vertices (Theorem 2.1). This cost, which by lemma 2.1 is
calculated using the cost function f of the adjacent vertices, is known for all
the vertices adjacent to =, but zx—;. This is due to the procedure described
above and to the order of the vertices handled by algorithm Broadcast I
(from zj to z;) which computes the value of f(TSZ*+'*%) z; t) and not
ST, 24,1,

The only vertex from z; € {z;}%_, that the value of its f (TEem-1) g 4
can be computed immediately, is z, since it is computed using the cost of
its adjacent vertices including =; (= v) which are not modified. The cost of
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the rest of the vertices z;, t = 3,..., k is computed based upon the cost of
z;_1. Finally, the cost to broadcast from z, (= u) is the value of f(T, z\,0)
as in step 4 of the algorithm Broadcast 1. a

2.5 Broadcasting Multiple Messages

In order to broadcast m(> 1) messages from any vertex v € V(T') we have
to find BC(T) and b(T).

Initially, we deal with the case m = 1. Let v € V(T') with uy,us,...,ux
as its neighbors. They are labeled in an non-descending order according to
their cost value (the cost to broadcast to their weighted sub-tree related to
the cost to transmit from v to uj, j =1,...,k). The broadcasting pattern
is such that v receives the message from u;, 1 <! < k, at time ¢ and
transmits it to its adjacent vertices u;,  =1,...,k, 7 # [, in the following
order: To u; at time ¢t + 1, to ug at time ¢ + 2, until at time ¢ + k — 1 the
message is transmitted to ux. Observe that if v is the originator then the
restriction upon u; is removed, namely, v transmits the message to all its
neighbors.

For broadcasting m > 1 messages the originator vp transmits the first
message to its adjacent vertices, as in the previous case, then it waits for
a constant time step, t,,, and transmits the next message with the same
pattern as before. The constant ¢,, is the smallest positive integer such
that ¢,, > A — d(vg), where A is the maximal degree in T and d(vp) is the
degree of vp.

Assume that v is the originator and let v € V(T'), v # vo and suppose v
receives a message in time ¢. Then v transmits the message to its neighbors
(excluding the one from which v received the message) in time ¢ + 1 to
t + d(v) —1 as in the case m = 1.

3 Broadcasting in a vertex-weighted tree

In a vertex-weighted tree T the weights w(v) are assigned to all v € V(T') or
only to all [ € L, where L is a set of leaves in T'. Broadcasting is performed
according to e-broadcast or d-broadcast that are defined below. The weight
of a vertex in the e-broadcast is a threshold for the vertex to receive the
message. Namely, only vertices with weights greater equal to € receive the
message. The above is often called a multicast [11]. This is different from
the d-broadcast where the weight of a vertex is considered as the time the
vertex needs to process the message prior to transmitting it to its adjacent
vertices. Namely, a vertex receives a message, then process it for a given
time (its weight) and send it to its adjacent vertices only after § time units.
Notice that we can combine the above broadcasting algorithms with the
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edge weighted algorithm. This enable us to prioritize vertices in either the
e-broadcast or in the §-broadcast case.

3.1 Formal Definition of the Problem

The problem is how to broadcast m(> 1) messages from any vertex v €
V(G) in a given graph G with weights w(v) that were assigned to all vertices
v € § C V(G). This problem uses the following two definitions:

e-broadcast means broadcasting m messages with a minimum cost to all

vertices in S2{v € V(G) | w(v) > €}. The cost was defined in section
2.1 where w(v) replaces w(e) and ¢(v) replaces t(e), where t(v) is
the time a vertex v receives a message. The weight of a vertex in
V(G) \ S is assumed to be zero. Namely, if a transmitted message
which arrives from a vertex = to a vertex y passed through a vertex
z where w(z) < ¢ we assume that w(z) = 0 in the cost calculations.
Figure 3 demonstrates the definition where z is the originator and
€ = % (the weights on the vertices are shown below their symbols).

5 L 4
10 10 10
Figure 3.

e-broadcast in a vertex-weighted tree

é(v)-broadcast means broadcasting m messages in a minimum cost to
all vertices v € V(G) where for each vertex {v; | 1 < i < |V|} the
message is delayed for §(v;) = w(v;) time units, and w(v;) are positive
integer values. If v; receives a message at time ¢ then it is transmitted
at time ¢ + w(v;) + 1 to its first neighbor, at time ¢ + w(v;) + 2 to its
second neighbor, and so on until at time ¢ +w(v;) + d(v;) (d(v;) is the
degree of v; in G) it transmits the message to its last neighbor. The
cost is defined to be the time needed to complete the broadcasting.

Again, the broadcast center of G, BC(G), is defined as before to be the
set of all vertices having minimal broadcasting number.

3.2 Locating the Broadcast Center for Vertex-Weighted Tree

3.2.1 e-broadcast - Broadcast IT
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This algorithm is based upon Algorithm Broadcast I. It differs from it
because we consider the weight of a vertex instead of an edge. Furthermore,
in case w(v) < € we assume W(v) to be zero. We omit the presentation of
algorithm Broadcast IT which is similar to algorithm Broadcast I.

The value of the cost function, C;(T,v,t), is computed according to the
cost definition, which is the broadcasting time, as follows: Let » be any
vertex in V with u,,uo,...,ux, as its neighbors. Then, we compute the
cost function according to the following:

1. For the cost measurement as in 2.1.1 the cost function of v, Cy (T, v, t),
is:
(v,u5) . ;
max {lrgiaéck {Cl(T,,i , Uiy b+ z)} , Wy X t} ,

where
wy = {w (v),w(v) > €0, otherwise

The neighbors of v are ordered such that Cy(T&"™) U €y, uit) >
CI(T,EI';’:‘+‘) Uel,.,»%i+1,t), 1 i < k—1. For aleaf v in the tree T,
CI(T, v, t) = Wy.

2. For the cost measurement as in 2.1.2, we keep the value of the cost
function of each vertex in the tree, and the number of vertices for
which this function was calculated. Then, the cost function of v,
AC(T,v,t), is:

S (ACHTE™ st +4) + wy x 1))
i e + 1

where w,, is defined as in the above. The neighbors of v are ordered

as in 1 and n,, is the number of vertices in TS, For a leaf v in
the tree T, n, = 1 and AC/(T,v,t) = wy.

Notice that as in Algorithm Broadcast I we assign the functions AC; or
C, instead of f according to the required cost measurements.

Remark: In the case of equal weights, say, w(v) = 1V w(v), v € V(T)
we get only one time interval (¢§°). Therefore, steps 2.1 and 3.4 of the
algorithm are performed only once and algorithm Broadcast II coincides
with the algorithm presented in [15]. o

Correctness and Complexity of Broadcast II

The proof of the correctness of this algorithm is similar to the proof of
Algorithm I. The only difference is that the weights were assigned to vertices
instead of edges. Note that the cost functions consider the weight of a vertex
v assign the value zero whenever w(v) < e.
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The complexity of Broadcast II is O(nlogn) as of algorithm Broadcast
I Again, when all weights are equal we have time complexity O(n).

3.2.2 §-broadcast - Broadcast III

Broadcast 111is based upon Broadcast II when ¢ = co. The only difference
is in the definition of the cost function. We get only one time interval (t5°).
Therefore, steps 2.1 and 3.4 of the algorithms are executed only once.

In the case, w(v) = 0, V v € V(T') the message is not delayed. Moreover,
we get only one time interval (t§°) and this algorithm coincides with the
algorithm presented in [15].

The value of the cost function, Co(T,v,t), is computed according to the
cost definition, which is the broadcasting time, as follows: Let v € v(T)
with uy,ug, ..., u as its neighbors. Let the neighbors of v be ordered such
that Co(Ty™) U el ui,t) > Co(TSE ) usyy U el 1), 1 <6 <k — 1.
Then,

Co(T,v,t) = w(v) + {Irggk}{Cz(T,ue,t) +1}.

Note that if v is a leaf of T' then the value of the cost function is w(v).
Correctness and- Complexity of the Algorithm
The proof for correctness is similar to the proof for Broadcast I and Broad-
cast II.

In the case of equal weights the complexity of this algorithm is the same as
algorithm Broadcast I, since we get only one time interval (t§°). Therefore,
the steps 2.1 and 3.4 of the algorithms are executed only once. In addition,
we do not need to sort U, the set of leaves of T, prior to step 2 and we can
maintain a list of handled vertices for each v € V(T) as in [15]. Therefore,
the time complexity of the algorithm is O(n).

3.3 The Cost to Perform e-broadcasting or §-broadcasting from
Any Vertex

The algorithms for e-broadcast and §-broadcast from any vertex v are based
upon the broadcast number of v which is computed using the broadcast cen-
ter of T. This is done similarly to the edgeweighted tree (section 2.4). The
broadcast number of v, be(v) or bs(v) is the cost to perform e-broadcast for
a given ¢ from v or é-broadcast from v, respectively (section 3.1). It is com-
puted, as in the edge-weight broadcasting, using BC,(T) or BCs(T) where
BC(T) and BC;5(T) denote the BC(T) for e-broadcast or §-broadcast,
respectively.
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3.4 Broadcasting Multiple Messages

As in the edge-weighted tree;-we need to find BC(T) and b(v) before broad-
casting m(> 1) messages from any vertex v € V in a given tree T. For the
¢-broadcast the algorithm to broadcast m(> 1) messages is identical to the
edge-weighted tree.

Broadcasting m > 1 messages for the §-broadcast is done as follows: First
we deal with the case where m = 1. Let ug be the originator. Let v be any
vertex in V with uy,us,...,ux as its neighbors that are labeled in a non-
descending order according to their cost function values. The broadcast
pattern is such that v receives the message from %, 1 <! < k, at time ¢,
transmits it to u; at time ¢t 4+ w(v) + 1, to up at time ¢ + w(v) + 2 and so
on except for u, until at time ¢ +w(v) + k — 1 the message is transmitted
to uk. If v = vp then the restriction upon u; is removed.

For broadcasting m > 1 messages the originator vp transmits the first
message to its adjacent vertices, as in the previous case, then waits for con-
stant time steps, t,,, and transmits the next message in the same pattern.
We have that

to, = tlg’&a&(ﬂ){'u)('v) + d(v)} — d(vo) — w(vo) + 1,

where d(v) is the degree of v.

All other vertices, v 3 v, transmit each message received in time ¢ in the
same pattern as in the case m = 1 from time t+w(v) +1 to t +w(v) +k—1.
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