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Abstract

Let s'(G) denote the Hall-condition index of a graph G. Hilton
and Johnson recently introduced this parameter and proved that
A(G) € §'(G) € A(G)+1. A graph G is s'-Class 1 if s'(G) = A(G)
and is s'-Class 2 otherwise. A graph G is s'-critical if G is con-
nected, s'~Class 2, and, for every edge e, s'(G — e) < §'(G). We use
the concept of the fractional chromatic index of a graph to classify
§'—Class 2 in terms of overfull subgraphs, and similarly to classify
s'-critical graphs. We apply these results to show that the following
variation of the Overfull Conjecture is true;

A graph G is §'-Class 2 if and only if G contains an overfull subgraph
H with A(G) = A(H).
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1 Introduction

We consider finite simple graphs, and for terminology and notation not
defined here we refer to [1].

An edge list assignment to G is a function from E(G) into some collec-
tion of finite sets. If L is an edge list assignment to G, a proper L-colouring
of G is a function ¢ from E(G) into £ = U.eg(c)L(e) such that ¢(e) € L(e)
and ¢(e1) # ¢(ez) for every pair e, and ez of adjacent edges. For an edge
list assignment L to G and a symbol ¢ € L, let tg(o, L) denote the maxi-
mum number of independent edges of G such that each edge contains ¢ in
its list.

Hilton and Johnson introduced a necessary condition, called Hall’s con-
dition, for the existence of a proper L-colouring [8].

Definition. A graph G with a list assignment L satisfies Hall’s condition
if, for each subgraph H of G, |E(H)| < ) tu(o, L).
o€l

They also introduced the Hall-condition index (or edge-Hall condition
number) of a graph [9)].

Definition. For a graph G, the Hall-condition indez, denoted by ¢'(G), is
the smallest integer k such that if |[L(e)| > & for every e € E(G), then the
edge list assignment L of G satisfies Hall’s condition.

Let i(G) denote the edge independence number (or matching number)
of G. They proved the following theorem.

Theorem A. [9] For every graph G we have

a) A(G) < 5(G) <X (Q),
b) &'(G) = max{[IZEN1 - H < G, |E(H)|, #0).
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By the well-known theorem of Vizing [16] we have A(G) < X¥'(G) < A(G)+
1. Thus A(G) < §'(G) < A(G) + 1. We shall call G x'-Class 1if X' (G) =
A(G) and x'-Class 2 if x'(G) = A(G) + 1. Similarly, we shall call G
s'-Class 1 if s'(G) = A(G) and s'-Class 2 if s'(G) = A(G) + 1.

Recall that a graph G is x'—critical if it is connected, x'-Class 2, and
X' (G —e) < X' (G) (Ve € E(G)). We shall similarly call G s'—critical if it is
connected, s'-Class 2 and s'(G —e) < §'(G) (Ve € E(G)). K3 and K5 —e
are example of graphs that are both s'—critical and x'-critical.

In the second section of this paper we make some preliminary obser-
vations about s'—critical graphs. Some of these results are very similar to
known results about x/—critical graphs. This section also contains our first
theorem characterizing s'—critical graphs.

A graph G is called overfull if |E(G)| > A(G)I_ME,Q-[J, and just overfull
if |[E(G)| = A(G) llﬂzc—;llj +1. An overfull graph is s'-Class 2, and therefore
x'—Class 2. In Section 3 we characterize s'-Class 2 graphs in terms of
overfull subgraphs, and we also give two further characterizations of s'-
critical graphs. The discussion in this section depends on the formula for
X(G), the fractional chromatic index of G, derived by Seymour [13] and
Stahl [14] independently from Edmonds’ Matching Polytope Theorem [4].

In the final section we show that the Overfull Conjecture [2] can be
reformulated in terms of s'(G).

2 Some preliminary remarks about s'—critical
graphs

Let P denote the Petersen graph, let P* denote the Petersen graph with
one vertex removed, and let P* denote the Petersen graph with one edge
subdivided. ‘It is shown in [9] that P* is s'~Class 1, and it is well-known
that P* is x'-critical. Thus there are x'—critical graphs that are not s'-
critical. We show later in this section that P* is s'—critical, and yet is not
x'—critical. The main connection between s'~critical graphs and x'—critical
graphs is given in Proposition 1.
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Proposition 1. A x'-critical graph is either s'—critical or s'-Class 1.

Proof. Suppose that G is x'~critical and s'-Class 2. By definition, G is
connected. Also, since G is x'~critical, G is x'~Class 2 and, for each edge e,
X'(G—-e) <X'(G)=A(G)+1,50 s'(G-¢e) < X' (G - e) < A(G). Since G
is s'-Class 2, 5'(G) = A(G) +1, and so, for each edge e, s'(G — e) < '(G).
Therefore G is s'—critical. O

Our next few results demonstrate similarities between s'—critical graphs
and x'-critical graphs.

Proposition 2. Any s'-Class 2 graph contains an s'critical graph of the
same mazimum degree.

Proof. Let G be an s'-Class 2 graph. Remove edges and isolated vertices
from G until a connected graph H is obtained such that s'(G) = §'(H),
but s'(H — e) < §'(G) for all e € E(H). Then

AH)+1> s'(H) = 5'(G) = A(G) + 1> A(H) +1,

so A(H) = A(G). Then H is s'—critical. ]

Proposition 2 was to be expected. However it can be generalized to the
following theorem, which could not be anticipated so readily, in view of the
fact that, whilst the analogue of it for the parameter x'(G) is true (see [5]or
(17]), the analogue for the parameter xp(G), the total chromatic number
of G, is false (see [7]).

Theorem 3.Let G be an s'-Class 2 graph, and let 2 < d < A(G). Then G
has an s'-~critical subgraph H with A(H) = d.

The proof of Theorem 3 is postponed until Section 4.
Proposition 4. Let G be an s'—critical graph. Then G has at least three
vertices of mazimum degree. Moreover, if G has ezactly three vertices of

mazimum degree, then G is of the form Kon 1 — M, where M is a matching
withn — 1 edges.
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Proof. The assertion of Proposition 4 is known to be true for x'—critical
graphs (see [3]). Since s'(G) < x/(G) for all graphs G, Proposition 4 follows
if we show that Ka,41 — M is s'~Class 2. But this is true since Kopy1 — M
is just overfull. O

Proposition 5. Let G be a graph of s'-Class 1, and let u and v be two
non-adjacent vertices in G such thet dg(u) +dg(v) < A(G). Then G+uv
is also of &'—Class 1.

Proof. Let H' be a subgraph of G + uv. We must show that l%%?-l <
A(G). If the edge uv is not in H', then H' is a subgraph of G and we have
lif((HL,)ll < A(G), by Theorem A(b). Now suppose uv is an edge in H' and
H=H'-uv.

Case 1. i(H') =i(H) + 1. Then EEI ,(H, l%}%&# < JT((F)M < A(G).

Case 2. i(H') = i(H). Suppose to the contrary that JJ(}T)).I > A(G). We
have then that

AGi(H)+ 12> |EH)|+1=|EH')| 2 AG)i(H')+1=A(G)i(H)+1
so that E(H) = i(H)A(G). Let K = H — {u,v}. Then
|E(K)| = |E(H)| — (du(v) +du(v)) 2 A(G)i(H) - (A(G) - 1)

= AG)((H) — 1) +1.

But since s'(G) = A(G) it follows that | E(K)| < A(G)i(K), so A(G)(i(H)—-
1) +1 < A(G)i(K), so i(K) > i(H) = 1. But K is an induced sub-
graph of H, so i(K) < i(H). Therefore i(H) > i(K) > i(H) — 1, so
i(K) = i(H) = i(H'). But uv is an edge of H' that is independent
of any edge of K, and so i(K) < i(H'). This contradiction shows that
A@) > %—,—%l in this case also. u

Corollary 6. For every s'-critical graph G and every edge uwv € E(G),
d(u) +d(v) > A(G) + 2.

Proof. Let G be s'—critical. Then by Proposition 4 G has at least

three vertices of maximum degree. Suppose G has an edge wv such that
dg(u) + dg(v) < A(G) + 1. Let G' = G — uwv. Then A(G) = A(G') and

201



dg'(u) + dg' (v) < A(G) - 1. By Proposition 5, G is Class 1, a contradic-
tion. Therefore dg(u) + dg(v) > A(G) + 2 for all edges uv. m)

In the following theorem we show that no s'-critical graph has a cut
vertex.

Theorem 7. Every s'-critical graph is 2-connected.

Proof. Suppose z is a cut vertex of an s'critical graph G and G — £ =
H, U K, where Hy and K are disjoint . Let H = G[V(H;) U {z}] and
K = G[V(K1) U {z}]. Since G is s'-critical we obtain s'(H) < A(G) and
s'(K) < A(G). Let L be a subgraph of G. If z ¢ V(L) then L is a union
of two subgraphs H' and K', where H' is a subgraph of H; and K' is
a subgraph of K;. We have |E(H')| < A(G)i(H'), |E(K")| < A(G)i(K"),
and i(H') +i(K') = i(L). But |E(H')|+|E(K")| = |E(L)], so that 120 <
A(G).

Now suppose that z € V'(L). In this case L is the union of two subgraphs
H" and K", where H" is a subgraph of H and K" is a subgraph of K and
z € V(H")NV(K"). Let U be a maximum independent set of edges of L. If
U has no edge incident with z, define U, = UNE(H") and U, = UNE(K").
Then i(L) = |Uy| + |Uz| = i(H") + i(K"), and so |E(L)| < A(G)i(L). IfU
has an edge incident with z, define Uy, = UN(H" ~z) and U, = UN(K" —z).
(Either i(H" — ) +4(K" —z) = |Uy|+|Uz| or there is a maximum matching
in L which does not saturated z, a possibility dealt with just above.) Then
i(L) = U] = [Ur]|+|Us|+1 and |E(L)| < |E(H" —z)|+|E(K" - 2)|+ A(G),
and therefore |[E(L)| < A(G)i(H" ~z)+A(G)i(K"—z)+A(G) = A(G)i(L).
It follows that max{%%l : H < G} < A(G), a contradiction. Therefore
every s'—critical graph is 2-connected. (m]

We remark that Proposition 5, Corollary 6 and Theorem 7 can all be
derived without much difficulty from Theorem 18 , which is independent
of them. However the proofs we have given are elementary, whereas our
proof of Theorem 18 is relatively sophisticated; so it seems reasonable to
give these elementary direct proofs.

We now give our first result characterizing s’~critical graphs.
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Theorem 8. A graph G is s'-critical if and only if

a) |E(G)| = A(G)i(G) + I;
b) for every non-empty, proper subset F of E(G), i(G — F) > i(G) -
F|-1
c) "

Proof.

Necessity. Let G be an s'—critical graph. Then, by Theorem A there exists
a subgraph H of G such that ‘%%M > A(G). But since G is s'-critical, H is
not a proper subgraph of G. Therefore G = H. Thus |E(G)| > A(G)i(G).
Now there exists an edge e in G such that i{(G — e) = i(G), because if there
is no such edge e, then i(G) = |E(G)| and A(G) = 1, so l%((%il < AG),
a contradiction. By the s’-criticality of G we have ”—f(%c—"_;:%l < AG),
5o |E(G)| - 1 £ A(G)i(G). Therefore we have A(G)i(G) < |E(G)| <
A(G)i(G) + 1. Hence part (a) holds.

Now let F' be a non-empty proper subset of the edges of G. Then,

since G is s'-critical, we have ]%%G_;;))J < A(G). Note that F must be non

empty and be a proper subset of E(G) for this to hold. We then have that
|E(G)| - |F| < A(G)i(G — F). Therefore, using (a),
A(G)iG) - (IF|-1) = |E(G)|-1-|F|+1=|E(G-F)| £ A(G)i(G-F),
so that i(G) — [}z < i(G — F), as required for (b).
Sufficiency. Suppose that G satisfies (a) and (b). By (a) and Theorem A,
G is s'-Class 2. Suppose that G is not s'—critical. Then G has a proper
subgraph H such that A(G) = A(H) and H is s'—critical. Then, by the
necessity, |E(H)| = A(G)i(H) + 1. Clearly |E(H)| # 0. Therefore

|E(G) — E(H)| = A(G)(i(G) —i(H)) (%)
and 0 < |E(G)| — |E(H)| < |E(G)|. But by (b) we have

|E(G) — E(H)| -1
A(G)

so that [E(G) — E(H)| -1 > A(G)(i(G) —i(H)), contradicting (*). There-
fore G is s'—critical. (m]

i(H) 24(G) -

Finally in this section we show that P*, the Petersen graph with one
edge subdivided, is s'—critical but not x'-critical (see Figure 1). Since P*
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is x'-critical and is a proper subgraph of P*, P* is not x'-critical. Let
G = P*. Then ZQN = 18 5 A(G) = 3. Hence G is s'Class 2. We shall
show that G contains no s'-critical proper subgraph H with maximum
degree 3. If G does contain such a subgraph H then, by Theorem 8(a),
|E(H)| = 3i(H) + 1. Note that G has no K3 or Cy as a subgraph. Also
note that, by Theorem 7, H has no vertex of degree 1.

Let = be a vertex of H of degree 3. Let y1,%2,ys be the neighbours
of z. Since G has no K3 or C4 as a subgraph, y,vs2,y: have distinct
neighbours, say zi, z2, 23 respectively. Then H has the three independent
edges y121,Y222 and y3z3, so i(H) = 3 or 4.

Suppose i(H) = 3. There cannot be a further vertex in H joined to one
of 21, 22, 23, for then ¢{(H) = 4. But since there are no vertices of degree 1
in H, and since H has no K3 or Cy, 21,22 and 23 are connected by a path;
thus without loss of generality, we may suppose that H contains the edges
2122 and zp23. But since there is no K3 or Cy4 in G, no further edge can
join any pair of y;,¥2,y3, 21, 22, 23, and so |E(H)| = 8, a contradiction.

Finally suppose that i(H) = 4. Then H is obtained by deleting 3 edges
from G. We may suppose that V(G) = {1,2,3,4,5,6,1',2',3',4',5'} and
that A is the independent set A = {11',22',33',44',55'} and the remaining
edges of G are as shown in Figure 1. An edge of A must be deleted in
forming H, otherwise H has five independent edges. Therefore of most
two edges are deleted from G — A = Cs U Cg. It is easy to check that
the only way of deleting up to two edges from Cs U Cs without leaving
five independent edges is to delete two edges from Cg, these being either
adjacent or opposite. Suppose these edges are adjacent. Since H has no
vertex of degree 1, H must be obtained by deleting either a vertex of degree
3 of G, or edges 46, 56 and one of the edges 11, 22', 33’ of G. In each case
we can check that H has 5 independent edges. If the deleted edges are not
adjacent then we can’t delete either 46 or 56 (otherwise there would be a
vertex of degree 1), and since we must delete an edge of each of A, B,C, we
must delete the edges 15, 34, and 22'. But the resulting graph again has 5
independent edges. So in every case i(H) = 5, a contradiction. Therefore
G is s'—critical.
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Figure 1.

3 s'—critical graphs and just overfull graphs

In this section we characterize s'—critical graphs in terms of just overfull
graphs. We also characterize s'-Class 2 graphs. The discussion depends in
a surprising way on a formula for the fractional chromatic index of a graph.
We first need some definitions.

Definition. (i) A k-set edge colouring of G is an assignment of k-sets
to the edges of G so that any two edges that have a common vertex are
assigned disjoint k-sets.

(ii) The k-edge chromatic number of G, x'¥)(G), is the least integer j
such that edges of G' can be properly k-set coloured, with k-subsets of

{1,2,. ]}
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iii) The fractional edge chromatic number of G, x',(G), is defined by:
/
' _ l (k)
X5(G) = lim —x""(G).

It is well known that this limit exists and it is equal to the minimum of the
numbers %x’(") (G),k=1,2,---. Obviously X5(G) £ X'(G). In the follow-
ing theorem a formula for X3 (G) was derived from Edmonds’ description
of the matching polytope [4]; this derivation was made independently by
Seymour [13] and Stahl [14]. An account of this may be found in [11).

Theorem B. For every graph G,

X/(G) = max{A(G), max(7 2| E(H)|

=T 2 6 VH)| 2 3 is odd)}}.

Using Theorem B we first prove the following lemma.

Lemma 9. For every graph G,

maz{ZEDI ((H))' H < G and |E(H)| # 0} =

max{A(G), max{a‘;l(g()f—lll)

Proof. Let v be a vertex of maximum degree, and let H, be the subgraph
of G induced by the edges incident with v. Then ‘%5&‘%1 AG). tH

is any subgraph of G with |V(H)| > 3, odd, then gifil, < 1B
Therefore

:H <G and |V(H)| > 3 is odd}}.

ma:z:{| ((H))I H < G and |E(H)| #0} >

2lE(H)|
(IV(H)| -1)
and so, using Theorem B,

max{A(G), max{ : H <G and |V(H)| > 3 is odd}},

ma:a:{I ((H))l H < G and |E(H)| # 0} > x}(G).
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Now let G be the multigraph obtained from G by replacing each edge
by k parallel edges. Then x'*)(G) = x'(G). If H is a subgraph of G with
|E(H)| # 0 and Hy, the corresponding subgraph (with each pair of vertices
either not joined or joined by k parallel edges) of H, then

|E(H)| _ KIE(H)|

X' (Gr) > x'(Hy) 2

i(He) — i(H)
Thus %X (Gk) - If . Since this holds for all & > 1, it follows that
x5 (G) 2 . Since H was an arbitrary subgraph of G with |E(H)| # 0,

it follows that

x5(G) 2 maz{I H)] . : H < G and |E(H)| # 0}.

i(H)
Therefore
x7(G) = ma.:z{| ((H))l H < G and |E(H)| # 0}.
The result now follows from Theorem B. a

An immediate corollary is:
Corollary 10. For any graph G,
§'(G) = [x; (G-
Putting this another way:
Corollary 11. For any greph G,

#/(6) = max{A(G), max( AEE . g < G and |V(H)| > 3is odd}}.

V(H)|-1)
We can now use Corollary 11 to characterize s'-Class 2 graphs.

Theorem 12. A graph G is s'-Class 2 if and only if G contains an overfull
subgraph H with A(H) = A(G).

Proof. From Corollary 11 we see that a graph G is s'-Class 2 if and
only if, for some subgraph H with |V(H)| > 3, uzl(%ﬁ[ll'j > A(G), ie.
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|E(H)| > A(G)lmgnj (note that if H satisfies this last inequality, then
|V (H)| is necessarily odd). But if G is s'-Class 2 then A(G)+1 > A(H) +
1> s'(H) > A(G) + 1, so that A(H) = A(G). Theorem 11 now follows
easily. m]

Before stating our next result, let us remark that if G is overfull it does
not necessarily follow that ¢(G) = Lll(%llzll An example of an overfull

graph G with i(G) < {X(&U=1) s given in Figure 2.

Figure 2.

Theorem 13. Every s'—critical graph G

a) is just overfull,
b) satisfies i{(G) = ﬂﬂ%[l—_ll

Proof. Let G be an s'—critical graph. Then, since G is s'-Class 2, for
some subgraph H of G we have 1%(1%1[ > A(G), and so, by Lemma 9, for
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some subgraph H* of G with |V (H*)| odd, we have a%,fu,,yﬂ-uﬁ > A(G).
We shall show that H* = G. Suppose that this is not the case, and that
H* is a proper subgraph of G. Since G is s'—critical,

1
maz{ l,E.((g))' . H' < H* and |E(H")| # 0} < A(G),
and so, by Lemma 9, ﬂ‘_z;‘%?ﬂ'u_i < A(G), a contradiction. Thus H* = G,

so that |V(G)} is odd and m—z,%% > A(G), i.e. G is overfull. It follows
that

|E(G)| > A(G)w +1> A(G)i(G) + 1.

But, by Theorem 8, |E(G)] = A(G)i(G) + 1. Therefore i(G) = Q=1
It now follows that G is just overfull. (]

In 1973 Jakobsen [10] conjectured that every x'—criticall graph has odd
order. In 1981 this was shown by Goldberg [6] to be untrue, but it is in-
teresting to note that the conjecture is true if s’ substituted for x'.

Corollary 14. Every s'-critical graph has odd order.

The example of Figure 3 shows that the converse of Theorem 13 is not
true. Here |E(G)| = 21, |V(G)| = 11, i{(G) = 5 and A(G) =4, so G is just
overfull and satisfies i(G) = ﬂ—(%ﬂ—l But G contains H = K5 —e as a

subgraph, and l%%?-l 9 >4 =A(G), so H is s'-Class 2, and so G is not
s'—critical.
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Figure 3.

The graph G of Figure 2 is just overfull but ¢(G) < M%U_—l)-, so, by
Theorem 13, it is not s'—critical. Without quoting Theorem 13, though,
it is easy to see that G is not s'—critical, since it has the six overfull (and
therefore s'~Class 2) subgraphs of order 9 with the same maximum degree.
These two examples (of Figure 2 and 3) suggest our characterization of
s'—critical graphs in terms of just overfull subgraphs.

Theorem 15. A graph G is s'—critical if and only if G is just overfull and
contains no proper overfull subgraph of the same marimum degree.

Proof. If G is s'—critical then, by Theorem 13, G is just overfull ; and
clearly G has no proper overfull subgraph of the same maximum degree.

Now suppose that G is just overfull and contains no proper overfull

subgraph of the same maximum degree. It is easy to see that G is con-
nected. Also G has odd order and [5Q1 > HZI > A(G). Thus G

is s'-Class 2. If G were not s'—critical, the;, by Proposition 2, G has an
s'—critical subgraph G' with A(G) = A(G'). By Theorem 13, this would
contradict the assumption that G has no proper overfull subgraph with the

same maximum degree, Therefore G is s'—critical. 0O

If A(G) > |V(G)| then Theorem 15 can be simplified using a theorem
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of Niessen [12).

Theorem C. Let G be an overfull graph with A(G) > 1|V(G)|. Then G
has no overfull subgraph H with A(H) = A(G) and |V(H)| < |[V(G)].

The simplified characterization is:

Theorem 16. Let G be a graph with A(G) > 4V(G)|. Then G is s'-
critical if and only if G is just overfull,

Proof. This follows from Theorem C and Theorem 15. a

In Figure 2 the overfull proper subgraphs are each connected to the rest
of the graph by one or two edges. In general, if an overfull graph G has
an overfull subgraph H with A(H) = A(G), then the edge connectivity is
low. This feature can be used to give a slightly different characterization
of s'—critical graphs.

First some more notation. Let the deficiency, def(G), of a graph G be
defined by:
def(G)= Y (AG) - da(v)).

veV(G)

Proposition 17. A graph G is overfull if and only if V(G) is odd and
def(G) < A(GQ) - 2.

Proof. If G is overfull then V(G) is odd and |E(G)| > A(G)(IXGU=1), 50

Y de@)ZAG)IVG)-D+2=( Y AG) - (AG) -2),

veV(G) veEV(G)

so def(G) < A(G) — 2. The converse follows similarly. ]

If V(G) = Wy UW, where Wy N W, = 0, let defw, (G) be defined by:
defw,(G) = D (A(G) - dg(v)).

vEW]
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We can now state our third characterization theorem for s'-critical
graphs.

Theorem 18. A graph G is s'—critical if and only if G is just overfull (so
def(G) = A(G)—2) and G contains no cut set F' of edges such that G — F
is the disjoint union of two graphs Gy and G2, where |V(G,)| is odd and
defv(c,)(G) + |F| < A(G) - 2.

Proof.

Necessity. Suppose G is s'—critical. Then by Theorem 15 G is just overfull
and G has no overfull subgraph of the same maximum degree. Suppose
G contains an edge cut F such that G — F is the disjoint union of G
and G,, where |V(G})| is odd and defy(c,)(G) + |F| < A(G) — 2. Then
def(G1) < A(G) - 2. Since G, is not an overfull subgraph of the same
maximum degree, it follows that A(G) = A(G;) + k for some k£ > 1. The
inequality def(G1) < A(G) — 2 can be rewritten

3 (A(G) - dg, ) £ A(G) - 2.

vEV(G1)
Therefore
Y. (AG) +k~dg,(v) SAG) +k -2,
veV(Gh)
so that

E([V(G1)l — 1) + def(Gh) < A(G1) =2 < [V(Gh)]) -3,

which is impossible. Therefore G contain no such edge-cut F.

Sufficiency. Suppose that G is just overfull and contains no cut set F° of
edges such that G — F is the disjoint union of two graphs G and G2, where
[V(G4)| is odd and defy(g,)(G) +|F| < A(G) —2. We need to show that G
has no proper overfull subgraph (for then it follows from Theorem 11 that
G is s'—critical). Suppose G does contain a proper overfull subgraph G,
with A(G;) = A(G). Then [V(G1)] < [V(G)]. Let F be the set of edges of
G joining V(G,) to V(G)—V(G1). Since G, is overfull and A(G:) = A(G),
def(G1) < A(G) — 2. Since defv(Gl)(G) = def(Gy) — |F| it follows that
defv(G,)(G) +|F| < A(G) — 2. But this is a contradiction. Therefore G is
s'—critical, as required. m]
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4 s'-critical subgraphs

In this section we prove Theorem 3 showing that if G is an s'~Class 2 graph,
and if 2 < d < A(G), then G has an s'-Class 2 subgraph H with A(H) = d.
Our proof depends on Theorem 15, and so it seems to be inherently more
complicated than the other results in Section 2.

Lemma 19. Let G be a just overfull graph that does not contain a proper
overfull subgraph at the same mazimum degree, and let G # K3. Then G
has a near 1-factor that contains all vertices of mazimum degree.

Proof. Since G # K3 and G is just overfull, G is not a complete graph.
Let a € V(G) be a vertex with dg(a) < A(G). Form a graph G* of
even order |V(G*)| = |V(G)| + 1 and maximum degree A(G) by at-
taching a pendant edge at a. Clearly G has a near 1-factor that in-
cludes all vertices of maximum degree if G+ has a I-factor. Note that
IE(GH) = 3A@)(IV(G)] - 1) +2.

Suppose that G* has no 1-factor. Then by Tutte’s theorem [15], there
isaset § C V(G*) such that G+ — S contains at least s+1 odd components
C1,C2,-++,Ce41, where |S] = s. Since [V(G*)| is even, we can say that
G*—S is the disjoint union of Cy, C,, - - -, Cs+1 and H, where |V (H)} is odd.
By assumption, none of Cy,Cs,-- »Cs+1, H are overfull with maximum
degree A(G). Therefore A(G)([V(G)| — 1) + 2 = |E(G)|, but

|E(GH)| SA(G) + |E(C1)| + |E(C2)| + - -+ + | E(Cosa)| + |E(H)|
sA(G)+
FAGIV(C)| +|V(Co)| +- -+
[V(Corr)| +|V(H)| - (s +2))
sA(G) + FAG)(IV(GH)| - s — (s + 2))
SA(G) + LA(G)(IV(G)| - 25— 1)
= FAG)V(G)-1),

INIA

a contradiction. Therefore G* does have a 1-factor, and so G has a near
1-factor that includes all vertices of maximum degree. O

We are now in a position to prove Theorem 3.
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Proof of Theorem 3. If d = A(G) then this is Proposition 2.

Suppose now that d = A(G) —1 > 2. Let G* be an s'~critical subgraph
of G with A(G*) = A(G). Then by Theorem 15, G* is just overfull and
contains no proper overfull subgraph at the same maximum degree. By
Lemma 19, G* contains a matching J of size (|V(G*)| — 1) that contains
all vertices in G* of degree A(G*). Then A(G* — J) = A(G) — 1. Also

B(G" - )| =BG - 5(V(G) - 1)

AG)IV(E) = 1)+ 1= 5(V(E) - 1)

N =

AG* = I)NV(G" =N -1 +1,

[ SR

so (G*—J) is s'-Class 2 and has maximum degree A(G)—1. By Proposition
2, (G* — J) has an s'—critical subgraph H of the same maximum degree.
Then H is the required s'—critical subgraph of G of maximum degree d =
A(G) - 1.

If d < A(G) — 1, then we just repeat this argument until we obtain an
s'—critical subgraph of degree d. o

5 The Overfull Conjecture

The Overfull Conjecture, due to Chetwynd and Hilton [2], was an attempt
to find a simple characterization of graphs of x'~Class 2 in the case when
A(G) > lﬂag)-l It states:

The Overfull Conjecture 1. Let G be a simple graph with A(G) >
Jﬂs—cm. Then X' (G) = A(G) + 1 if and only if it has an overfull subgraph
H with A(H) = A(G).

The Overfull Conjecture can be reformulated in the following way.

The Overfull Conjecture 2. Let G be a simple graph with A(G) >
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YO Then
X'(G) =5'(G).

Theorem 20. The two versions of the Overfull Conjecture are equivalent.

Proof. Let A(G) > Ms_cﬂl The equivalence of Conjecture 1 and 2 follows
immediately from Theorem 12. a

We remark finally that if the Overfull Conjecture is untrue then there is
some graph G with A(G) > X8 5(G) = A(G) and X/(G) = A(G) + 1.
By the definition of s'(G), any edge list assignment to G in which all lists
have size A(G) will satisfy Hall’s Condition, in particular the edge list as-
signment where L(e) = {c1,¢2,"-,¢ca(6)} (Ve € E(G)). 1t is possible that
this observation might help eventually to find a solution to the Overfull
Conjecture.
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