A Failure Function for Multiple
Two-dimensional Pattern Matching

Maxime Crochemore!'*, Costas S. Iliopoulos?-3**,
Maureen Korda?***, and James F. Reid?4t

! Institut Gaspard-Monge, Université de Marne-la-Vallée, Cité Descartes, 5 Bd
Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée CEDEX 2, France.

? Dept. Computer Science, King's College London, London WC2R 2LS, UK.
3 School of Computing, Curtin University of Technology, GPO Box 1987 U,
Western Australia.

4 Dipt. di Elettronica e Informatica, Universita degli Studi di Padova, Via
Gradenigo 6/A, Padova 35131, Italy.

Abstract. Given a two-dimensional text T and a set of patterns
D= {P,..., P} (the dictionary), the two-dimensional dictionary
matching problem is to determine all the occurrences in T of the
patterns P; € D. The two-dimensional dictionary prefiz-matching
problem is to determine the longest prefix of any P; € D that occurs
at each position in T'. Given an alphabet X, an n x n text T and a
dictionary D = {Pi,..., P}, we present an algorithm for solving
the two-dimensional dictionary prefix-matching problem. Our al-
gorithm requires O(|T’| + |D|(log m + log | X])) units of time, where
m x m is the size of the largest P; € D. The algorithm presented
here runs faster than the Amir and Farach [3] algorithm for the
dictionary matching problem by an O(log k) factor. Furthermore,
our algorithm improves the time bound that can be achieved using
the Lsuffix tree of Giancarlo [6],(7] by an O(k) factor.

Keywords: Two-dimensional string algorithms, dictionary prefix-matching,
data structures, image processing.

* Partially supported by the C.N.R.S. Program “Génomes”. macQuniv-mlv.fr.
** Partially supported by the EPSRC grant GR/J 17844. csi®dcs.kcl.ac.uk.
*** mo@dcs.kcl.ac.uk.
t Supported by a Marie Curie Fellowship of the European Commission Training
and Mobility of Researchers (TMR) Programme. jfr@dcs.kcl.ac.uk.

JCMCC 35 (2000), pp. 225-238

1 Introduction

Given a string z of length n and a pattern p of length m, the string prefiz-
matching problem is that of computing the longest prefix of p which occurs
at each position of 2. Main and Lorentz introduced the notion of string
prefix-matching in [15] and presented a linear time algorithm for it; their
algorithm was an adaptation of the Knuth, Morris and Pratt algorithm
[12].

In two dimensions, the prefiz-matching problem is to compute the largest
prefix of an m x m pattern P which occurs at each position of an n x n

text T'. For example if :
(11001001\

00110111
0110 01101010
1101 00101101

P=10101]24T=|10011001
0011 01001000

00110010
\01101011

then the prefixes of the pattern P of size one are all the occurrences of
the symbol 0 in the text T and the prefixes of size two, three and four are
marked in bold.

The two-dimensional prefix-matching problem can be solved using the
LSuffiz tree data structure of Giancarlo [6], [7]. Giancarlo’s data structure
is a generalization to two dimensions of the McCreight[14] construction
for one-dimensional strings. The LSuffix tree for an n x n input text T,
defined over an alphabet X, takes O(|T|(log|Z| + logn)) time to build,
where [T'| = n2. All positions in T' where an m x m pattern P occurs can
be found in O(|P|log|Z| + t) time, where |P| = m? and ¢ is the total
number of occurrences.

Let T be an n x n array called the tezt and let D = {P,,..., P} be aset
of square patterns called the dictionary. Each P; € D is an m; X m; array
such that the m;’s are not necessarily the same. We denote the total size
of the dictionary by |D| where |D| = Zf=1 m; and let the largest pattern
in D be of size m x m.

Using the above notation, the two-dimensional dictionary matching
problem (2DDM) is that of finding all the occurrences of the patterns in
D in the text T. The two-dimensional dictionary prefiz-matching prob-
lem (2DDPM) is to determine the longest prefix of at least one pattern
in D that occurs at each position of the text T. A solution to the dic-
tionary prefix-matching problem also solves the dictionary matching prob-
lem, but the reverse is not true. The two-dimensional dictionary all prefiz-
matching problem (2DDAPM) is to determine the longest prefix of all pat-

226

terns of D that occurs in each position of the text T. Here we present
an algorithm for solving any of the three problems above that requires
O(|T| + |D|(logm + log|Z])) units of time.

Amir and Farach presented in [3] an O((|T| + |D|) log k) time algorithm
for the 2DDM problem. The algorithm presented here improves this bound
by a factor of O(log k). One can use Giancarlo’s Lsuffix tree for solving the
2DDPM problem in O(|T|logn + |D|) time and the 2DDAPM problem in
O(|T'|logn + |D| +t) units of time, where ¢ is the number of occurrences of
the patterns in the text. Since ¢ can be O(k|T|), the algorithm present.d
here is faster by at least a factor of O(k).

In addition to its theoretical importance, dictionary matching problems
have many practical applications in computer vision, data compression and
visual databases. For example, in computer vision one is often interested
in matching an enormous set of templates against a picture (see [3]). The
2DDAPM problem is of particular importance in occluded image analysis.
In images composed from a given set of objects that may be partially
occluded by each other, one needs to find prefixes of the objects occurring
in the image (see [11}, [9], [10]).

The paper is organised as follows. In the next section we present some
basic definitions for strings in one and two dimensions. In Section 3 we
describe the data structures needed for the algorithm: the common prefix
tree and the Aho-Corasick automaton. In Section 4 we extend the notion
of a failure function: we define the dictionary diagonal failure function and
present an algorithm for computing it over a dictionary D. In Section 5 we
present the main algorithm. Finally in Section 6 we present our conclusions
and open problems.

2 Background and basic string definitions

A string (or word) is a sequence of zero or more symbols drawn from an
alphabet X, which consists of a finite number of symbols. The set of all
strings over X' is denoted by X*. The string of length zero is the empty
string € and a string z of length n > 0 is represented by z;z3 - - - T, Where
z; € X for 1 < i < n. The string zy is a concatenation of two strings z and
y. The concatenation of k copies of z is denoted by z*. A string w is said
to be substring of z if and only if z = uwv for some u,v € Z*. A string w
is a prefiz of z if and only if £ = wu for some u € XZ*; if u is not empty
then w is a called a proper prefiz of z. Similarly, w is a suffiz of = if and
only if £ = uw for some v € X*; if u is not empty then w is called a proper
suffiz of x. Additionally prefizi(z) denotes the first k symbols of 2 and
suf fizi(z) denotes the last k symbols of z.

A two-dimensional string is an r X s array (or matrix) of symbols drawn
from X. We represent an r x s array X by X[1..r,1..s]. A two-dimensional

227

p X g array Y is said to be a sub-array of X if the upper left corner of Y
can be aligned with X[¢,j], ie. Y[l.p,1..q] = X[i.i+p—1,j5.5 +¢q— 1],
for some 1 <i<r—-pand1<j<s-—q.Asquare m x m sub-array Y is
said to be a prefiz of X if Y occurs at position X[1..m, 1..m]. Similarly, Y
is said to a suffiz of X if Y occurs at position X[r —m+1..r,s —m+1..9].

In the sequel we let T' be an n x n array called the text and D =
{P,..., P} be a set of square two-dimensional patterns P; of size m; x m;
for i € {1,..,k} called the dictionary. The m;’s are not necessarily the
same. Furthermore we denote the total size of the dictionary by |D| where
ID' = 2::1 m;.

We decompose our two-dimensional strings into L-shaped substrings
according to the techniques first introduced in [3] and formally defined in
[6,7]. Specifically, we use the following notation from [6]: given an n x n
array A, an Lcharacter is a string that is composed from the sub-row and
sub-column of equal length that join in a position A[i, j] and that occur to
the left and to the top of A[z,j]. In this paper, we consider the positions of
these substrings in reverse order: e.g, the Lcharacter that joins at position
Al,4],1 < i < n consists of the sub-row A[i,i]A[i,i — 1]..A[i, 1] and the
sub-column A[z,i]A[i — 1,4]..A[1,]. We call this the i-th Lcharacter of A.
See Figure 1 (ii) for an example of an i-th Lcharacter and [7], [4] (Chap.
10) for further details and formalism on the linear representation of two-
dimensional strings.

The lower d-diagonal of an nxn array T is T[d, 1), T[d+1,2],...,T[n,n—
d + 1] for some d € {1,..,n}. The upper d-diagonal of an n x n array T is
T([1,d),T[2,d+1),...,T[n ~d+1,n] for some d € {1,..,n}.

Let T; denote the prefix T'[1...s, 1...s] of T'. We define the diagonal failure
function f(i) of T, for 1 < i < n to be equal to s, where s is the largest
integer less than n such that T(i — s+ 1...4,i — s + 1...i] = T; if there is no
such s, then f(i) = 0 (see Figure 1 (i)). A linear procedure for computing
the diagonal failure function was presented in [5]; a similar algorithm was
presented in [1].

3 Common prefix tree and Aho-Corasick automaton

In this section we first introduce a simple data structure that stores all
the common prefixes existing between patterns in D. We then review the
well known Aho-Corasick automaton that is used for dictionary matching
in one-dimensional strings. Finally, we combine these techniques to create
the data structure needed in the main algorithm.

228

6 (i)
Fig. 1. (i) The diagonal failure function of a.square matrix, (ii) The i-th Lstring .
of a square matrix.

3.1 Common prefix tree

The common prefix tree associated with a dictionary D of square two-
dimensional patterns is a trie data structure such that the root node is at
level 0 and the nodes at each level ¢ represent all the distinct prefixes of
size 7 X ¢ that exist in D. In this way, all common prefixes are identified and
stored. It is used in the sequel for identifying subsets of D sharing common
prefixes. Note that since the size of the patterns in D varies, one pattern
may be contained within another one.

Definition 1. The common prefiz tree for a dictionary D = {P,,..., P}
of square patterns where P; has size m; X m;, is a rooted trie (digital search
tree) with k leaves such that:

1. Each edge of the tree is labeled with the j-th Lcharacter of a pattern
and is directed away from the root.

2. No two edges emanating from the same node have the same label.

3. The concatenation of m; labels on the path from the root to a leaf is
uniquely identified with a pattern P; in D.

We adopt the convention of padding each pattern P; with an extra
Lcharacter consisting of $ symbols, where § is a symbol that does not
appear in Y. This ensures that each pattern P; is uniquely identified with
a leaf of the common prefix tree. Figure 2 represents a common prefix tree
associated with a dictionary D = {P,,..., Fs}.

Common prefix tree construction: The tree is constructed by simulta-
neously progressing along the main diagonal of each of the k patterns and

229

T
J

[EIEY

[31s]s

{albjc

{3isis

3isis

Tealodonl
1 (b}

BISTSTS

Fig. 2. The common prefix tree of the patterns in D = {P,..., Ps}.

performing substring comparisons amongst each resulting group of at most
k Lcharacters. A brief description is as follows:
INITIALIZATION:

Firstly, using the patterns in D, we build a suffix tree from the rows and
a suffix tree from the columns. We then apply the linear time algorithm
of [8] that preprocesses these trees for answering Lowest Common Ancestor
(LCA) queries. This technique was first used in [13] for performing substring
comparisons in constant time. We use the same method to compare sub-
rows and sub-columns in constant time.

CONSTRUCTION:

At each step j, we compare the j-th Lcharacters (rows and columns)
from each pattern of size at least j x j: i.e the sub-rows P;[4, j..1] and the
sub-columns P;[j..1,7]. As soon as any two Lcharacters differ by at least
one symbol, a new node is created in the tree.

After constructing the common prefix tree, we assign a unique index
to each internal node such that each index represents a subset of patterns
sharing a common prefix.

230

Fig. 3. The Aho-Corasick automaton for {abca, aabc, acba, aaca}. Non-trivial fail-
ure links are shown as dotted lines. Final states are shown as patterned squares.

Theorem 1. The common prefix tree of a dictionary of k¥ square patterns
of various sizes D = {P,, ..., P;} can be constructed in O(km?) time, where
m X m is the size of the largest pattern in D.

3.2 Aho-Corasick automaton

The Aho-Corasick automaton [2] was designed to solve the multi-keyword
pattern-matching problem (one dimensional dictionary matching): given a
set of keywords {ry,...,rr} and an input string ¢, test whether or not
a keyword r; occurs as a substring of . The Aho-Corasick (AC) pattern
matching automaton is a six-tuple (@, 2, g, h, go, F'), where Q is a finite set
of states, ' is a finite alphabet, g : @ x £ — Q U {fail} is the forward
transition (fail is a flag that is set when no forward transition can be
made), h : @ = Q is the failure function (link), go is the initial state and
F is the set of final states (for details see [2]).

Informally, the automaton can be represented as a rooted labelled tree
augmented with the failure links. The label of the path from the root (initial
state go) to a state s is a prefix of one of the given keywords; we denote
such a label by [;. If s is a final state, then [; is a keyword. There are no
two sibling edges which have the same label. The failure link of a node s
points to a node h(s) such that the string [, is the longest prefix of a
keyword that is also a suffix of the string I, (see Figure 3 for an example).

231

Theorem 2 ([2]). Given a set of keywords {rj,...,7¢} and an input
string ¢ of length n, the Aho-Corasick automaton solves the multi-keyword

pattern-matching problem in O(n + km) time, where m is the length of the
longest keyword.

In the sequel we shall need to perform substring comparisons using the
Aho-Corasick automaton together with the following result.

Theorem 3 ([5]). Given the Aho-Corasick automaton for the set of key-
words 71,...,7 and allowing linear time for preprocessing, the query of
testing whether prefix;(r;,4) = rm, where ; 4 is the suffix of 7; which starts
at the d-th position of r;, requires constant time.

Next we describe our use of the Aho-Corasick automaton and how we
establish links from it to the nodes of the common prefix tree. To aid the
description we use of the following notation:
let r; and ¢; denote the rows and columns of the text T respectively, let 'r,.(j)
denote the sub-rows P;[i,i]P;[i,i — 1]... P;[i, 1], where 1 < i < m; of each
pattern P; and let ag’) denote the sub-columns P;(i,3)P;[i — 1,4)... P;[1,1],
where 1 < i < m; for each pattern P;. We build an Aho-Corasick automa-
ton using the following keywords:

(1) 1 k k
TlyeeeyTny, T ,...,1‘,(,“), ceey ‘rl(),...,T,(m?

1) 1 (k k
DTIP I C R R C I

From Theorem 3 it follows that, allowing linear time for preprocessing
the keywords from the text and the patterns, the query of testing whether
prefix, (suffixq(r;)) = 89 requires constant time. Note that several j’s
might satisfy this query. In order to identify whether a pattern P; is one
of those j’s we label the edges of the common prefix tree using the fi-
nal states of the AC automaton. Consider the edge between two nodes
n1,ne in the common prefix tree. If the Lcharact,er’ that labels the edge
(n1,n2) consists of the sub-row P;[i,4] ... P[¢,1] = 8 and the sub-column
P;li,i]... P;[1,i] = o for some i € {1,..,m;}, then we assign
LINK(n;,h,g) = ny where h and g are the final states in the AC au-

tomaton that are associated with 7\’ and agj) respectively. We adopt the
convention of padding the s-th row (column) of P;, by the special symbol
#s ¢ X for all s and i. This ensures that the s-th rows (columns) are

uniquely identified for all s.

232

4 Dictionary diagonal failure function

The main algorithm makes use of the diagonals of the text matrix T' (see
Figure 4). Starting from the top of each d-diagonal and sliding downwards,
we iteratively compute the maximum prefix, say P;, of some P; at each
point on the d-diagonal. At the next iteration step, we attempt to augment
that occurrence by extending it by a sub-row and a sub-column, that is an
(¢ + 1)-th Lcharacter. If such an extension of the occurrence of the prefix
of P; is not possible, then we need to compute the largest prefix, say P;,
of a pattern P;, j € {1,..,k} that is also a suffix of P;. We then proceed
to extend I3j, if that is possible in turn. This technique is a generalization
of the classical KMP failure function [12] to two-dimensional strings and
multiple patterns.

Definition 2. Given a dictionary D = {P,..., P}, and a p x p prefix B
of P;, then we define the dictionary failure function f(i,p) = (j,q) for all
1<4,j<kwherel <p<mjand 1l < g < m;if and only if the ¢ x ¢
prefix of the pattern P; is the largest prefix of any pattern in D that is a
suffix of P;.

STEP 1

Construct the generalised Lsuffix tree for D = {P,,..., P}, where
m; X m; is the size of P; with ¢ € {1, ..,k}. The construction is identical
to the one used in [6] but uses only suffixes that occur along the main
diagonals of the patterns. It requires O(|D|(log m + log|X])) units of time
to build, where m x m is the size of the largest pattern in D and X is the
alphabet. .

STEP 2

Preprocess the Lsuffix tree to enable Lowest Common Ancestor (LCA)
queries to be answered in constant time. The time for preprocessing is linear
in the size of the tree, and uses the same techniques as those described in
Section 3 for the construction of the common prefix tree.

STEP 3

Let i be the index of a pattern P;, ¢ € {1,..,k} and s € {1,..,m;}.
Consider the s x s suffix of P;, denoted as suffix,(P;). This suffix is associ-
ated with a leaf of the Lsuffix tree. For each j € {1,..,k}, we compute the
Lowest Common Ancestor of P; and suffix,(P;). Let d,; be the depth of
the LCA. We perform this step for all patterns P; and for all their suffixes.
Since each LCA inquiry requires constant time, this step takes O(|D]) units
of time.

233

STEP 4
The dictionary failure function is given by f(,p) = (4, ¢), where

g =max{d;; | p=d;; +m; — s}.

Note that there might be several patterns P; that satisfy the maximal
g, all having the same q x ¢ prefix. Again this computation requires O(|D|)
units of time.

The following theorem easily follows from above:

Theorem 4. The computation of the dictionary failure function requires
O(|D|(log m +1log|X|)) units of time, where m x m is the size of the largest
pattern in D and X is the alphabet.

.5 Dictionary prefix-matching algorithm

The algorithm below makes use of the diagonals of the text matrix T' (see
Figure 4). Starting from the top of each d-diagonal and sliding downwards,
we iteratively compute the maximum prefix of P; for some ¢ € {1,..,k}
at each point of the d-diagonal. At the next iteration step, we attempt
to augment that occurrence by extending it by a row and a column (in a
manner similar to the L-character used by [6]); this is only possible when
the relevant row and column of the text match the corresponding ones of
the pattern. If such an extension of the occurrence of the prefix of P; is not
possible, then we make use of its diagonal failure function, and attempt
to extend the prefix pointed to by the failure function. Analytically, the
pseudo-code below computes the longest prefix of P; for all ¢ € {1,..,k}
that occurs at every position in T'; in order to simplify the exposition we

only compute the maximum prefix of the patterns occurring at points below
the main diagonal of the text.

234

Algorithm 2DAPPM

input: n x n text T,m; x m; patterns P; for ¢ € {1,..,k}, alphabet Z.
output: longest prefix of each P; in D for each location in T'.

begin

ri + T[i,n)T[é,n —1]...T[,1], 1 < i <n;

¢ + Tn,i)T[n—1,4]...T[1,i, 1 <i < n;

comment r;,¢; are the rows and columns of the text T reversed.
7« Pifi,i|Pili i - 1)... Bii,1), 1<i<my, 1< <K

o « Pjli,i|Pli - 1,4]... B[L,i], 1<i<mj, 1<j < k;

i
R + {1‘1,...,r,,,‘rl(l),...,T,(,},),...,Tl(k),...,r,(,fz};

C 4 {Cly - sCnr01 seeesOimasee oy 01 severOmy}i
Construct the Aho-Corasick automaton for R and C;
Compute the dictionary failure function f(j,p) of P;, for each
1<j<kand1<p<my
for d=1tondo
Let I = n — d + 1 be the length of the diagonal;
rig e Tlhi—d+1]---Tf,1, 1<i<n;
ciag+Th,i~-d+1]---Tldi—-d+1], 1<i<n;
comment r; 4 and ¢; 4 are illustrated in Figure 4.
s+ 0;
for j=1tolgdo
while prefix,41(rj.4) # 'r,f_‘{_)l or prefixsy1(cja) # ag‘_’gl do
comment This is tested by using the list LINK (Theorem 3).
p(] - s’d) AN (q, 8);
comment The integer p(i, d) is the dimension of the largest prefix
of the pattern P, occurring at position (i,i —d + 1).
(a,8) + £(g,3);
od
ses+1;
od
od
end

The test of the while loop condition in Algorithm 2DAPPM is done

using the list LINK. Suppose that the prefix that we have built so far is the
label of the path from the root of the common prefix tree to the node n;.

235

Also suppose that the Aho-Corasick automaton will terminate in a state
say g for the row and state h for the column. The condition is met (the
prefix can be extended) if LINK(n,, g, k) is defined.

[d, id+1] .

c .. 1-diagonal
R P :
=] (i, i-d+1)
T " .
.."~...d'diag0nal."'-...

A

Fig. 4. A d-diagonal of the text T together with the sub-row r; 4 and the sub-
column ¢; ¢

Theorem 5. The algorithm (2DDAPM) computes the longest prefix of all
square patterns from a given dictionary D = {P,,..., P} that occurs at
each position of an n x n text T in O(|T|+|D|(logm +log|X|)) time, where
m X m is the size of the largest pattern in D for some j € {1..k}.

Proof.

The computation of the dictionary failure function of all the patterns
in D requires O(|D|(logm + log|X|)) time. The computation of the Aho-
Corasick automaton requires O(|T'| + |D|) time. 0

Corollary 1. (2DDM) There exists an algorithm that computes the oc-
currences of all square patterns P; from a given dictionary D = {P, ..., P}
in an n x n array T in O(n? + |D|(logm + log | X)) time.

Corollary 2. (2DDPM) There exists an algorithm that computes the oc-
currences of the longest prefix of any square pattern P; from a given dic-
tionary D = {P,,..., P} that occurs at each position of an n x n array T
in O(n® + |D|(logm + log|X|) time.

236

6 Conclusion and open problems

Here we presented algorithms for three variants of the two-dimensional dic-
tionary matching problem. The algorithm presented here runs faster than
the Amir and Farach (3] algorithm for the dictionary matching problem
by an O(log k) factor. Furthermore the same algorithm improves the time
bound that can be achieved by using the Giancarlo’s Lsuffix trees [6],[7] for
the dictionary prefix-matching problem by a O(k) factor.

An interesting open problem is to investigate whether the 2DDPM and
2DDAPM problems can be solved without the use of the Lsuffix trees. It
will also be of interest to extend this work to rectangular arrays.

Due to the use of tree (indexing) data structures a large space overhead
is incurred that detracts from the practicality of the algorithms given in
this paper. Further investigation on designing more practical algorithms for
the problems presented is needed. The new algorithms may be based on a
different linearization technique (see [4]).

References

1. A. Amir, G. Benson and M. Farach, Alphabet indeperident two dimensional
matching, In Proc. 2{th ACM Symposium on Theory of Computing, (1992),
59-68.

2. A.V. Aho and M.J. Corasick, Efficient string matching: an aid to bibliographic
search, Comm. ACM, (1975), 18(6), 333-340.

3. A. Amir and M. Farach, Two-dimensional dictionary matching, Inform. Pro-
cess. Lett., (1992), 44, 233-239.

4. A. Apostolico and Z. Galil, Pattern Matching Algorithms, Ozford University
Press, (1997), New York.

5. M. Crochemore, C.S. lliopoulos and M. Korda, Two-dimensional prefix string
matching and covering on square matrices, Algorithmica, (1998), 20, 353-373.

6. R. Giancarlo, The suffix tree of a square matrix, with applications, In Proc.
4th ACM-SIAM Symposium on Discrete Algorithms, (1993), 402-411.

7. R. Giancarlo, A generalization of the suffix tree to square matrices, with ap-
plications, SIAM J. Comput., (1995), 24(3), 520-562.

8. D. Harel and R.E. Tarjan, Fast algorithms for finding nearest common ances-
tors, SIAM J. Comput., (1984), 13(2), 338-355.

9. C.S. Iliopoulos and J.F. Reid, An optimal parallel algorithm for analysing
occluded images, In Proc. {th Annual Australasian Conference on Parallel And
Real-Time Systems, (1997), University of Newcastle, Australia. N. Sharda and
A. Tam (eds), Springer-Verlag, 104-113.

10. C.S. Iliopoulos and J.F. Reid, Validating and decomposing partially occluded
two-dimensional images (extended abstract), In Proc. 8rd Prague Stringology
Club Workshop, PSCW98, (1998), Dept. of Computer Science and Engineering,
Czech Technical University, Prague, Czech Republic.

237

11. C.S. Iliopoulos and J. Simpson, On-line validation and analysis of occluded
images, In Proc. 8th Australasian Workshop on Combinatorial Algorithms,
(1997), Research on Combinatorial Algorithms, Queensland University of Tech-
nology, Australia, V. Estivill-Castro (ed), 25-36.

12. D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern matching in strings,
SIAM J. Comput., (1977), 6, 322-350.

13. G. Landau and U. Vishkin, Fast parallel and serial approximate string match-
ing, J. of Algorithms, (1989), 10, 157-169.

14. E.M. McCreight, A Space-economical suffix tree construction algorithm, J.
Assoc. Comput. Mach., (1976), 23, 262-272.

15. M.G. Main and R.J. Lorenz, An O(nlogn) algorithm for finding all repeti-
tions in a string, J. of Algorithms, (1984), 5, 422-432.

16. P. Weiner, Linear pattern matching algorithm, In Proc. 1{th IEEE Symp. on
Switching and Automata Theory, (1973), 1-11.

238

