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ABSTRACT. Let G = (V,E) be a graph. Aset S C Visa
dominating set if every vertex not in S is adjacent to a vertex
in S. Furthermore, a set S C V is a restrained dominating
set if every vertex not in S is adjacent to a vertex in S and
to a vertex in V — S. The domination number of G, denoted
by ¥(G), is the minimum cardinality of a dominating set, while
the restrained domination number of G, denoted by v.(G), is
the minimum cardinality of a restrained dominating set of G.
We show that if a connected graph G of order n has minimum
degree at least 2 and is not one of eight exceptional graphs,
then v-(G) < (n — 1)/2. We show that if G is a graph of order

n with 6 = 6(G) > 2, then 7-(G) < n(1 + (3)5=T — (3)51).

1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V, F) be
a graph with vertex set V of order » and edge set E, and let v be a vertex
in V. The open neighborhood of v is N(v) = {u € V|uwv € E} and the
closed neighborhood of v is N[v] = {v} U N(v). For a set S of vertices, the
open neighborhood of S is defined by N(S) = U,esN(v), and the closed
neighborhood of S by N[S] = N(S)US. The subgraph of G induced by the
vertices in S is denoted by (S). The minimum (maximum) degree among
the vertices of G is denoted by 8(G) (respectively, A(G)).

A set S C V is a dominating set if every vertex not in S is adjacent to a
vertex in S. (That is, N[S] = V.) The domination number of G, denoted
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by v(G), is the minimum cardinality of a dominating set. The concept
of domination in graphs, with its many variations, is now well studied in
graph theory. The book by Chartrand and Lesniak [2] includes a chapter
on domination. For a more thorough study of domination in graphs, see
Haynes, Hedetniemi and Slater {5, 6].

In this paper we study a variation on the domination theme which is
called restrained domination. A set S C V is a restrained dominating set il
every vertex not in S is adjacent to a vertex in S and to a vertex in V — S.
Every graph has a restrained dominating set, since § = V is such a set.
The restrained domination number of G, denoted by +,(G), is the minimum
cardinality of a restrained dominating set of G. Clearly, v.(G) > v(G).
This concept of restrained domination in graphs was introduced and studied
by Domke et al. (3, 4].

McCuaig and Shepherd (7] have shown that if a connected graph G of
order n has minimum degree at least 2 and is not one of seven exceptional
graphs, then ¥(G) < 2n/5. Alon [1] showed that if G is a graph of order n
with § = 6(G) > 2, then v(G) < n[1 +1n(§ + 1)]/(6 +1).

In this paper we investigate upper bounds on the restrained domination
number of a connected graph. We show that if a connected graph G has
minimum degree at least 2 and is not one of eight exceptional graphs, then
+(G) £ (n —1)/2. Furthermore, we show that if G is a graph of order n
with § = §(G) 2 2, then +(C) < n[l + (3)5T — (1)#1].
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Figure 1. The collection of B of grpahs
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2 Small values of n

In this section, we examine the restrained domination number, ~v.(G), of
connected graphs G of order n, where 3 < n < 8, with minimum degree
6(G) > 2. Let B be the collection of graphs shown in Figure 1. We shall
prove:

Theorem 1 If G = (V,E) is a connected graph of order n < 8 with
1 (G) > (n—1)/2 and 6(G) > 2, then G € B.

Let G be a connected graph of order n with §(G) > 2. If n = 3, then
G = Czand v(G) =1 = (n~1)/2. If n =4, then either 7(C) = 1 or
G = B and 4(G) = 2 = n/2. Hence B is the only graph on three or four
vertices that satisfies the hypothesis of Theorem 1.

The following result will prove to be useful.

Lemma 2 Let G = (V, E) be a graph of order n > 5 with §(G) > 2. If
A(G) =n—2, then v(G) < (n—-1)/2. '

Proof. Since n > 5, we have A(G) > 3. Let N(v1) = {v2,...,Un—1}
and V — N[vy] = {va}. Since §(G) > 2, we may assume that N(v,) =
{v2,vs,..., v} where k > 3. If {v1,v2} or {v1,v3} is a restrained domi-
nating set of G, then 4.(G) < 2 < (n — 1)/2. Suppose, then, that neither
{v1,v2} nor {v;,vs} is a restrained dominating set of G. Let i € {2, 3}, and
let S; be the set of isolated vertices in G —{v,v;}. Since {v;,v;} is not a re-
strained dominating set of G, S; # 0. If |S;| < (n—1)/2-2, then {v;, v;}US;
is a restrained dominating set of G, whence v.(G) < (n — 1)/2. Suppose,
then, that |S;| > n/2 — 2. Fvery vertex in S; is adjacent only to vy and w;,
$0 So N S3 = . Furthermore, v; & S2’'U S3. Thus V — (S2 U S3 U {vs, v3})
is a restrained dominating set of G, whence 1,.(G) <n —|Sy| —|S3| -2 <
n—(n/2-2)—(n/2-2)-2=2<(n-1)/2. a

Lemma 3 If G = (V, E) is a connected graph of order 5 with ~,.(C) > 3
and 6(G) > 2, then G = 3,.

Proof. If A(G) = 4, then 7,(C) = 1, a contradiction. If A(C) = 3, then,
by Lemma 2, v,(G) < 2, a contradiction. Hence A(G) =2, ie, G B,. 0

Lemma 4 Let G = (V, E) be a connected graph of order 6 with §(G) > 2.
If A(G) # 3, then v(G) < 2.

Proof. If A(G) = 2, then G = Cgs. If A(G) = 4, then, by Lemma 2,
(G) < 2. If A(G) =5, then v.(G) = 1. o

Lemma 5 If G = (V, E) is a connected graph of order 6 with v.(C) > 3
and §(G) > 2, then G = Bj.
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Proof. By Lemma 4, we know that A(G) = 3. Let v; be a vertex of
degree 3, and let N(v;) = {vo,v3,v4} and V — N(v,] = {vs,vs}. We show
that no vertex from {vg,vs,vs} is adjacent to both vs and wvs. If this is
not the case, then we may assume that vovs and wvove are edges. Since
{v1,v2} is not a restrained dominating set, at least one vertex is isolated
in G — {v1,v2}. Since §(G) > 2 and degv; = degvy = 3 = A(G), each
v; € V(G) — {1, v} must have a neighbor in G — {vy,v,}, a contradiction.
Hence no vertex from {vy,v3,v4} is adjacent to both v5 and vs.

Since §(G) > 2, we may assume that vpvs and vsvg are edges. Since v3
is adjacent to at most one of vs and v, and since vs and vg have degree at
least 2, vsve-must be an edge. Now if w3 is adjacent to vy or vy, say vovs is
an edge, then {v1,vs} is a restrained dominating set, contradicting the fact
that 7:(G) = 3. Thus, v3 is adjacent to neither vs not v4. We may assume
that v3vs is an edge and, hence, v3vg is not an edge. Hence G £ Bj. O

Lemma 6 If G = (V, E) is a connected graph of order 7 with §(G) > 2,
then v(G) < 3.

Proof. If A(G) = 6, then v,.(G) = 1. If A(G) = 5, then, by Lemma 2,
v(CG) < 3.

Suppose that A(G) = 4. Let v; be a vertex of degree 4, and let N(v,) =
{v2,v3,v4,v5} and V — N[v,] = {vs,v7}. Suppose some vertex from {vz,v3,
v4,Vs}, Say ve, is adjacent to both vg and wvy. ¥ {w),v,} is a restrained
dominating set, then v.(G) = 2. Otherwise, if {v1,v2} is not a restrained
dominating set, then at least one vertex is isolated in G — {v,v2}. We may
assume vs is isolated in G — {v;,v2}. Thus, vz is adjacent only to v; and
vo. Hence vs is adjacent to only vy, vs, vg, v7. It follows that G — {v,, vz, v3}
has no isolated vertex. Thus, {v;,v2,vs} is a restrained dominating set, so
~4r(G) < 3. Suppose, then, that no vertex from {ve,v3,vs,v5} is adjacent
to both vg and v;. We may assume that wovg and wvsvy are edges. If
vgur is not an edge, then we may assume that vivg and vsv; are edges.
But then {vj,vs, vy} is u restrained dominating set, so v.(C) < 3. On
the other hand, if vgv7 is an edge, then either there is an edge joining at
least one of v and vs to one of vz and vy or not. If there is an edge
joining {ve,vs} and {vs,v4}, say vous is an edge, then {w3,vq,27} is a
restrained dominating sct, so 7-(G) < 3. Suppese, then, that there is no
edge joining v or vs to vz or vg. If vzwy is an edge, then {v;,ve,v5} is a
restrained dominating set, so -(G) < 3. Hence we may assume that v3v4
is not an edge. Assume, without loss of generality, that vsve is an edge. If
v4vs € E(G) or vqur € E(G), then {vs,vs,v7} is a restrained dominating
set of G. In both cases, ~-(G) < 3. Hence if A(C) =4, then ~.((7) < 3.

Suppose A(G) = 3. Let v; be a vertex of degree 3, and let N(v;) =
{v2,v3,v4} and V—N{[v;] = {vs5, vg,v7}. Suppose some vertex from {2, v3, %4}
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is adjacent to two of the vertices vs, v and v;. We may assume v9v5 and
vqoug are edges. Thus vy is adjacent only to vy, vs, vs. If {v1,vs,v7} is a re-
strained dominating set, then v,.(G) < 3. Otherwise, if {v1,v2,v7} isnot a
restrained dominating set, then G — {1, v2, v7} contains an isolated vertex.
If v; is isolated in G — {v1, w2, v7}, then v; is adjacent to vz and {vy,ve,v;}
is a restrained dominating set, and so v-(G) < 3. Suppose, then, that each
of vy, v3, and v, is adjacent to at most one of vy, vg and v,. Since §(C) > 2,
it follows that there are at least two edges in the subgraph induced by
vs,vg and vy. We may assume that vsvs and vevy are edges. If {v,,vg}
is a restrained dominating set, then ¥-(G) = 2. Otherwise, if {v),v6} is
not a restrained dominating set, then one of vy, v3,v4, say.vs, is isolated
in G — {v1,ve}. Thus vs3 is adjacent to only v; and vg, and vs is adjacent
only to v3,vs and vy. It follows then that {v;,v3, v} is a restrained domi-
nating set, so 1-(G) < 3. Hence if A(G) = 3, then v,(G) < 3. Finally, if
A(G) =2, then G = C7 and 7, (G) = 3. !

Lemma 7 If G = (V, E) is a connected graph of order 8 with 6§(G) > 2
and with A(G) > 5, then %(G) < 3.

Proof. If A(G) = 7, then %(G) = 1. If A(G) = 6, then, by Lemma 2,
~v(G) < 3. Hence we may.assume that A(G) = 5. Let v; be a vertex of
degree 5, and let N(v1) = {v2,v3,v4,v5,v6} and V — N[vy] = {v7,vs}.

Suppose firstly that some vertex from {v3,vs,vs,vs,v6}, say v, is ad-
jacent to both v; and vg.“ T {v;,v2} is a restrained dominating set, then
¥+(G) = 2. Otherwise, it {#1,v2} is not a restrained dominating set, then
at least one vertex is isolan’ed in G = {v1,v2}. We may assume v3 is isolated
in G — {v1,v2}. Thus, v3 is-adjacent only to v; and v2. Now if {v1, v, v3}
is a restrained domma.l.mg aet, then 4-(G) < 3. Otherwise, if {v),v2,vs}
is not a restrained dominating ‘set, then at least one vertex is isolated in
G — {v1,v2,v3}. We may assume v, is isolated in G — {vy,v2,v3}, 50 ¥4
is adjacent only to v; and ws. Hence v has degree 5 and is adjacent to
only vy, v3,vs, v7,vs. It follows that G — {v1,v2, v3,v4} has no isolated ver-
tex. If wsvg is an edge, then .{v;,v7,vs} is a restrained dominating set and
7-(G) < 3. On the other hand, if vsvs is not an edge, then without loss
of generality, vsvy € E(G)'and vgvg € E(G) and {v,,vs,vg} is a restrained
dominating set implying that v-(G) < 3.

Suppose next that no vertex from {ve, vs,vq,v5,v6} is adjacent to both
v7 and vg. We may assurne that vour and vgus are edges. If vzug is not
an edge, then we may assume that vsv; and vsvg are edges. But then at
least one of {v1,vs,vs} and {v1,v2,v6} is a restrained dominating set, so
+(G) < 3. On the other hand, if v7vs is an edge, then either {vy,vs,v6} is
a restrained dominating set, in which case v.(G) < 3, or not. If {v,, vs, v4}
is not a restrained domi::ating sct, then since v7 and vg are not isolated
in G — {v1,v2,v¢}, we may assume that vs is isolated in G — {u;, va,vg}.
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Further, we may assume that vsve is an edge. If {vi,v2,v7} is a restrained
dominating set, then v.(G) < 3. If {v;,v2,v7} is not a restrained domi-
nating set, then we may assume that vs is isolated in G — {vy, %2, v7}. In
particular, vz is adjacent to at least one of v2 and v7. But then {v, v4, V8 }
is a restrained dominating set and ~,(G) < 3. Hence if A(G) = 5, then
¥(G) < 3. o

Lemma 8 Let G = (V, E) be a connected graph of order 8 with 6(G) > 2
and A(G) = 4. If v.(G) > 4, then G = Bs.

Proof. Let v; be a vertex of degree 4, and let N(v;) = {vg,v3,v4,v5} and
V - N[v1] = {ve,v7,vs}. We show firstly that every vertex of {v2,v3,v4,v5}
is adjacent to at most one vertex from {wg,v7,vg}. If this is not the case,
then we may assume that vove and vov7 are edges. If vavg is an edge, then,
since A(G) = 4, v, is adjacent to only vy, ve,v7 and vg. But then {v1,v2} is’
a restrained dominating set, contradicting the fact that v,.(G) > 4. Hence
v9ug is not an edge.

Suppose now that vgvg and vyug are both edges. Since {v;,vg} is not a
restrained dominating set, we may assume that vs is adjacent to only v
and vg. Now since {v;,vs,vs} is not a restrained dominating set, we may
assume that v, is isolated in G — {vy, vs,vs}. Thus, v, is adjacent to only v,
and vg. But then {vs,vs, vs} is a restrained dominating set, contradicting
the fact that v,.(G) > 4. Hence at most one of vgug and v7vg is an edge.

Suppose that either wgvs or vyug is an edge, say vrug. Suppose vg is
adjacent to at least two of vs, vy, vs, say to vg and vs. Then {vs, v, vs} is a
restrained dominating set, a contradiction. Hence vy is adjacent to exactly
one of v3, va, Us, S8y 10 v (50 vs is adjacent to only vs and v7). M {2, vs, v}
is a restrained dominating set, then .(C) < 3, a contradiction. Hence v3
or vy, say vs, is not dominated by {v2,vs,ve}. Hence v3 is adjacent to v,
and to at least one of v4 and v7, but to no other vertex. If {vy, 15,27} is a
restrained dominating sct, then v(G) < 3, a contradiction. Hence v must
be adjacent to %, vg and possibly ve. If vz, is an edge, then {vi, %o, v5}
is a restrained dominating set of G, a contradiction. Ilence, v3v4 is not an
edge of G and v3wr is therefore an edge of G. If v, is adjacent to either vg
or vz, then {vy, vy, v5} is a restrained dominating set of G, a contradiction.
It follows that vs is adjacent to v; and v only. Since §(G) > 2, vg is
adjacent to wr. But then {vs,v7,vs} is a restrained dominating set of &7, a
contradiction.

We may assume that vyvg and vsvg are edges. Since {wz,vs} is not a
restrained dominating set, vswg cannot be an edge, so vg is adjacent to only
vg and vs. Further, since {v2,vs,vs} is not a restrained dominating set,
one of vg or vy, say vy, is isolated in G — {vg, vz, vs}. Thus v; is adjacent
to only vp and ws. But then {vs,ve,vs} is a restrained dominating set,
contradicting the fact that v.(G) > 4.
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Hence every vertex of {v2,vs,v4,vs} is adjacent to at most one vertex
from vg, v or vg. Since §(G) > 2, it follows that there is at least one edge
in the subgraph induced by v, v7 and wg. First consider the case when the
subgraph induced by vg, v7 and vg has exactly one edge. ‘Without loss of
generality, assume that v7vg is the only edge of the subgraph induced by
vg, v7 and vg. Since §(G) > 2, we may assume that vsvg, v4v7, vavs and vavg
are edges of G. But then {v4,vs,vg} is a restrained dominating set of G, .
which is a contradiction. Now consider the case when the subgraph induced
by we,v7 and vg has at least two edges, vsv7 and veus, say. Since {vy, ve}
is not a restrained dominating set, one of vg,vs, v, vs, say va, is isolated -
in G — {v1,ve}. Thus vy is adjacent to only v, and vg. Furthermore, since
{v1,v2,v6} is not a restrained dominating set, one of vs, v4,vs, say vs, is
isolated in G — {vy,vs,v6}. Thus v is adjacent to only v; and vg, and vg is
adjacent only to v, v3,v7 and vg. Now since {v;, v7,vs} is not a restrained
dominating set, vqus cannot be an edge of G. We may assume that vqvs is
an edge. Since {v1,vs,vs} is not a restrained dominating set, vsv7 cannot
be an edge. Thus vs must be adjacent to only v; and vg. Furthermore,
since {v,v4,v7} is not a restrained dominating set, vg cannot be adjacent
to w4 or v7. Thus, G = B;. n|

Lemma 9 Let G.= (V, E) be a connected graph of order 8 with §(G) > 2
-and with A(G) = 3. If v,.(G) > 4, then G € {Bg, B1, Bs}.

Proot. Let v be a vertex of degree 3. First we show that v is within
distance two of u lor all w € V(G). Suppose that d{u,v) = 3 for some
u € V(). If u has degree 3, then {u,v} is a restrained dominating set and
«(C) = 2, contradicting the fact that v.(G) > 4. Hence u has degree 2.
Let V —N[{u,v}] = {w}, N(v) = {a,b,c} and N(u) = {z,y}. Suppose that
w is adjacent to x or y, say to y. If zy is an edge, then y is adjacent to only
u, w, z, whence {v, y} is a restrained dominating set, a contradiction. Hence
zy is not an edge. Since {u,v,y} is not a restrained dominating set, there
must be an isolated vertex in G—{u,v,¥}. Since £ and w are not isolated in
G — {u, v, y}, we may assume that c is adjacent to only v and y. Now since
{v,z,w} is not a restrained dominating set, a and b must be nonadjacent
vertices. But then each ol @ and b must be adjacent to at least one of z and
w. Thus, {c,z,w} is a restrained dominating set, a contradiction. Hence
wz and wy cannot be edges of G. Thus, we may assume that aw and bw
are edges. Since {c,u,w} is not a restrained dominating sct, there must
be an isolated vertex in ¢ — {¢,u,w}. Since = and y are the only possible
isolated vertices in G — {¢,u,w}, we may assume that y is adjacent to wu,
to at least one of ¢ and w, and to no other vertex. But then {c,w,z} is
a restrained dominating set, a contradiction. Hence v is within distance 2
from every vertex of G.
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Let v = v; and let N(v1) = {vs,v3,v4}. Furthermore, let V — Nlw] =
{vs,ve,v7,ug}. Since all vertices are at distance at most 2 from vy, at
least one vertex in N(v;) is adjacent to two vertices in V — N(v;]. We
may assume that vo is adjacent to vs and ve. If v3 is adjacent to both
v7 and wg, then {vy,v2,vs} is a restrained dominating set and v (G) <
3, a contradiction. Similarly, if v4 is adjacent to both vz and wvs, then
7+(G) < 3, a contradiction. Hence we may assume that vsv7 and v4vg are
edges, while vsvg and vqv; are not edges. Now since {v2,v7,vg} is not a
restrained dominating set, G — {vg, v7,vs} contains an isolated vertex which
is necessarily vs or vg. We may assume that vg is isolated in G —{v2, v7, vg}.
Furthermore, we may assume that vevr is an edge. If vgvg is an edge, then
{v1,v2,ve} is a restrained dominating set, a contradiction. So we may
assume vg is adjacent only to v and v;. If v4vs is an edge, then {v;, vy, vg}
is a restrained dominating set, a contradiction. Hence v4vs is not an edge.

Suppose vsvr is an edge. Then v, is adjacent only to v3,vs, ve. But since
8(G) > 2, vsvg must be an edge, so vg is adjacent only to v4 and vs. But
then {v), vz, vs} is a restrained dominating set, a contradiction. Hence vsv7
is not an edge.

Suppose v3vus is an edge. Then v3 is adjacent only to vy, vs and v;. Since
{v2,vs,vs} is not a restrained dominating set, v7vs cannot. be an edge.
Thus, vg is adjacent only to v and vs. However, vs now has degree 3, so
there are no further edges in G. Thus G = Bs.

Suppose v3vs is not an edge. Then vsvs must be an edge, for otherwise
vs is adjacent only to ve. Since {vy,v7,vs} is not a restrained dominating
set, vavg cannot be an edge. Thus, vs is adjacent only to v; and vy, while
4 is adjacent only to vy and vs. Now either v7us is not an edge, in which
case C = Bg, or v7ug is an edge, in which case G = B,. This completes the
proof of the lemma. ]

The following result is iinmediate.

Lemma 10 [f G is a connected 2-regular graph of order 8, then G = By
and v-(G) = 4. :

Theorem 1 is an immediate consequence of Lemmas 3 to 10. Let B* =
{B1,Bs,...,Bs}. We will refer to a graph in the collection B* as a bad
graph. We close this section by making two observations about bad graphs
which we will use in proving our main result of the next section.

Observations

(1) For any bad graph G = (V,E) and v € V, there is a minimum
restrained dominating set of G that contains v.

(2) For any bad graph G = (V,E) and v € V', there isaset D C V
satisfying
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(z) D dominates V — {v},
(2¢) (V — D) contains no isolated vertex, and
(i4) |D| = %(G) - 1.

3 The upper bound

In this section we shall prove:

Theorem 11 Let G be a connected graph of order n > 3 with 6(G) > 2. If
G & B, then
(G) £ (n—1)/2.

Proof. We have shown (see Theorem 1) the statement to be true for
n < 8. Assume, to the contrary, that the theorem is false. Among all
counterexamples, let G = (V, E) be one of minimum size. Then G is a
connected graph of order n > 9 with §(G) > 2 satisfying v.(G) > n/2. If
G = C,, then v.(G@) < (n — 1)/2, a contradiction. Hence G is not a cycle,
so G contains at least one vertex of degree 3.

Let S = {v € V| deg v > 3}. For each v € S, we define the 2-graph of v
to be the connected component of G — (S — {v}) that contains v. So each
vertex of the 2-graph of + has degree 2 in G, except for v. Furthermore,
the 2-graph of v consists of edge-disjoint cycles through v, which we call
2-graph cycles, and paths emanating from v, which we call 2-graph paths.

Claim 12 The set S is independent.

Proof. Assume e = uv is an edge, where u,v € S. Since 7, (¢ —¢) >
v (G) > (n—1)/2, and since §(G —e) > 2, the minimality of G implies that
e must be a bridge since otherwise G — e would be a connected graph which
would be a smaller counterexample. Let G; = (V, Ey) and G2 = (V, £5)
be the two components of G — e where v € Vi. For i = 1,2, let |Vi| = n,.
Each G; satisfies 6(G;) > 2 and is connected. Hence, by the minirnality of
G, for each i = 1,2 either C; is in B* (since By is a spanning subgraph of
the graphs Bg, B and Bg) or v,.(G;) < (n; —1)/2 for 1 = 1,2.

If v+(G:) < (ni —1)/2 for i = 1,2, then, letting D; denote a minimum re-
strained dominating set of G; (i = 1,2), DU Ds is a restrained dominating
set of G of cardinality |Dy| + [D2| € (n1 —1)/2 4 (ne = 1)/2 = (n — 2)/2,
a contradiction. Hence G; or Gy, say G, must belong to B*. Sup-
pose (G2} < (n2 —1)/2. If Gy = Bs, then 4.(G) £ 2 + %(G2) <
24 (ng — 1j/2 = n/2 — 1, a contradiction. Hence Gy € {By, Bs, 134, 35 }.
But then v.(G) € (G1) + 7 {(G2) € n/2+ (ny - 1)/2 = (n—-1)/2, a
contradiction. Hence both G; and G» belong to 53*.
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Assume, firstly, that Gy & B,. If Gy & By, then 1(G) =4 < (n -
1)/2, a contradiction. Hence Gy € {B1, B3, By, Bs}. It now follows from
Observation (2) that v-(G) < (1+(G1) = 1)+ (%(G2) = 1) +1 = 2+ (n2/2 —
1)+ 1 = (n — 1)/2, a contradiction. Hence G; % Bp. Similarly, G, #
Bs. Thus Gy, G2 € {Bi, Bs, B, Bs}. It follows from Observation (2) that
(G < (1(C1)~1)+(1e(Ga) = 1)+1 < (n1/2=1)+(n2/2-1)+1 = n/2-1,
a contradiction. We deduce, therefore, that S must be independent. a

Claim 13 || > 2

Proof. If |S] = 1, then G consists of (at least two) edge-disjoint cycles
passing through- a common vertex v. If each of these cycles is a 5-cycle,
then 7,(G) = (n — 1)/2; otherwise, if one or more of these cycles is not
a 5-cycle, then v.(G) < (n — 1)/2. Both cases produce a contradiction.
Hence |S] > 2. o

Claim 14 All 2-graph paths have length 1.

Proof. By Claim 13, |S| > 2. Let P:u,v;,...,v,v be a longest path
joining two vertices u and v of S, every internal vertex of which belongs to
V — 8. By Claim 12, we know that u and v are not adjacent, so k > 1.
We show that & = 1. If this is not the case, then k > 2. We now consider
the graph G/ = G — {v1,va, ... , vk} of order n’ = n — k; that is, G’ is the
graph obtained from G by removing the k internal vertices of the path P.
Then 6(G’) > 2. '

Assume G’ is connected. Then, by the minimality of G, G/ £ B* or
(G € (W = 1)/2 = (n—k —1)/2. U %(¢") < (n—k = 1)/2, then
w(G) < k/2+ (n—k—1)/2 = (n — 1)/2, a contradiction. On the other
hand, if G’ € B*, then it follows from Observation (2) that 4-(G) < k/2 +
(n' =1)/2=k/2+ (n —k —1)/2 = (n —1)/2, a contradiction. Hence ¢’ is
disconnected.

Let Gy = (Wi, E;) and Gy = (Vy, Ey) be the two components of G’. L'or
i=1,2, let |Vi] =ni. Son’ =n; +na. Each G; satisfies 5(G;) 2 2 and is
connected. Hence, by the minimality of G, G; € B* or v,(G;) < (ni —1)/2
for i =1,2. If v,.(C;) < (n;—1)/2 for i = 1,2, then 4-(G) < k/2++(G1)+
4(G2) < k/2+ (ny —1)/2+ (ne — 1)/2=n/2 — 1, a contradiction. Hence
G, or Gy, say Gy, must belong to B*. Suppose G = By. If Gy & B35, then
4(C) < 4+ k/2 = n/2 — 1, a contradiction. If G2 ¥ Bs, then ¥.(G2) <
ng/2 = (n—k—5)/2 whence 7(G) <2+ k/2+ (n—k—-5)/2=(n—1)/2,
a contradiction. Hence 1 % By (and Go % Bz). If v(G2) < (na —1)/2,
then it tollows from Observation (1) that v (G) < v (G1)+k/2+7v.(G2) <
n1/2+k/24 (ne—1)/2 =k/2+ (n—k—1)/2 = (n—1)/2, a contradiction.
Hence Gy € B* — By. But then it is casy to check using Observations (1)
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and (2) that v.(G) < (n—2)/2, a contradiction. We deduce, therefore, that
k = 1. This completes the proof of the claim. o

Claim 15 There are no 2-graph cycles.

Proof. Let v € S. Assume that C: v,v1,v2,... , 0k, v is a 2-graph cycle of
v of length £+ 1, where k > 2. Let H =G — (V(C) - {v}).

We show firstly that 6(H) > 2. If this is not the case, then v must be
adjacent in G to vy, v, and exactly one other vertex, u say. By Claim 12,
u & S. By Claim 14, v is adjacent to v and to one other vertex, w say, of S.
Hence letting H* = G — V(C) — {u}, we note that H* is connected graph
of order n* = n — k — 2 with §(H*) > 2. Hence, by the minimality of C,
H* € B* or v.(H*) < (n*—1)/2. If H* € B*, then either H* = By, in which
case 7,(G) £ 3+k/2=(n—1)/2, or H* € {By, Bs, By, B}, in which case
it is easy to check (using Observation 1) that v.(G) <n*/2+ (k+1)/2 =
(n —1)/2. On the other hand, if v.(H*) < (n* - 1)/2 = (n — k - 3)/2,
then consider a minimum restrained dominating set D* of H*. If w € D*,
then 1.(G) < (k+1)/2+ (n -k -3)/2 = (n —2)/2, while if w & D*, then
7 (G) < (k+2)/2+ (n—k~3)/2= (n—1)/2. All the above cases produce
a contradiction. Hence 6§(H) > 2.

Sirice H is a connected graph of order n’ = n - k with §(H) > 2, the
minimality of G implies that H € B* or v (H) < (n'—1)/2 = (n—k-1)/2.
Iy (H)<(n-k-1)/2, then (CG) < k/24+ (n—-k—-1)/2 = (n-1)/2,
a contradiction. On the other hand, if H € B*, then either H* = By, in
which case 7(C) < 2+ k/2 = (n — 1)/2, or H* € {B), B3, B4, B}, in
which cuse it is easy o check (using Observations 1 and 2) that - {C) <
(k+1)/2+4 (0’ —2)/2 = (n — 1)/2, once again producing a contradiction.
We deduce, therefore, that there is no 2-graph cycle of v. Since ¢ is an
arbitrary vertex of S, the claim follows. a

By Claims 12 to 15 it follows that & is a bipartite graph with partite
sets S and V — S, where |S| > 2. In particular, any subgraph in B* is
B, or B4. By definition, cach vertex of .S has degree at least 3 while cach
vertex of V — S has degiee 2. If |S] = 2, then C is a complete bipartite
graph and the set consisting of one vertex from S and one veriex from
V — S is a restrained dominating set of G of cardinality at most (r —1)/2,
a contradiction. Hence |S| > 3.

Among all the vertices of S, let v have smallest degree, m say, in C. Let
N(@) = {v1,v2,... ,um}. We now consider the graph H = G — N[v]. It
follows from our choice of v and since |S| > 3, that H contains no isolated
vertex.

Claim 16 If6(H) =1, then 4.(G) < (n - 2)/2.
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Proof. Since §(H) = 1, there must be a vertex w of S of degree 1 in H.
Let z be the neighbor of w in H, and let N(z) = {u,w}. Necessarily, u € S.
We now consider the graph G’ = G —(N[v]Ju{w, z}) of order n’ = n—m 3.

If N(v) C N(w), then N(v) = N(w) — {z} and G’ is a connected graph
with §(G’) > 2. Hence, by the minimality of G, G’ € B* or (G') <
(n -1)/2=(n-m-4)/2. If (G") £ (n — m —4)/2, then by adding
the vertices » and = to a minimum restrained dominating set D’ of G’
we produce a restrained dominating set of G of cardinality |D'| + 2 <
m—m—4)/2+2 = (n —m)/2 < (n—3)/2. On the other hand, if
G’ € B*, then it is straightforward to check using Observation (2) and
the fact that {v,z} is a restrained dominating set of (N[v] U {w,z}) that
¥(G) < (n —38)/2.

If N(v) ¢ N(w), then it follows from our choice of v that v and w
have m — 1 vertices in common. Let {v,} = N(v) — N(w). Further, let
N(vp) = {v,2z}. We now consider two possibilities depending on whether
u=20rusz.

Suppose that u = z. Then G’ is connected. If §(G’) > 2, then the
minimality of G implies that G’ € B* or v,.(G') < (n'—1)/2 = (n—m—4)/2.
If v(G") < (n—m—4)/2, then let D’ be a minimum restrained dominating
set of G'. If u € D', consider the following two cases. If m = 3, then v,
and v2 can be added to 1)’ to produce a restrained dominating set of G of
cardinality |D’[+2 < (n-3)/2. If m > 4, then D'U{v, %), %,,} is a restrained
dominating set of G of cardinality |D'|+3 < (n—m—4)/24+3=(n—-m+
2)/2 < (n—2)/2. llu ¢ 1, then adding v and z to D’ produces a restrained
dominating set of G of cardinality |D’|+2 < (n —3)/2. On the other hand,
if G’ € B*, then it is straightforward to check using Observation (2) that
~4r(G) < (n—3)/2. So we may assume that §(G’) = 1. Thus u has degree 3
in G. Let y be the neighbor of u different from z and v,,. By our choice of
v, it follows that m = 3, so both v and w have degree 3. We now consider
the graph G* = G — N[v] — N[z] — {y}. Then G* is a connected graph
of order n* = n — 8 with §(G*) > 2. The minimality of G implies that
GreB orv.(G*") < (n" -1)/2=(n-9)/2. If v(G*) < (n—9)/2, then
adding the vertices {w,v3, y} to 2 minimum restrained dominating set of G*
produces a restrained dominating set of G of cardinality at most (n — 3)/2.
If G* € B*, then (using Observation 2) it is straightforward to check that
7(G) < (n —3)/2. Hence if u = z, then 7,.(G) < (n —2)/2.

Suppose, next, that » # 2. Since uw,z € S, we know that u and z
are nonadjacent. Suppose G’ is connected. Then, since 6(G’) > 2, the
minimality of G implies that v.(G') < (n' - 1)/2 = (n —m — 4)/2 or
G € B*. If G' € B*, then (using Observation 2) it is straightforward to
check that v,.(G) < (n —2)/2. I v{(G") < (n —m —4)/2, then consider
a minimum restrained dominating set D’ of G’. If v € D and = ¢ [V,
then D’ U {v,v1} is a restrained dominating set of G’, whence 7+(C) <
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24 (n-m-4)2=(Mn-m)/2 < (n—-3)/2. Ifu& D' and z € D', then
D’'U{w, v1 } is a restrained dominating set of G’, whence v,(G) < (n—3)/2.
If u,z ¢ IV, then D' U {v,z} is a restrained dominating set of G’, whence
v(G) < (n — 3)/2. Suppose u,z € D'. If m = 3, then the two common
neighbors, v; and vg, of v and w can be added to I’ to produce a restrained
dominating set of G of cardinality |D’| +2 < (n — 3)/2. If m > 4, then
D'U{v,v1,vm} is a restrained dominating set of G of cardinality |D’|+3 <
(n—-m-4)/24+3=(n-m+2)/2 < (n—2)/2. Hence if G’ is connected,
then 7 (G) < (n — 2)/2.

Suppose then that G’ is disconnected. Then G’ consists of two compo-
nents, namely a component I} containing u and a component F containing
z. For 1 = 1,2, let F; have order n;, so n’ = n; + ny. Now F} is a con-
nected graph of order n; with §(F;) > 2. Hence, by the minimality of G,
v (F;) < (n; — 1)/2 or F; € B*. Suppose that v,.(F;) < (n; — 1)/2 for
i =1,2. For i = 1,2, let D; be a minimum restrained dominating set of F;.
Then {v,vm,z} U Dy U D, is a restrained dominating set of G of cardinal-
ity 3+|D1|+|D2] <3+ (n1—-1)/24+(n2—-1)/2 = (n—-m+1)/2 < (n—-2)/2.
Suppose, then, that Fy or F» belongs to B*. Then Fy or F» € {B1, Ba}.
Since there is only one edge joining F;, i = 1,2, to a vertex not in I,
and B; and B, both have more than one vertex of degree at least three,
F; & {B1, B4}, which is u contradiction. This completes the proof of the
claim. 0

By Claim 16, 6(H) > 2 for otherwise we have a contradiction. Since G
is bipartite, so too is H. Let H' be a component of H (possibly, /1 = 11"),
and suppose H' has order n’. By the minimality of G, '’ € B* or ~,.(H’) <
(n’ - 1)/2.

Claim 17 If H' € B*, then H' = B;.

Proof. Since H’ is bipartite, H' & B; or H' = B,;. So we nced only
show that H’' % B,. Assume, to the contrary, that H’ is an 8-cycle, say
Uy, U2, ..., Ug, 1. We may assume that SNV (H') = {u;, us, us, ur}. Then
every vertex in N(v) is adjacent to at most one vertex of SNV (H’). Fur-
thermore, cach vertex of SN V(H’) is adjacent to at least one vertex of
N (w) since all vertices of 5 have degree at least 3 in G. By the Pigeonhole
Principle, we may assume that u; is adjacent to at most m/4 vertices of
N(v). By our choice of v, it follows that m = deg v < deg u; < m/4 + 2,
or, equivalently, m < 8/3 which contradicts the fact that rn > 3. Hence
H' = B;. 0

Claim 18 If H is disconnected and H' = By, then v.(G) < (n - 3)/2.
Proof. Let w and y be the two nonadjacent vertices of the 4-cycle H' that

belong to S. Let T denote the set of neighbors of v that are adjacent to
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either w or y. Since w and y have degree at least 3 in G, each of w and y
is adjacent to at least one vertex of T. Since H is disconnected, we know
that {T'| < m — 1. By the Pigeonhole Principle, we may assume that w is
adjacent to at most |T'|/2 < (m — 1)/2 vertices of T'. By our choice of v, it
follows that m = deg v < deg w < (m —1)/2 + 2, or, equivalently, m < 3.
Consequently, m = 3, |T'| = 2 and H has exactly two components. We may
assume that T = {v;,v;} and that v;w and v,y are edges.

Let H” denote the component of H different from H’. Since there is
only one edge joining H” to a vertex not in H”, H” 22 B,. Let z be the
vertex of H” adjacent to vs. The graph H” is a connected graph of order
n” = n — 8 with §(H") > 2. Since H” ¢ B*, the minimality of G implies
that y-(H"”) £ (n" —1)/2 = (n — 9)/2. Let D” be a minimum restrained
domipating set of H”. Either x € D”, in which case D” U {v;,y} is a
restrained dominating set of G, or z ¢ D", in which case D" U {v;,v3, y}
is a restrained dominating set of G. In any event, v(G) < |D"|+ 3 <
(n—9)/2+3=(n-23)/2 O

Claim 19 If H is connected and H 22 By, then v.(G) < (n — 3)/2.

Proof. Let w and y be the two nonadjacent vertices of the 4-cycle H
that belong to S. Then cvery vertex in N(v) is adjacent to either u or y.
JFurthermore, each ol w and y is adjacent to at least one vertex of N (v}). By
the Pigeonhole Principle, we may assume that w is adjacent to at most m /2
vertices in N(v). Let Ny = N(w) N N(v). Then N, U {y} is a restrained
dominating set of G of cardinality |[Ny|+1<m/2+1=(n—-35)/2+1=
(n—3)/2. ' m}

Let Hy,...,Hs, € > 1, denote the components of H. Tori=1,...,¢,
let H; have order n;, so ny + - +mneg =n-m—-1. If H; ¢ B* for
some i, 1 < ¢ < £, then by Claims 17, 18 and 19, %.(G) < (n - 3)/2, a
contradiction. Hence, by the minimality of G, v-(H;) < (n; — 1)/2 for all
i=1,...,4 Fori=1,...,¢ let D; be a minimum restrained dominating
set of H;, and let D = Ut | D;. Then |D| = Zle D] < Zle(ni -1)/2=
m—m—=1=0/2<(n- m-2)/2. Let M, denote those vertices in N (v)
that are adjacent to a vertex of D in G, and let My = N(z) — M;. If
My =0, then DU {v,} is a restrained dominating set ol G ol cardinality
IDl+1<(n—m-2)/24+1=(n-m)/2 < (n—3)/2, a contradiction.
Hence My # 9. For i = 1,2, let |M;| = m;, so m; +me = m. l{ m; > m/2,
then DU My is a restrained dominating set of G of cardinality | D]+ mq <
(n—m—2)/24m/2 = (n—2)/2. On the other hand, il m; < (m—1)/2, then
DUM,U{v} is a restrained dominating set of G of cardinality | D|+m,+1 <
(n—m—2)/2+ (m+1)/2 = (n —1)/2. Both possibilities produce a
contradiction. This completes the proof of the theorem. O

That there exists a family of conunected graphs G of order n with §(G) > 2
satisfving - (CY = {n - 1}/2 may be seen as follows. For k > 2, let G,
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consist of k edge-disjoint 5-cycles that all pass through a common vertex v.
Then G is a connected graph of order nn = 4k+1 with §(Gy) > 2 satisfying
¥r(Gk) = (n — 1)/2. The graph G3 is shown in Figure 2.

v

Figure 2. The graph G,

4 A more general upper bound for v,.(G)

We now establish a more general upper bound for v,.(G) of a graph G
involving the minimum degree § = §(G) and the order n of G. Our proof
is probabilistic.

Theorem 20 Let G = (V, E) be a graph of order n and minimurn degree
6>2. Then

3(G) < n(L+ (5)5%7 — (3)7)

Proof. Let 7 = (—i—)o 7. Since § > 2, we have § < 2971, so that
. —] :
31- > 551:-,-, ie. 1 —-( )51 % Hence, m < ; But then 27 < 1, so

that # <1 - . Corlsbl uct a restrained dominaling set for G as follows.
Take each vertex independently with probability #. Call the resulting set
of vertices A. The expected value of |A| is n7. Let B = {z € N(1) — A|
there exists y € N(A) — A such that zy € £(G)}, let C = N(A) — A -
and let D =V — N[A]. Then S = AUCU D is a restrained dominating
set. A vertex is in C if and only if there exists £ > 1 such that € of its
neighbors are in A and the remaining deg(v) — £ of its neighbors are in
D. So, Plv € C) = (1 — w)(1 — w)de8()=8xt — (1 _ g)deg(v)-£+15l-10 <
(1 — m)des)=&1(] _ gye ”l'rr = (1- )des(”)'zr < (1 — @)%, This means
that the expected value of [C] is at most n(l — 7')’57r Also, a vertex v
is in D if and only if neither it nor any of its neighbors is in A. So,
P(v e D) = (1 —x)d%() < (1 —7)!*+®, Hence, the expected value of | D|
is at most n(1 —x)'*°. Therefore, E(|S]) < n((1- 1r)"7r+(1 —m)Tlgm) =
(1 =7 (x+ (1 =) +7) = n((L=m)° +7) =n(($)=7 +1-(}}77).0
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