Restrained domination in graphs with minimum degree two

Gayla S. Domke, Georgia State University
Johannes H. Hattingh, Georgia State University
Michael A. Henning, University of Natal, Pietermaritzburg *
Lisa R. Markus, Furman University

ABSTRACT. Let G=(V,E) be a graph. A set $S\subseteq V$ is a dominating set if every vertex not in S is adjacent to a vertex in S. Furthermore, a set $S\subseteq V$ is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V-S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set, while the restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a restrained dominating set of G. We show that if a connected graph G of order G has minimum degree at least 2 and is not one of eight exceptional graphs, then $\gamma_r(G) \leq (n-1)/2$. We show that if G is a graph of order G with G is a graph of order G.

1 Introduction

In this paper, we follow the notation of [2]. Specifically, let G = (V, E) be a graph with vertex set V of order n and edge set E, and let v be a vertex in V. The open neighborhood of v is $N(v) = \{u \in V \mid uv \in E\}$ and the closed neighborhood of v is $N[v] = \{v\} \cup N(v)$. For a set S of vertices, the open neighborhood of S is defined by $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S by $N[S] = N(S) \cup S$. The subgraph of G induced by the vertices in S is denoted by S. The minimum (maximum) degree among the vertices of S is denoted by S (S) (respectively, S).

A set $S \subseteq V$ is a dominating set if every vertex not in S is adjacent to a vertex in S. (That is, N[S] = V.) The domination number of G, denoted

^{*}Research supported in part by the University of Natal and the South African Foundation for Research Development.

by $\gamma(G)$, is the minimum cardinality of a dominating set. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The book by Chartrand and Lesniak [2] includes a chapter on domination. For a more thorough study of domination in graphs, see Haynes, Hedetniemi and Slater [5, 6].

In this paper we study a variation on the domination theme which is called restrained domination. A set $S \subseteq V$ is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V-S. Every graph has a restrained dominating set, since S=V is such a set. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of a restrained dominating set of G. Clearly, $\gamma_r(G) \ge \gamma(G)$. This concept of restrained domination in graphs was introduced and studied by Domke et al. [3, 4].

McCuaig and Shepherd [7] have shown that if a connected graph G of order n has minimum degree at least 2 and is not one of seven exceptional graphs, then $\gamma(G) \leq 2n/5$. Alon [1] showed that if G is a graph of order n with $\delta = \delta(G) \geq 2$, then $\gamma(G) \leq n [1 + \ln(\delta + 1)]/(\delta + 1)$.

In this paper we investigate upper bounds on the restrained domination number of a connected graph. We show that if a connected graph G has minimum degree at least 2 and is not one of eight exceptional graphs, then $\gamma_r(G) \leq (n-1)/2$. Furthermore, we show that if G is a graph of order n with $\delta = \delta(G) \geq 2$, then $\gamma_r(G) \leq n \left[1 + \left(\frac{1}{\delta}\right)^{\frac{\delta}{\delta-1}} - \left(\frac{1}{\delta}\right)^{\frac{1}{\delta-1}}\right]$.

Figure 1. The collection of \mathcal{B} of grpahs

2 Small values of n

In this section, we examine the restrained domination number, $\gamma_r(G)$, of connected graphs G of order n, where $3 \le n \le 8$, with minimum degree $\delta(G) \ge 2$. Let \mathcal{B} be the collection of graphs shown in Figure 1. We shall prove:

Theorem 1 If G = (V, E) is a connected graph of order $n \leq 8$ with $\gamma_r(G) > (n-1)/2$ and $\delta(G) \geq 2$, then $G \in \mathcal{B}$.

Let G be a connected graph of order n with $\delta(G) \geq 2$. If n = 3, then $G \cong C_3$ and $\gamma_r(G) = 1 = (n-1)/2$. If n = 4, then either $\gamma_r(G) = 1$ or $G \cong B_1$ and $\gamma_r(G) = 2 = n/2$. Hence B_1 is the only graph on three or four vertices that satisfies the hypothesis of Theorem 1.

The following result will prove to be useful.

Lemma 2 Let G = (V, E) be a graph of order $n \ge 5$ with $\delta(G) \ge 2$. If $\Delta(G) = n - 2$, then $\gamma_r(G) \le (n - 1)/2$.

Proof. Since $n \geq 5$, we have $\Delta(G) \geq 3$. Let $N(v_1) = \{v_2, \dots, v_{n-1}\}$ and $V - N[v_1] = \{v_n\}$. Since $\delta(G) \geq 2$, we may assume that $N(v_n) = \{v_2, v_3, \dots, v_k\}$ where $k \geq 3$. If $\{v_1, v_2\}$ or $\{v_1, v_3\}$ is a restrained dominating set of G, then $\gamma_r(G) \leq 2 \leq (n-1)/2$. Suppose, then, that neither $\{v_1, v_2\}$ nor $\{v_1, v_3\}$ is a restrained dominating set of G. Let $i \in \{2, 3\}$, and let S_i be the set of isolated vertices in $G - \{v_1, v_i\}$. Since $\{v_1, v_i\}$ is not a restrained dominating set of G, $S_i \neq \emptyset$. If $|S_i| \leq (n-1)/2 - 2$, then $\{v_1, v_i\} \cup S_i$ is a restrained dominating set of G, whence $\gamma_r(G) \leq (n-1)/2$. Suppose, then, that $|S_i| \geq n/2 - 2$. Every vertex in S_i is adjacent only to v_1 and v_i , so $S_2 \cap S_3 = \emptyset$. Furthermore, $v_i \notin S_2 \cup S_3$. Thus $V - (S_2 \cup S_3 \cup \{v_2, v_3\})$ is a restrained dominating set of G, whence $\gamma_r(G) \leq n - |S_2| - |S_3| - 2 \leq n - (n/2 - 2) - (n/2 - 2) - 2 = 2 \leq (n-1)/2$.

Lemma 3 If G = (V, E) is a connected graph of order 5 with $\gamma_r(G) \geq 3$ and $\delta(G) \geq 2$, then $G \cong B_2$.

Proof. If $\Delta(G) = 4$, then $\gamma_r(G) = 1$, a contradiction. If $\Delta(G) = 3$, then, by Lemma 2, $\gamma_r(G) \leq 2$, a contradiction. Hence $\Delta(G) = 2$, i.e., $G \cong B_2$. \square

Lemma 4 Let G = (V, E) be a connected graph of order 6 with $\delta(G) \geq 2$. If $\Delta(G) \neq 3$, then $\gamma_r(G) \leq 2$.

Proof. If $\Delta(G) = 2$, then $G \cong C_6$. If $\Delta(G) = 4$, then, by Lemma 2, $\gamma_r(G) \leq 2$. If $\Delta(G) = 5$, then $\gamma_r(G) = 1$.

Lemma 5 If G = (V, E) is a connected graph of order 6 with $\gamma_r(G) \geq 3$ and $\delta(G) \geq 2$, then $G \cong B_3$.

Proof. By Lemma 4, we know that $\Delta(G)=3$. Let v_1 be a vertex of degree 3, and let $N(v_1)=\{v_2,v_3,v_4\}$ and $V-N[v_1]=\{v_5,v_6\}$. We show that no vertex from $\{v_2,v_3,v_4\}$ is adjacent to both v_5 and v_6 . If this is not the case, then we may assume that v_2v_5 and v_2v_6 are edges. Since $\{v_1,v_2\}$ is not a restrained dominating set, at least one vertex is isolated in $G-\{v_1,v_2\}$. Since $\delta(G)\geq 2$ and $\deg v_1=\deg v_2=3=\Delta(G)$, each $v_i\in V(G)-\{v_1,v_2\}$ must have a neighbor in $G-\{v_1,v_2\}$, a contradiction. Hence no vertex from $\{v_2,v_3,v_4\}$ is adjacent to both v_5 and v_6 .

Since $\delta(G) \geq 2$, we may assume that v_2v_5 and v_4v_6 are edges. Since v_3 is adjacent to at most one of v_5 and v_6 , and since v_5 and v_6 have degree at least 2, v_5v_6 must be an edge. Now if v_3 is adjacent to v_2 or v_4 , say v_2v_3 is an edge, then $\{v_1, v_5\}$ is a restrained dominating set, contradicting the fact that $\gamma_t(G) = 3$. Thus, v_3 is adjacent to neither v_2 not v_4 . We may assume that v_3v_5 is an edge and, hence, v_3v_6 is not an edge. Hence $G \cong B_3$.

Lemma 6 If G = (V, E) is a connected graph of order 7 with $\delta(G) \geq 2$, then $\gamma_r(G) \leq 3$.

Proof. If $\Delta(G) = 6$, then $\gamma_r(G) = 1$. If $\Delta(G) = 5$, then, by Lemma 2, $\gamma_r(G) \leq 3$.

Suppose that $\Delta(G) = 4$. Let v_1 be a vertex of degree 4, and let $N(v_1) =$ $\{v_2, v_3, v_4, v_5\}$ and $V - N[v_1] = \{v_6, v_7\}$. Suppose some vertex from $\{v_2, v_3, v_4, v_5\}$ v_4, v_5 , say v_2 , is adjacent to both v_6 and v_7 . If $\{v_1, v_2\}$ is a restrained dominating set, then $\gamma_r(G) = 2$. Otherwise, if $\{v_1, v_2\}$ is not a restrained dominating set, then at least one vertex is isolated in $G - \{v_1, v_2\}$. We may assume v_3 is isolated in $G - \{v_1, v_2\}$. Thus, v_3 is adjacent only to v_1 and v_2 . Hence v_2 is adjacent to only v_1, v_3, v_6, v_7 . It follows that $G - \{v_1, v_2, v_3\}$ has no isolated vertex. Thus, $\{v_1, v_2, v_3\}$ is a restrained dominating set, so $\gamma_r(G) \leq 3$. Suppose, then, that no vertex from $\{v_2, v_3, v_4, v_5\}$ is adjacent to both v_6 and v_7 . We may assume that v_2v_6 and v_5v_7 are edges. v_6v_7 is not an edge, then we may assume that v_3v_6 and v_4v_7 are edges. But then $\{v_1, v_3, v_4\}$ is a restrained dominating set, so $\gamma_r(C) \leq 3$. On the other hand, if v_6v_7 is an edge, then either there is an edge joining at least one of v_2 and v_5 to one of v_3 and v_4 or not. If there is an edge joining $\{v_2, v_5\}$ and $\{v_3, v_4\}$, say v_2v_3 is an edge, then $\{v_3, v_4, v_7\}$ is a restrained dominating set, so $\gamma_r(G) \leq 3$. Suppose, then, that there is no edge joining v_2 or v_5 to v_3 or v_4 . If v_3v_4 is an edge, then $\{v_1, v_2, v_5\}$ is a restrained dominating set, so $\gamma_r(G) \leq 3$. Hence we may assume that v_3v_4 is not an edge. Assume, without loss of generality, that v_3v_6 is an edge. If $v_4v_6 \in E(G)$ or $v_4v_7 \in E(G)$, then $\{v_3, v_6, v_7\}$ is a restrained dominating set of G. In both cases, $\gamma_r(G) \leq 3$. Hence if $\Delta(G) = 4$, then $\gamma_r(G) \leq 3$.

Suppose $\Delta(G) = 3$. Let v_1 be a vertex of degree 3, and let $N(v_1) = \{v_2, v_3, v_4\}$ and $V - N[v_1] = \{v_5, v_6, v_7\}$. Suppose some vertex from $\{v_2, v_3, v_4\}$

is adjacent to two of the vertices v_5, v_6 and v_7 . We may assume v_2v_5 and v_2v_6 are edges. Thus v_2 is adjacent only to v_1, v_5, v_6 . If $\{v_1, v_2, v_7\}$ is a restrained dominating set, then $\gamma_r(G) \leq 3$. Otherwise, if $\{v_1, v_2, v_7\}$ is not a restrained dominating set, then $G - \{v_1, v_2, v_7\}$ contains an isolated vertex. If v_i is isolated in $G - \{v_1, v_2, v_7\}$, then v_i is adjacent to v_7 and $\{v_1, v_2, v_i\}$ is a restrained dominating set, and so $\gamma_r(G) \leq 3$. Suppose, then, that each of v_2, v_3 , and v_4 is adjacent to at most one of v_5, v_6 and v_7 . Since $\delta(G) \geq 2$, it follows that there are at least two edges in the subgraph induced by v_5, v_6 and v_7 . We may assume that v_5v_6 and v_6v_7 are edges. If $\{v_1, v_6\}$ is a restrained dominating set, then $\gamma_r(G) = 2$. Otherwise, if $\{v_1, v_6\}$ is not a restrained dominating set, then one of v_2, v_3, v_4 , say v_3 , is isolated in $G - \{v_1, v_6\}$. Thus v_3 is adjacent to only v_1 and v_6 , and v_6 is adjacent only to v_3, v_5 and v_7 . It follows then that $\{v_1, v_3, v_6\}$ is a restrained dominating set, so $\gamma_r(G) \leq 3$. Hence if $\Delta(G) = 3$, then $\gamma_r(G) \leq 3$. Finally, if $\Delta(G) = 2$, then $G \cong C_7$ and $\gamma_r(G) = 3$.

Lemma 7 If G = (V, E) is a connected graph of order 8 with $\delta(G) \geq 2$ and with $\Delta(G) \geq 5$, then $\gamma_r(G) \leq 3$.

Proof. If $\Delta(G) = 7$, then $\gamma_r(G) = 1$. If $\Delta(G) = 6$, then, by Lemma 2, $\gamma_r(G) \leq 3$. Hence we may assume that $\Delta(G) = 5$. Let v_1 be a vertex of degree 5, and let $N(v_1) = \{v_2, v_3, v_4, v_5, v_6\}$ and $V - N[v_1] = \{v_7, v_8\}$.

Suppose firstly that some vertex from $\{v_2, v_3, v_4, v_5, v_6\}$, say v_2 , is adjacent to both v_7 and v_8 . If $\{v_1, v_2\}$ is a restrained dominating set, then $\gamma_r(G) = 2$. Otherwise, if $\{v_1, v_2\}$ is not a restrained dominating set, then at least one vertex is isolated in $G - \{v_1, v_2\}$. We may assume v_3 is isolated in $G - \{v_1, v_2\}$. Thus, v_3 is adjacent only to v_1 and v_2 . Now if $\{v_1, v_2, v_3\}$ is a restrained dominating set, then $\gamma_r(G) \leq 3$. Otherwise, if $\{v_1, v_2, v_3\}$ is not a restrained dominating set, then at least one vertex is isolated in $G - \{v_1, v_2, v_3\}$. We may assume v_4 is isolated in $G - \{v_1, v_2, v_3\}$, so v_4 is adjacent only to v_1 and v_2 . Hence v_2 has degree 5 and is adjacent to only v_1, v_3, v_4, v_7, v_8 . It follows that $G - \{v_1, v_2, v_3, v_4\}$ has no isolated vertex. If v_5v_6 is an edge, then $\{v_1, v_7, v_8\}$ is a restrained dominating set and $\gamma_r(G) \leq 3$. On the other hand, if v_5v_6 is not an edge, then without loss of generality, $v_5v_7 \in E(G)$ and $v_6v_8 \in E(G)$ and $\{v_1, v_5, v_6\}$ is a restrained dominating set implying that $\gamma_r(G) \leq 3$.

Suppose next that no vertex from $\{v_2, v_3, v_4, v_5, v_6\}$ is adjacent to both v_7 and v_8 . We may assume that v_2v_7 and v_6v_8 are edges. If v_7v_8 is not an edge, then we may assume that v_3v_7 and v_5v_8 are edges. But then at least one of $\{v_1, v_3, v_5\}$ and $\{v_1, v_2, v_6\}$ is a restrained dominating set, so $\gamma_r(G) \leq 3$. On the other hand, if v_7v_8 is an edge, then either $\{v_1, v_2, v_6\}$ is a restrained dominating set, in which case $\gamma_r(G) \leq 3$, or not. If $\{v_1, v_2, v_6\}$ is not a restrained dominating set, then since v_7 and v_8 are not isolated in $G = \{v_1, v_2, v_6\}$, we may assume that v_5 is isolated in $G = \{v_1, v_2, v_6\}$.

Further, we may assume that v_5v_6 is an edge. If $\{v_1, v_2, v_7\}$ is a restrained dominating set, then $\gamma_{\tau}(G) \leq 3$. If $\{v_1, v_2, v_7\}$ is not a restrained dominating set, then we may assume that v_3 is isolated in $G - \{v_1, v_2, v_7\}$. In particular, v_3 is adjacent to at least one of v_2 and v_7 . But then $\{v_1, v_4, v_8\}$ is a restrained dominating set and $\gamma_{\tau}(G) \leq 3$. Hence if $\Delta(G) = 5$, then $\gamma_{\tau}(G) \leq 3$.

Lemma 8 Let G = (V, E) be a connected graph of order 8 with $\delta(G) \geq 2$ and $\Delta(G) = 4$. If $\gamma_r(G) \geq 4$, then $G \cong B_5$.

Proof. Let v_1 be a vertex of degree 4, and let $N(v_1) = \{v_2, v_3, v_4, v_5\}$ and $V - N[v_1] = \{v_6, v_7, v_8\}$. We show firstly that every vertex of $\{v_2, v_3, v_4, v_5\}$ is adjacent to at most one vertex from $\{v_6, v_7, v_8\}$. If this is not the case, then we may assume that v_2v_6 and v_2v_7 are edges. If v_2v_8 is an edge, then, since $\Delta(G) = 4$, v_2 is adjacent to only v_1, v_6, v_7 and v_8 . But then $\{v_1, v_2\}$ is a restrained dominating set, contradicting the fact that $\gamma_r(G) \geq 4$. Hence v_2v_8 is not an edge.

Suppose now that v_6v_8 and v_7v_8 are both edges. Since $\{v_1, v_8\}$ is not a restrained dominating set, we may assume that v_5 is adjacent to only v_1 and v_8 . Now since $\{v_1, v_5, v_8\}$ is not a restrained dominating set, we may assume that v_4 is isolated in $G - \{v_1, v_5, v_8\}$. Thus, v_4 is adjacent to only v_1 and v_8 . But then $\{v_3, v_6, v_8\}$ is a restrained dominating set, contradicting the fact that $\gamma_T(G) \geq 4$. Hence at most one of v_6v_8 and v_7v_8 is an edge.

Suppose that either v_6v_8 or v_7v_8 is an edge, say v_7v_8 . Suppose v_8 is adjacent to at least two of v_3, v_4, v_5 , say to v_4 and v_5 . Then $\{v_3, v_6, v_8\}$ is a restrained dominating set, a contradiction. Hence v_8 is adjacent to exactly one of v_3, v_4, v_5 , say to v_5 (so v_8 is adjacent to only v_5 and v_7). If $\{v_2, v_5, v_6\}$ is a restrained dominating set, then $\gamma_r(G) \leq 3$, a contradiction. Hence v_3 or v_4 , say v_3 , is not dominated by $\{v_2, v_5, v_6\}$. Hence v_3 is adjacent to v_1 and to at least one of v_4 and v_7 , but to no other vertex. If $\{v_4, v_6, v_7\}$ is a restrained dominating set, then $\gamma_r(G) \leq 3$, a contradiction. Hence v_5 must be adjacent to v_1 , v_8 and possibly v_2 . If v_3v_4 is an edge, then $\{v_1, v_2, v_5\}$ is a restrained dominating set of G, a contradiction. Hence, v_3v_4 is not an edge of G and v_3v_7 is therefore an edge of G. If v_4 is adjacent to either v_6 or v_7 , then $\{v_1, v_2, v_5\}$ is a restrained dominating set of G, a contradiction. It follows that v_4 is adjacent to v_1 and v_2 only. Since $\delta(G) \geq 2$, v_6 is adjacent to v_7 . But then $\{v_4, v_7, v_8\}$ is a restrained dominating set of G, a contradiction.

We may assume that v_4v_8 and v_5v_8 are edges. Since $\{v_2, v_8\}$ is not a restrained dominating set, v_3v_8 cannot be an edge, so v_8 is adjacent to only v_4 and v_5 . Further, since $\{v_2, v_3, v_8\}$ is not a restrained dominating set, one of v_6 or v_7 , say v_7 , is isolated in $G - \{v_2, v_3, v_8\}$. Thus v_7 is adjacent to only v_2 and v_3 . But then $\{v_3, v_6, v_8\}$ is a restrained dominating set, contradicting the fact that $\gamma_T(G) \geq 4$.

Hence every vertex of $\{v_2, v_3, v_4, v_5\}$ is adjacent to at most one vertex from v_6, v_7 or v_8 . Since $\delta(G) \geq 2$, it follows that there is at least one edge in the subgraph induced by v_6 , v_7 and v_8 . First consider the case when the subgraph induced by v_6, v_7 and v_8 has exactly one edge. Without loss of generality, assume that v_7v_8 is the only edge of the subgraph induced by v_6, v_7 and v_8 . Since $\delta(G) \geq 2$, we may assume that v_5v_8, v_4v_7, v_2v_6 and v_3v_6 are edges of G. But then $\{v_4, v_5, v_6\}$ is a restrained dominating set of G, which is a contradiction. Now consider the case when the subgraph induced by v_6, v_7 and v_8 has at least two edges, v_6v_7 and v_6v_8 , say. Since $\{v_1, v_6\}$ is not a restrained dominating set, one of v_2, v_3, v_4, v_5 , say v_2 , is isolated in $G - \{v_1, v_6\}$. Thus v_2 is adjacent to only v_1 and v_6 . Furthermore, since $\{v_1, v_2, v_6\}$ is not a restrained dominating set, one of v_3, v_4, v_5 , say v_3 , is isolated in $G - \{v_1, v_2, v_6\}$. Thus v_3 is adjacent to only v_1 and v_6 , and v_6 is adjacent only to v_2, v_3, v_7 and v_8 . Now since $\{v_1, v_7, v_8\}$ is not a restrained dominating set, v_4v_5 cannot be an edge of G. We may assume that v_4v_7 is an edge. Since $\{v_1, v_5, v_8\}$ is not a restrained dominating set, v_5v_7 cannot be an edge. Thus v_5 must be adjacent to only v_1 and v_8 . Furthermore, since $\{v_1, v_4, v_7\}$ is not a restrained dominating set, v_8 cannot be adjacent to v_4 or v_7 . Thus, $G \cong B_5$.

Lemma 9 Let G = (V, E) be a connected graph of order 8 with $\delta(G) \geq 2$ and with $\Delta(G) = 3$. If $\gamma_r(G) \geq 4$, then $G \in \{B_6, B_7, B_8\}$.

Proof. Let v be a vertex of degree 3. First we show that v is within distance two of u for all $u \in V(G)$. Suppose that d(u,v) = 3 for some $u \in V(G)$. If u has degree 3, then $\{u, v\}$ is a restrained dominating set and $\gamma_r(C) = 2$, contradicting the fact that $\gamma_r(C) \geq 4$. Hence u has degree 2. Let $V - N[\{u, v\}] = \{w\}, N(v) = \{a, b, c\}$ and $N(u) = \{x, y\}$. Suppose that w is adjacent to x or y, say to y. If xy is an edge, then y is adjacent to only u, w, x, whence $\{v, y\}$ is a restrained dominating set, a contradiction. Hence xy is not an edge. Since $\{u, v, y\}$ is not a restrained dominating set, there must be an isolated vertex in $G - \{u, v, y\}$. Since x and w are not isolated in $G - \{u, v, y\}$, we may assume that c is adjacent to only v and y. Now since $\{v, x, w\}$ is not a restrained dominating set, a and b must be nonadjacent vertices. But then each of a and b must be adjacent to at least one of x and w. Thus, $\{c, x, w\}$ is a restrained dominating set, a contradiction. Hence wx and wy cannot be edges of G. Thus, we may assume that aw and bware edges. Since $\{c, u, w\}$ is not a restrained dominating set, there must be an isolated vertex in $G - \{c, u, w\}$. Since x and y are the only possible isolated vertices in $G - \{c, u, w\}$, we may assume that y is adjacent to u, to at least one of c and w, and to no other vertex. But then $\{c, w, x\}$ is a restrained dominating set, a contradiction. Hence v is within distance 2 from every vertex of G.

Let $v=v_1$ and let $N(v_1)=\{v_2,v_3,v_4\}$. Furthermore, let $V-N[v_1]=\{v_5,v_6,v_7,v_8\}$. Since all vertices are at distance at most 2 from v_1 , at least one vertex in $N(v_1)$ is adjacent to two vertices in $V-N[v_1]$. We may assume that v_2 is adjacent to v_5 and v_6 . If v_3 is adjacent to both v_7 and v_8 , then $\{v_1,v_2,v_3\}$ is a restrained dominating set and $\gamma_\tau(G) \leq 3$, a contradiction. Similarly, if v_4 is adjacent to both v_7 and v_8 , then $\gamma_\tau(G) \leq 3$, a contradiction. Hence we may assume that v_3v_7 and v_4v_8 are edges, while v_3v_8 and v_4v_7 are not edges. Now since $\{v_2,v_7,v_8\}$ is not a restrained dominating set, $G-\{v_2,v_7,v_8\}$ contains an isolated vertex which is necessarily v_5 or v_6 . We may assume that v_6 is isolated in $G-\{v_2,v_7,v_8\}$. Furthermore, we may assume that v_6v_7 is an edge. If v_6v_8 is an edge, then $\{v_1,v_2,v_6\}$ is a restrained dominating set, a contradiction. So we may assume v_6 is adjacent only to v_2 and v_7 . If v_4v_5 is an edge, then $\{v_1,v_4,v_6\}$ is a restrained dominating set, a contradiction. Hence v_4v_5 is not an edge.

Suppose v_5v_7 is an edge. Then v_7 is adjacent only to v_3, v_5, v_6 . But since $\delta(G) \geq 2$, v_5v_8 must be an edge, so v_8 is adjacent only to v_4 and v_5 . But then $\{v_1, v_2, v_5\}$ is a restrained dominating set, a contradiction. Hence v_5v_7 is not an edge.

Suppose v_3v_5 is an edge. Then v_3 is adjacent only to v_1, v_5 and v_7 . Since $\{v_2, v_5, v_8\}$ is not a restrained dominating set, v_7v_8 cannot be an edge. Thus, v_8 is adjacent only to v_4 and v_5 . However, v_5 now has degree 3, so there are no further edges in G. Thus $G \cong B_8$.

Suppose v_3v_5 is not an edge. Then v_5v_8 must be an edge, for otherwise v_5 is adjacent only to v_2 . Since $\{v_1, v_7, v_8\}$ is not a restrained dominating set, v_3v_4 cannot be an edge. Thus, v_3 is adjacent only to v_1 and v_7 , while v_4 is adjacent only to v_1 and v_8 . Now either v_7v_8 is not an edge, in which case $C \cong B_6$, or v_7v_8 is an edge, in which case $C \cong B_7$. This completes the proof of the lemma.

The following result is immediate.

Lemma 10 If G is a connected 2-regular graph of order 8, then $G \cong B_4$ and $\gamma_r(G) = 4$.

Theorem 1 is an immediate consequence of Lemmas 3 to 10. Let $\mathcal{B}^* = \{B_1, B_2, \ldots, B_5\}$. We will refer to a graph in the collection \mathcal{B}^* as a bad graph. We close this section by making two observations about bad graphs which we will use in proving our main result of the next section.

Observations

- (1) For any bad graph G = (V, E) and $v \in V$, there is a minimum restrained dominating set of G that contains v.
- (2) For any bad graph G = (V, E) and $v \in V$, there is a set $D \subset V$ satisfying

- (i) D dominates $V \{v\}$,
- (ii) $\langle V D \rangle$ contains no isolated vertex, and
- $(iii) |D| = \gamma_r(G) 1.$

3 The upper bound

In this section we shall prove:

Theorem 11 Let G be a connected graph of order $n \geq 3$ with $\delta(G) \geq 2$. If $G \notin \mathcal{B}$, then

$$\gamma_r(G) \le (n-1)/2.$$

Proof. We have shown (see Theorem 1) the statement to be true for $n \leq 8$. Assume, to the contrary, that the theorem is false. Among all counterexamples, let G = (V, E) be one of minimum size. Then G is a connected graph of order $n \geq 9$ with $\delta(G) \geq 2$ satisfying $\gamma_r(G) \geq n/2$. If $G \cong C_n$, then $\gamma_r(G) \leq (n-1)/2$, a contradiction. Hence G is not a cycle, so G contains at least one vertex of degree 3.

Let $S = \{v \in V \mid \deg v \geq 3\}$. For each $v \in S$, we define the 2-graph of v to be the connected component of $G - (S - \{v\})$ that contains v. So each vertex of the 2-graph of v has degree 2 in G, except for v. Furthermore, the 2-graph of v consists of edge-disjoint cycles through v, which we call 2-graph cycles, and paths emanating from v, which we call 2-graph paths.

Claim 12 The set S is independent.

Proof. Assume e = uv is an edge, where $u, v \in S$. Since $\gamma_r(G - e) \ge \gamma_r(G) > (n-1)/2$, and since $\delta(G - e) \ge 2$, the minimality of G implies that e must be a bridge since otherwise G - e would be a connected graph which would be a smaller counterexample. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be the two components of G - e where $u \in V_1$. For i = 1, 2, let $|V_i| = n_i$. Each G_i satisfies $\delta(G_i) \ge 2$ and is connected. Hence, by the minimality of G, for each i = 1, 2 either G_i is in \mathcal{B}^* (since B_4 is a spanning subgraph of the graphs B_6 , B_7 and B_8) or $\gamma_r(G_i) \le (n_i - 1)/2$ for i = 1, 2.

If $\gamma_r(G_i) \leq (n_i-1)/2$ for i=1,2, then, letting D_i denote a minimum restrained dominating set of G_i $(i=1,2), \ D_1 \cup D_2$ is a restrained dominating set of G of cardinality $|D_1|+|D_2|\leq (n_1-1)/2+(n_2-1)/2=(n-2)/2$, a contradiction. Hence G_1 or G_2 , say G_1 , must belong to \mathcal{B}^* . Suppose $\gamma_r(G_2) \leq (n_2-1)/2$. If $G_1 \cong B_2$, then $\gamma_r(G) \leq 2+\gamma_r(G_2) \leq 2+(n_2-1)/2=n/2-1$, a contradiction. Hence $G_1 \in \{B_1,B_3,B_4,B_5\}$. But then $\gamma_r(G) \leq \gamma_r(G_1)+\gamma_r(G_2) \leq n_1/2+(n_2-1)/2=(n-1)/2$, a contradiction. Hence both G_1 and G_2 belong to \mathcal{B}^* .

Assume, firstly, that $G_1 \cong B_2$. If $G_2 \cong B_2$, then $\gamma_r(G) = 4 < (n-1)/2$, a contradiction. Hence $G_2 \in \{B_1, B_3, B_4, B_5\}$. It now follows from Observation (2) that $\gamma_r(G) \leq (\gamma_r(G_1) - 1) + (\gamma_r(G_2) - 1) + 1 = 2 + (n_2/2 - 1) + 1 = (n-1)/2$, a contradiction. Hence $G_1 \not\cong B_2$. Similarly, $G_2 \not\cong B_2$. Thus $G_1, G_2 \in \{B_1, B_3, B_4, B_5\}$. It follows from Observation (2) that $\gamma_r(G) \leq (\gamma_r(G_1) - 1) + (\gamma_r(G_2) - 1) + 1 \leq (n_1/2 - 1) + (n_2/2 - 1) + 1 = n/2 - 1$, a contradiction. We deduce, therefore, that S must be independent.

Claim 13 $|S| \geq 2$

Proof. If |S| = 1, then G consists of (at least two) edge-disjoint cycles passing through a common vertex v. If each of these cycles is a 5-cycle, then $\gamma_r(G) = (n-1)/2$; otherwise, if one or more of these cycles is not a 5-cycle, then $\gamma_r(G) < (n-1)/2$. Both cases produce a contradiction. Hence $|S| \ge 2$.

Claim 14 All 2-graph paths have length 1.

Proof. By Claim 13, $|S| \geq 2$. Let $P: u, v_1, \ldots, v_k, v$ be a longest path joining two vertices u and v of S, every internal vertex of which belongs to V-S. By Claim 12, we know that u and v are not adjacent, so $k \geq 1$. We show that k=1. If this is not the case, then $k \geq 2$. We now consider the graph $G' = G - \{v_1, v_2, \ldots, v_k\}$ of order n' = n - k; that is, G' is the graph obtained from G by removing the k internal vertices of the path P. Then $\delta(G') \geq 2$.

Assume G' is connected. Then, by the minimality of G, $G' \in \mathcal{B}^*$ or $\gamma_r(G') \leq (n'-1)/2 = (n-k-1)/2$. If $\gamma_r(G') \leq (n-k-1)/2$, then $\gamma_r(G) \leq k/2 + (n-k-1)/2 = (n-1)/2$, a contradiction. On the other hand, if $G' \in \mathcal{B}^*$, then it follows from Observation (2) that $\gamma_r(G) \leq k/2 + (n'-1)/2 = k/2 + (n-k-1)/2 = (n-1)/2$, a contradiction. Hence G' is disconnected.

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be the two components of G'. For i=1,2, let $|V_i|=n_i$. So $n'=n_1+n_2$. Each G_i satisfies $\delta(G_i)\geq 2$ and is connected. Hence, by the minimality of G, $G_i\in\mathcal{B}^*$ or $\gamma_r(G_i)\leq (n_i-1)/2$ for i=1,2. If $\gamma_r(G_i)\leq (n_i-1)/2$ for i=1,2, then $\gamma_r(G)\leq k/2+\gamma_r(G_1)+\gamma_r(G_2)\leq k/2+(n_1-1)/2+(n_2-1)/2=n/2-1$, a contradiction. Hence G_1 or G_2 , say G_1 , must belong to \mathcal{B}^* . Suppose $G_1\cong B_2$. If $G_2\cong B_2$, then $\gamma_r(G)\leq 4+k/2=n/2-1$, a contradiction. If $G_2\not\cong B_2$, then $\gamma_r(G_2)\leq n_2/2=(n-k-5)/2$ whence $\gamma_r(G)\leq 2+k/2+(n-k-5)/2=(n-1)/2$, a contradiction. Hence $G_1\not\cong B_2$ (and $G_2\not\cong B_2$). If $\gamma_r(G_2)\leq (n_2-1)/2$, then it follows from Observation (1) that $\gamma_r(G)\leq \gamma_r(G_1)+k/2+\gamma_r(G_2)\leq n_1/2+k/2+(n_2-1)/2=k/2+(n-k-1)/2=(n-1)/2$, a contradiction. Hence $G_2\in\mathcal{B}^*-B_2$. But then it is easy to check using Observations (1)

and (2) that $\gamma_r(G) \leq (n-2)/2$, a contradiction. We deduce, therefore, that k=1. This completes the proof of the claim.

Claim 15 There are no 2-graph cycles.

Proof. Let $v \in S$. Assume that $C: v, v_1, v_2, \ldots, v_k, v$ is a 2-graph cycle of v of length k+1, where $k \geq 2$. Let $H = G - (V(C) - \{v\})$.

We show firstly that $\delta(H) \geq 2$. If this is not the case, then v must be adjacent in G to v_1, v_k and exactly one other vertex, u say. By Claim 12, $u \notin S$. By Claim 14, u is adjacent to v and to one other vertex, w say, of S. Hence letting $H^* = G - V(C) - \{u\}$, we note that H^* is connected graph of order $n^* = n - k - 2$ with $\delta(H^*) \geq 2$. Hence, by the minimality of G, $H^* \in \mathcal{B}^*$ or $\gamma_r(H^*) \leq (n^*-1)/2$. If $H^* \in \mathcal{B}^*$, then either $H^* \cong B_2$, in which case $\gamma_r(G) \leq 3 + k/2 = (n-1)/2$, or $H^* \in \{B_1, B_3, B_4, B_5\}$, in which case it is easy to check (using Observation 1) that $\gamma_r(G) \leq n^*/2 + (k+1)/2 = (n-1)/2$. On the other hand, if $\gamma_r(H^*) \leq (n^*-1)/2 = (n-k-3)/2$, then consider a minimum restrained dominating set D^* of H^* . If $w \in D^*$, then $\gamma_r(G) \leq (k+1)/2 + (n-k-3)/2 = (n-2)/2$, while if $w \notin D^*$, then $\gamma_r(G) \leq (k+2)/2 + (n-k-3)/2 = (n-1)/2$. All the above cases produce a contradiction. Hence $\delta(H) \geq 2$.

Since H is a connected graph of order n'=n-k with $\delta(H)\geq 2$, the minimality of G implies that $H\in\mathcal{B}^*$ or $\gamma_r(H)\leq (n'-1)/2=(n-k-1)/2$. If $\gamma_r(H)\leq (n-k-1)/2$, then $\gamma_r(G)\leq k/2+(n-k-1)/2=(n-1)/2$, a contradiction. On the other hand, if $H\in\mathcal{B}^*$, then either $H^*\cong B_2$, in which case $\gamma_r(G)\leq 2+k/2=(n-1)/2$, or $H^*\in\{B_1,B_3,B_4,B_5\}$, in which case it is easy to check (using Observations 1 and 2) that $\gamma_r(G)\leq (k+1)/2+(n'-2)/2=(n-1)/2$, once again producing a contradiction. We deduce, therefore, that there is no 2-graph cycle of v. Since v is an arbitrary vertex of S, the claim follows.

By Claims 12 to 15 it follows that G is a bipartite graph with partite sets S and V-S, where $|S| \geq 2$. In particular, any subgraph in \mathcal{B}^* is B_1 or B_4 . By definition, each vertex of S has degree at least 3 while each vertex of V-S has degree 2. If |S|=2, then G is a complete bipartite graph and the set consisting of one vertex from S and one vertex from V-S is a restrained dominating set of S of cardinality at most S0, a contradiction. Hence $|S| \geq 3$ 1.

Among all the vertices of S, let v have smallest degree, m say, in G. Let $N(v) = \{v_1, v_2, \ldots, v_m\}$. We now consider the graph H = G - N[v]. It follows from our choice of v and since $|S| \ge 3$, that H contains no isolated vertex.

Claim 16 If $\delta(H) = 1$, then $\gamma_r(G) \leq (n-2)/2$.

Proof. Since $\delta(H) = 1$, there must be a vertex w of S of degree 1 in H. Let x be the neighbor of w in H, and let $N(x) = \{u, w\}$. Necessarily, $u \in S$. We now consider the graph $G' = G - (N[v] \cup \{w, x\})$ of order n' = n - m - 3.

If $N(v) \subset N(w)$, then $N(v) = N(w) - \{x\}$ and G' is a connected graph with $\delta(G') \geq 2$. Hence, by the minimality of G, $G' \in \mathcal{B}^*$ or $\gamma_r(G') \leq (n'-1)/2 = (n-m-4)/2$. If $\gamma_r(G') \leq (n-m-4)/2$, then by adding the vertices v and x to a minimum restrained dominating set D' of G' we produce a restrained dominating set of G of cardinality $|D'| + 2 \leq (n-m-4)/2 + 2 = (n-m)/2 \leq (n-3)/2$. On the other hand, if $G' \in \mathcal{B}^*$, then it is straightforward to check using Observation (2) and the fact that $\{v, x\}$ is a restrained dominating set of $\langle N[v] \cup \{w, x\} \rangle$ that $\gamma_r(G) \leq (n-3)/2$.

If $N(v) \not\subset N(w)$, then it follows from our choice of v that v and w have m-1 vertices in common. Let $\{v_m\} = N(v) - N(w)$. Further, let $N(v_m) = \{v, z\}$. We now consider two possibilities depending on whether u = z or $u \neq z$.

Suppose that u=z. Then G' is connected. If $\delta(G') \geq 2$, then the minimality of G implies that $G' \in \mathcal{B}^*$ or $\gamma_r(G') \leq (n'-1)/2 = (n-m-4)/2$. If $\gamma_r(G') \leq (n-m-4)/2$, then let D' be a minimum restrained dominating set of G'. If $u \in D'$, consider the following two cases. If m = 3, then v_1 and v_2 can be added to D' to produce a restrained dominating set of G of cardinality $|D'|+2 \le (n-3)/2$. If $m \ge 4$, then $D' \cup \{v, v_1, v_m\}$ is a restrained dominating set of G of cardinality $|D'| + 3 \le (n - m - 4)/2 + 3 = (n - m + m)/2 + 3 = (n - m$ (n-2)/2. If $u \notin D'$, then adding v and x to D' produces a restrained dominating set of G of cardinality $|D'|+2 \le (n-3)/2$. On the other hand, if $G' \in \mathcal{B}^*$, then it is straightforward to check using Observation (2) that $\gamma_r(G) < (n-3)/2$. So we may assume that $\delta(G') = 1$. Thus u has degree 3 in G. Let y be the neighbor of u different from x and v_m . By our choice of v, it follows that m=3, so both v and w have degree 3. We now consider the graph $G^* = G - N[v] - N[x] - \{y\}$. Then G^* is a connected graph of order $n^* = n - 8$ with $\delta(G^*) \geq 2$. The minimality of G implies that $G^* \in \mathcal{B}^*$ or $\gamma_r(G^*) \leq (n^* - 1)/2 = (n - 9)/2$. If $\gamma_r(G^*) \leq (n - 9)/2$, then adding the vertices $\{w, v_3, y\}$ to a minimum restrained dominating set of G^* produces a restrained dominating set of G of cardinality at most (n-3)/2. If $G^* \in \mathcal{B}^*$, then (using Observation 2) it is straightforward to check that $\gamma_r(G) \leq (n-3)/2$. Hence if u=z, then $\gamma_r(G) \leq (n-2)/2$.

Suppose, next, that $u \neq z$. Since $u, z \in S$, we know that u and z are nonadjacent. Suppose G' is connected. Then, since $\delta(G') \geq 2$, the minimality of G implies that $\gamma_r(G') \leq (n'-1)/2 = (n-m-4)/2$ or $G' \in \mathcal{B}^*$. If $G' \in \mathcal{B}^*$, then (using Observation 2) it is straightforward to check that $\gamma_r(G) \leq (n-2)/2$. If $\gamma_r(G') \leq (n-m-4)/2$, then consider a minimum restrained dominating set D' of G'. If $u \in D'$ and $z \notin D'$, then $D' \cup \{v, v_1\}$ is a restrained dominating set of G', whence $\gamma_r(G) \leq (n-m-4)/2$.

 $2+(n-m-4)/2=(n-m)/2\leq (n-3)/2$. If $u\not\in D'$ and $z\in D'$, then $D'\cup\{w,v_1\}$ is a restrained dominating set of G', whence $\gamma_r(G)\leq (n-3)/2$. If $u,z\not\in D'$, then $D'\cup\{v,x\}$ is a restrained dominating set of G', whence $\gamma_r(G)\leq (n-3)/2$. Suppose $u,z\in D'$. If m=3, then the two common neighbors, v_1 and v_2 , of v and v can be added to v to produce a restrained dominating set of v of cardinality $|v|+2\leq (n-3)/2$. If v is a restrained dominating set of v of cardinality $|v|+3\leq (n-m-4)/2+3=(n-m+2)/2\leq (n-2)/2$. Hence if v is connected, then v is v if v is connected, then v is v if v is v if v is v if v is connected, then v is v if v if v is v if v is v if v is v if v is v if v if v is v if v is v if v is v if v is v if v if v is v if v is v if v is v if v is v if v if v if v is v if v if v is v if v if v if v if v is v if v

Suppose then that G' is disconnected. Then G' consists of two components, namely a component F_1 containing u and a component F_2 containing z. For i=1,2, let F_i have order n_i , so $n'=n_1+n_2$. Now F_i is a connected graph of order n_i with $\delta(F_i) \geq 2$. Hence, by the minimality of G, $\gamma_r(F_i) \leq (n_i-1)/2$ or $F_i \in \mathcal{B}^*$. Suppose that $\gamma_r(F_i) \leq (n_i-1)/2$ for i=1,2. For i=1,2, let D_i be a minimum restrained dominating set of F_i . Then $\{v,v_m,x\} \cup D_1 \cup D_2$ is a restrained dominating set of G of cardinality $3+|D_1|+|D_2|\leq 3+(n_1-1)/2+(n_2-1)/2=(n-m+1)/2\leq (n-2)/2$. Suppose, then, that F_1 or F_2 belongs to \mathcal{B}^* . Then F_1 or $F_2 \in \{B_1,B_4\}$. Since there is only one edge joining F_i , i=1,2, to a vertex not in F_i , and B_1 and B_4 both have more than one vertex of degree at least three, $F_i \notin \{B_1,B_4\}$, which is a contradiction. This completes the proof of the claim.

By Claim 16, $\delta(H) \geq 2$ for otherwise we have a contradiction. Since G is bipartite, so too is H. Let H' be a component of H (possibly, H = H'), and suppose H' has order n'. By the minimality of G, $H' \in \mathcal{B}^*$ or $\gamma_r(H') \leq (n'-1)/2$.

Claim 17 If $H' \in \mathcal{B}^*$, then $H' \cong B_1$.

Proof. Since H' is bipartite, $H' \cong B_1$ or $H' \cong B_4$. So we need only show that $H' \not\cong B_4$. Assume, to the contrary, that H' is an 8-cycle, say $u_1, u_2, \ldots, u_8, u_1$. We may assume that $S \cap V(H') = \{u_1, u_3, u_5, u_7\}$. Then every vertex in N(v) is adjacent to at most one vertex of $S \cap V(H')$. Furthermore, each vertex of $S \cap V(H')$ is adjacent to at least one vertex of N(v) since all vertices of S have degree at least S in S. By the Pigeonhole Principle, we may assume that S is adjacent to at most S is S vertices of S our choice of S, it follows that S is adjacent to at most S is S in S. Hence S is S is adjacently, S is adjacently, S is adjacently, S is adjacently, and S is adjacently at S is adjacently. By our choice of S is adjacently at S is adjacently at S is adjacently at S is adjacently. By our choice of S is adjacently at S

Claim 18 If H is disconnected and $H' \cong B_1$, then $\gamma_r(G) \leq (n-3)/2$.

Proof. Let w and y be the two nonadjacent vertices of the 4-cycle H' that belong to S. Let T denote the set of neighbors of v that are adjacent to

either w or y. Since w and y have degree at least 3 in G, each of w and y is adjacent to at least one vertex of T. Since H is disconnected, we know that $|T| \le m-1$. By the Pigeonhole Principle, we may assume that w is adjacent to at most $|T|/2 \le (m-1)/2$ vertices of T. By our choice of v, it follows that $m = \deg v \le \deg w \le (m-1)/2+2$, or, equivalently, $m \le 3$. Consequently, m = 3, |T| = 2 and H has exactly two components. We may assume that $T = \{v_1, v_2\}$ and that v_1w and v_2y are edges.

Let H'' denote the component of H different from H'. Since there is only one edge joining H'' to a vertex not in H'', $H'' \not\cong B_1$. Let x be the vertex of H'' adjacent to v_3 . The graph H'' is a connected graph of order n'' = n - 8 with $\delta(H'') \geq 2$. Since $H'' \not\in \mathcal{B}^*$, the minimality of G implies that $\gamma_r(H'') \leq (n'' - 1)/2 = (n - 9)/2$. Let D'' be a minimum restrained dominating set of H''. Either $x \in D''$, in which case $D'' \cup \{v_1, y\}$ is a restrained dominating set of G, or $x \notin D''$, in which case $D'' \cup \{v_1, v_3, y\}$ is a restrained dominating set of G. In any event, $\gamma_r(G) \leq |D''| + 3 \leq (n - 9)/2 + 3 = (n - 3)/2$.

Claim 19 If H is connected and $H \cong B_1$, then $\gamma_r(G) \leq (n-3)/2$.

Proof. Let w and y be the two nonadjacent vertices of the 4-cycle H that belong to S. Then every vertex in N(v) is adjacent to either w or y. Furthermore, each of w and y is adjacent to at least one vertex of N(v). By the Pigeonhole Principle, we may assume that w is adjacent to at most m/2 vertices in N(v). Let $N_w = N(w) \cap N(v)$. Then $N_w \cup \{y\}$ is a restrained dominating set of G of cardinality $|N_w| + 1 \le m/2 + 1 = (n-5)/2 + 1 = (n-3)/2$.

Let H_1, \ldots, H_ℓ , $\ell \geq 1$, denote the components of H. For $i = 1, \ldots, \ell$, let H_i have order n_i , so $n_1 + \cdots + n_\ell = n - m - 1$. If $H_i \in \mathcal{B}^*$ for some i, $1 \le i \le \ell$, then by Claims 17, 18 and 19, $\gamma_r(G) \le (n-3)/2$, a contradiction. Hence, by the minimality of G, $\gamma_r(H_i) \leq (n_i - 1)/2$ for all $i=1,\ldots,\ell$. For $i=1,\ldots,\ell$, let D_i be a minimum restrained dominating set of H_i , and let $D = \bigcup_{i=1}^{\ell} D_i$. Then $|D| = \sum_{i=1}^{\ell} |D_i| \le \sum_{i=1}^{\ell} (n_i - 1)/2 = \sum_{i=1}^{\ell} (n$ $(n-m-1-\ell)/2 \le (n-m-2)/2$. Let M_1 denote those vertices in N(v)that are adjacent to a vertex of D in G, and let $M_2 = N(v) - M_1$. If $M_2 = \emptyset$, then $D \cup \{v_1\}$ is a restrained dominating set of G of cardinality $|D|+1 \le (n-m-2)/2+1 = (n-m)/2 \le (n-3)/2$, a contradiction. Hence $M_2 \neq \emptyset$. For i = 1, 2, let $|M_i| = m_i$, so $m_1 + m_2 = m$. If $m_1 \geq m/2$, then $D \cup M_2$ is a restrained dominating set of G of cardinality $|D| + m_2 \le$ (n-m-2)/2+m/2=(n-2)/2. On the other hand, if $m_1 \leq (m-1)/2$, then $D \cup M_1 \cup \{v\}$ is a restrained dominating set of G of cardinality $|D| + m_1 + 1 \le 1$ (n-m-2)/2+(m+1)/2=(n-1)/2. Both possibilities produce a contradiction. This completes the proof of the theorem.

That there exists a family of connected graphs G of order n with $\delta(G) \ge 2$ satisfying $\gamma_r(G) = (n-1)/2$ may be seen as follows. For $k \ge 2$, let G_{κ}

consist of k edge-disjoint 5-cycles that all pass through a common vertex v. Then G_k is a connected graph of order n = 4k+1 with $\delta(G_k) \geq 2$ satisfying $\gamma_r(G_k) = (n-1)/2$. The graph G_3 is shown in Figure 2.

Figure 2. The graph G_3

4 A more general upper bound for $\gamma_r(G)$

We now establish a more general upper bound for $\gamma_r(G)$ of a graph G involving the minimum degree $\delta = \delta(G)$ and the order n of G. Our proof is probabilistic.

Theorem 20 Let G = (V, E) be a graph of order n and minimum degree $\delta \geq 2$. Then

$$\gamma_{r}(G) \leq n(1 + (\frac{1}{\delta})^{\frac{\delta}{\delta - 1}} - (\frac{1}{\delta})^{\frac{1}{\delta - 1}})$$

Proof. Let $\pi=1-(\frac{1}{\delta})^{\frac{1}{\delta-1}}$. Since $\delta\geq 2$, we have $\delta\leq 2^{\delta-1}$, so that $\frac{1}{\delta}\geq \frac{1}{2^{\delta-1}}$, i.e. $1-(\frac{1}{\delta})^{\frac{1}{\delta-1}}\leq \frac{1}{2}$. Hence, $\pi\leq \frac{1}{2}$. But then $2\pi\leq 1$, so that $\pi\leq 1-\pi$. Construct a restrained dominating set for G as follows. Take each vertex independently with probability π . Call the resulting set of vertices A. The expected value of |A| is $n\pi$. Let $B=\{x\in N(A)-A|$ there exists $y\in N(A)-A$ such that $xy\in E(G)\}$, let C=N(A)-A-B and let D=V-N[A]. Then $S=A\cup C\cup D$ is a restrained dominating set. A vertex is in C if and only if there exists $\ell\geq 1$ such that ℓ of its neighbors are in A and the remaining $\deg(v)-\ell$ of its neighbors are in D. So, $P(v\in C)=(1-\pi)(1-\pi)^{\deg(v)-\ell}\pi^{\ell}=(1-\pi)^{\deg(v)-\ell+1}\pi^{\ell-1}\pi\leq (1-\pi)^{\deg(v)-\ell+1}(1-\pi)^{\ell-1}\pi=(1-\pi)^{\deg(v)}\pi\leq (1-\pi)^{\delta}\pi$. This means that the expected value of |C| is at most $n(1-\pi)^{\delta}\pi$. Also, a vertex v is in D if and only if neither it nor any of its neighbors is in A. So, $P(v\in D)=(1-\pi)^{1+\deg(v)}\leq (1-\pi)^{1+\delta}$. Hence, the expected value of |D| is at most $n(1-\pi)^{1+\delta}$. Therefore, $E(|S|)\leq n((1-\pi)^{\delta}\pi+(1-\pi)^{\delta-1}+1-(\frac{1}{\delta})^{\frac{1}{\delta-1}})$. \square

References

- [1] N. Alon, The maximum number of Hamiltonian paths in tournaments, Combinatorica 10 (1990), 319-324.
- [2] G. Chartrand and L. Lesniak, Graphs & Digraphs: Third Edition, Chapman & Hall, London, 1996.
- [3] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar, and L.R. Markus, Restrained domination, submitted.
- [4] G.S. Domke, J.H. Hattingh, R.C. Laskar, and L.R. Markus. A constructive characterization of trees with equal domination and restrained domination numbers, submitted.
- [5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [7] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two. J. Graph Theory 13 (1989), 749-762.