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Abstract

We give a conjecture for the total chromatic number x,. of all
Steiner systems and show its relationship to the celebrated Erdés,
Faber, Lovasz conjecture. We show that our conjecture holds for
projective planes, resolvable Steiner systems and cyclic Steiner sys-
tems by determining their total chromatic number.

1 Introduction

1.1 Hypergraphs

A hypergraph H is a pair (V(H), E(H)), where V(H) is a finite set of
vertices and E(H) is a finite family of non-empty subsets of V' (H) called
hyperedges or blocks, with J g e £ = V(H). H is linear if for all distinct
E,E' € E(H), |[ENE'| < 1, so for a linear hypergraph there may be
no repeated hyperedges of cardinality greater than one. Distinct vertices
v,v' € V(H) are adjacent if there is some hyperedge E € E(H) with
v,v' € E. Distinct hyperedges E, E' € E(H) are adjacent if EN E' # 0.
Vertex v € V(H) is incident with hyperedge E € E(H), and vice versa, if
veEE.

The dual of H = ({v1,v2,...,vn},[E1, Es, ..., En)), H*, is the hyper-
graph whose vertices {e;,es,...,em} correspond to the hyperedges of H,
and with hyperedges

V,~={ej:v,-€EjinH} (t=1,2,...,n).
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The rank of H, rank(H), is the maximum cardinality of a hyperedge in
E(H). A hyperedge of rank one is a loop. If all hyperedges of a hypergraph
H have the same cardinality r then we say that H is r-uniform. The degree
of a vertex v € V(H), degy(v), is the number of hyperedges containing v.
The maximum degree among vertices of H is denoted A(H). If all vertices
of a hypergraph H have the same degree A then we say that H is A-regular.

The neighbour set of a vertex v € V(H), Ng(v), is the set of vertices
adjacent to v. For S C V(H), define Ny (S) = Uyes Nu(w).

The 2-section of H, H,, is the simple graph with vertex set V(H) where
distinct =,y € V(H) are adjacent in H, if and only if they are adjacent in
H. The line graph of H, L(H), is the simple graph with vertex set E(H)
where distinct E, E’ € E(H) are adjacent in L(H) if and only if £ and
E' are adjacent in H. Then L(H) is isomorphic to (H*)2. The incidence
graph of H, I(H), is the bipartite graph with vertices V(H) U E(H) and
bipartition (V(H), E(H)) where v € V(H) is adjacent to E € E(H) if and
only if v is contained in the hyperedge E of H. Then I(H) is isomorphic
to I(H*) and I(H) uniquely defines H up to isomorphism and duality.

A (strong) vertez colouring of hypergraph H is a mapping C : V(H) —
{1,2,...,k} such that every pair of adjacent vertices receives different
colours. The smallest k& for which a vertex colouring exists is the chro-
matic number x(H). A (hyper)edge colouring of H is a mapping C :
E(H) — {1,2,...,k.} such that every pair of adjacent hyperedges re-
ceives different colours. For each i the set of edges coloured i forms a
matching. The smallest k. for which such a colouring exists is the (hy-
per)edge chromatic number x_ (H). A total colouring of H is a mapping
C:(V(H)UE(H)) - {1,2,...,k.} such that every pair of adjacent ver-
tices, every pair of adjacent hyperedges and every incident vertex and hy-
peredge receive different colours. The smallest k.. for which such a colouring
exists is the total chromatic number x, (H). Note that a total colouring of H
defines a total colouring of H*, hence x,(H) = x,(H*). This “self-duality”
is a very useful properties of hypergraph total colourings of hypergraphs.
Note also that since a total colouring induces both a vertex colouring and
a hyperedge colouring then x,(H) > max{x*(H), x.(H)} for all H.

The study of the total chromatic number for hypergraphs and in par-
ticular linear hypergraphs, is motivated in part by the total colouring con-
jecture, posed independently by Behzad [1] and Vizing [18]:

Total Colouring Conjecture (Behzad, Vizing). Let G be a simple
graph. Then
x-(G) < A(G)+2.0

A stronger conjecture for hypergraphs was given in [7).
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Total Colouring Conjecture for Hypergraphs. Let H be a linear
hypergraph without loops or vertices of degree one. Then

Xr(H) < min{A(Hz), A(L(H))} + 2.0

Evidence for Behzad and Vizing’s total colouring conjecture for graphs
has been gathered in two principle ways, first by proving the conjecture true
for a wide range of classes of graphs and secondly by bounding the total
chromatic number for all graphs. Recent surveys of graph total colouring
are given in Hind [13] and in Yap’s book [19]. In [6], (15] results are proven
about total chromatic numbers of specific classes of hypergraphs. Upper
bounds on the total chromatic number of all hypergraphs are given in [7).
Results concerning the structure of the total graph for hypergraphs are
given in [8].

Total colourings of hypergraphs are related to a graphical model for ra-
dio frequency assignment. In [12, 20] we encounter the L(a1, a2)-labelling
paradigm. Given simple graph G an L(ay, az)-labelling assigns a number
from the interval [1, g] to each vertex such that for adjacent vertices, where
there is significant radio interference, the labels must be at least a; apart
and for vertices at distance two apart, where there are minor radio inter-
ference effects, the labels must be at least a; apart. The L(a;, az)-labelling
number is the smallest ¢ which admits such a labelling, corresponding to
the most efficient use of the radio spectrum. Then the total colouring of a
hypergraph H corresponds to the L(1, 1)-labelling number of its incidence
graph I(H).

1.2 Steiner Systems

A Steiner system S(2,k,v) is a linear k-uniform hypergraph on v vertices
such that each pair of vertices is contained in exactly one hyperedge. Hence
a Steiner system S(2,k,v) has ;’E,‘:—:i% hyperedges and is regular of degree
ﬁ. Clearly v and k must be chosen so that these quantities are integers
for an S(2,k,v) to be possible.

A Steiner systems for which v = k, which therefore have only one hy-
peredge has x,. (H) = v+ 1. When k=2 we have the complete graphs. The
total chromatic number for complete graphs is given in [2]. We will consider
only Steiner systems with hyperedge cardinality k > 3 in the remainder of
this paper.

In this paper we find the total chromatic number for three particular
classes of Steiner systems: finite projective planes, resolvable Steiner sys-
tems and cyclic Steiner systems.

The finite projective plane of rank r is a hypergraph having r? — r +
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Figure 1: The projective plane of rank 3 or Fano configuration.

1 vertices (“points”) and r2 — r + 1 hyperedges (“lines”), satisfying the
following axioms:

1. every point belongs to exactly r lines;
2. every line contains exactly r points;
3. two distinct points are in one and only one line;

4. two distinct lines have exactly one point in common;

We show in figure 1.2 a common representation of the “Fano configu-
ration” which is the projective plane of rank 3. If H is a finite projective
plane, then from the definition it is clear that H is self-dual, i.e. H and H*
are isomorphic. Projective planes do not exist for any choice of rank r, but
it is known that they certainly do exist for r = p* + 1 for prime p (see [3]).

A resolvable Steiner system is a Steiner system whose edges have a
partition into perfect matchings. In order that a Steiner system S(2,k,v)
is resolvable, we must have that k divides v. We have immediately that
a resolvable Steiner system has edge chromatic number 2=1. An example
of a resolvable Steiner system is the affine plane. The affine plane of rank
r is the hypergraph obtained from the projective plane of rank r + 1 by
deleting a hyperedge and all vertices contained in the hyperedge. In figure
1.2 we illustrate the affine plane of rank 3 together with a resolution of its
hyperedges.
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The affine plane of rank 3.

Figure 2
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A Steiner system S(2, k,v) is cyclic if its vertex set is {0,1,...,v — 1}
and the mapping ¢ = i +1 (mod v) is an automorphism. Colbourn and
Colbourn showed in [4] that the edge chromatic number of a cyclic Steiner
system on S(2,k,v) is at most v by constructing an edge colouring. We
extend their result to show that a cyclic Steiner system on v vertices has
total chromatic number at most v.

2 A Colouring Conjecture Related to the Erdés,
Faber, Lovasz Conjecture

Since every pair of vertices is contained in some hyperedge, the strong
vertex chromatic number of a Steiner system on v vertices is v. Thus the
total chromatic number of a Steiner system on v vertices is at least v. We
present evidence that in fact for all Steiner systems S(2,k,v) there is a
total colouring using v colours. So we have

Conjecture 1 Let H be a Steiner system S(2,k,v), with 3 < k < v, then
Xr(H) =v.0

In 1972, Erdés, Faber and Lovdsz presented a conjecture concerning the
vertex chromatic number of an apparently simple class of graphs, consisting
of n copies of the complete graph K, where each pair of complete graphs
has at most one vertex in common. They conjectured that the members
of this class may be vertex coloured using n colours, which is clearly the
minimum possible. Prior to his death Erdds offered $500 for resolution of
the conjecture [9]. In [14], Hindman observed that we may use hypergraph
duality to rewrite this conjecture as:

Erdds, Faber, Lovisz conjecture (hypergraph edge colouring form).
Let H be a linear hypergraph on n vertices with A(H) < n. Then x.(H) <
n.0

Here A(H) < n is simply a technical condition to restrict the number
of loops incident with each vertex. These conjectures are related by the
following lemma

Lemma 1 Let H be a linear hypergraph on n vertices with A(H) < n.
Then there ezists a linear hypergraph H' on n+1 vertices with A(H') < n+1
such that x . (H) < x.(H').

Proof: H' is constructed from H by adding a new vertex v to H and by
adding a 2-edge from v to every vertex of H. Then if we have a hyperedge
colouring of H', we may obtain a total colouring of H as follows: the
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colouring of hyperedges of H is simply the colouring of H' restricted to
the edges of H, then we may colour each vertex w of H with the colour of
{v,w} in the hyperedge colouring of H'.O

Hence if the Erdés, Faber, Lovédsz conjecture were to be proven true
then at most v+ 1 colours would suffice to total colour a linear hypergraph,
and more particularly a Steiner system, on v vertices. If conjecture 1 were
to be proven true then this would prove the Erdds, Faber, Lovasz conjecture
for an important class of hypergraphs. Erdds expressed interest in this as
a possible angle of attack [9). This might use strong structural results for
hypergraph total colouring such as those in [8]. We will show in this paper
that conjecture 1 holds for projective planes, resolvable Steiner systems and
cyclic Steiner systems.

Let H be a Steiner triple system S(2,3,v). In [11] Gionfriddo and Tuza
show that for the hereditary closure H of a cyclic, resolvable Steiner triple
system, we have 38=L <y (H) < 32=14+3. Recall that a hypergraph H has
the edge colourmg property if x_(H ) A(H), i.e. if H has a resolution. In
the same paper it is shown that for H a resolvable Steiner system S(2, k, v),
its hereditary closure H also has the edge colouring property. A nearly
resolvable Steiner system H = (V,£) is a Steiner system such that for some
vertex z € V, £, = {E € € : z € E} has a resolution into parallel classes.
In [10] Gionfriddo and Milici show that the hereditary closure of a nearly
resolvable Steiner system has the edge colouring property.

In this paper we will show that for three particular classes of Steiner sys-
tems conjecture 1 holds: finite projective planes, resolvable Steiner systems
and cyclic Steiner systems.

3 Preliminaries

The results of this paper arise from the construction of the following bipar-
tite graph:

Definition 1 Let H = (V,£) be an edge coloured hypergraph with edge
colour classes My, My,..., M, and let M = {My, M,,...,M,}. Define the
colour class non-incidence graph of edge-coloured H to be the bipartite graph
B with vertex set MUYV where (M;,v;) € E(B) ¢ vj is not in any of the
hyperedges of M;.0

Then we have the following lemma:

Lemma 2 Let H = (V,£) be a Steiner system S(2,k,v). Suppose that
H has a hyperedge colouring with at most v colours and colour classes
M ={M,,M,,...,M,} such that there is a perfect matching from M into
V in the corresponding colour class non-incidence graph. Then x,(H) = v.
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Proof: First colour all vertices with distinct colours. Then reassign each
hyperedge colour class with the colour of the vertex to which it is matched.O

Using Hall’s theorem for bipartite matching together with the above
lemma gives us:

Corollary 1 Let H = (V,£) be a Steiner system S(2,k,v). Suppose that
there is an edge colouring of H with colour classes M = {Ml, M,,...,M,}
with v < v. Suppose further that for each j =0,1,2,. —— -1,

-1
[{i : k|Mi| 2 v—j} <.

Then x.(H) =v.
Proof: Con31der the colour class non-incidence graph B. For each j =
0,12,..., ﬁ — 1 the hypotheses ensure that we have at most j vertices
of M w1th degree less than or equal to j in B. Consider arbitrary S C M
with |[S| =jfor0< j < &=} - 1L Let] = max{M; € S : degg(M;)}.
Then the hypotheses ensure that j < j' and thus [Ng(S)| > |S|.

If we have a subset S C M with |S| = ¥=} then it must contain some

M; of degree at least ¥=1 so |Np(S)| > Z'l > |S]-

Since H is a St.emer system for each vertex w € V, w has degree ;= — in
H and degree v — m in B. Thus any S C M with |S| > =} w1ll have
INB(S)| =v > |S|.

Hence Hall’s condition is satisfied and x,(H) = v by lemma 2.0

We may state the above corollary more generally for all hypergraphs,
but we will not require this generality in the following. We note a useful
simplification of the above corollary. Let H be a Steiner system S(2, k,v).If
we have a hyperedge colouring of H with at most v colour classes where
the union of the hyperedges of each colour class contains at most v — =% i
vertices then x.(H) = v.

In [20], Yeh shows that if G is the bipartite incidence graph of a finite
projective plane H on n vertices, then there is an L(2,1) labelling of G
using n labels, giving a total colouring using n colours. Here we use the
above lemma to provide a simpler proof.

Theorem 1 Let H be a finite projective plane of rank k > 3, which thus
hasv=k>—k+1=(k-1)2+k. Then x,.(H)=v.

Proof: Since H is intersecting, in any proper hyperedge colouring, each
hyperedge colour class will contain only a single edge. So the union of the
hyperedges of each colour class contains k vertices. Now

v—1

P =(k-1?*>kfork>3

v -
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and so by corollary 1 we have that x, (H) = ».0

4 x, for Resolvable Steiner Systems

To prove the result for resolvable Steiner systems we make use of the fol-
lowing result due to Tits ([16]). Its proof is taken from [17].

Lemma 3 Let H = (V,€) be a Steiner system S(2,k,v), for 3 < k < v,
then
v>3(k-1)

Proof: Choose a set S of three vertices which are not contained in any
hyperedge of H. For each set T C S of cardinality 2, there is exactly one
hyperedge Er containing 7', and any vertex not in S is incident with at
most one such edge, since any two such hyperedges already have a vertex
in common in S. Hence the union of all three such hyperedges E7 contains
3 + 3(k — 2) distinct vertices and we have the result.0

Theorem 2 Let H = (V,£) be a resolvable Steiner system S(2, k,v) with
k>3 andv > k, then x,(H) = v.

Proof: H has ZJ(% edges, which may be partitioned into ﬁ perfect
matchings, each with ¥ hyperedges. Split each matching into two almost
equal halves, containing | 5% | hyperedges and [%] hyperedges. These will
be our hyperedge colour classes. Let M = {M;, My, ..., M2i:—i} be the set

of these “half” matchings, where

|M2i—1|=|_%_l i=1,2,...,ﬁ
[Mai| = [£] i=1,2,...,=

M3;_1 U My; is a perfect matching i=1,2,..., =1

We will show that the set M of hyperedge colour classes can be con-
structed in such a way as to satisfy the requirements of corollary 1 or lemma

2.
First note that for i = 1,2,...,24=L

U E

EeM;

v+ k
< .
- 2

So to satisfy the requirements of corollary 1 it suffices to show that

v+ k v—1
7 SV %1
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or equivalently that

k-3 k(k—1)
—_ > 0.
v —+120 (1)

We consider three cases:

1. k£ 2>5. Using lemma 3 we have that

k-3 k(k—1) k-3 k(k-1)
- > - -
v 5 +1>3(k-1) 5 s +1
but
3(k—1)k;3—k(k2_1)+1=k2——151k+12—120f0rk25.

2. k =4. Putting k = 4 into inequality (1) yields the requirement that
v > 10 for the conditions of corollary 1 to be satisfied. Noting that
by lemma 3 we must have v > 3(k — 1) = 9 and that there does not
exist an S(2,4,9) completes the proof in this case.

3. k =3. Here we must have that 2 divides v — 1 and that 3 divides v,
hence v = 3(mod 6). Let B be the colour class non-incidence graph
associated with the colouring as given above. Then

v+3 5 v-1
N 5 2=1,3,D,---)2le_1
degB(M')_{ %3 l’=2,476’-"72z:i

Since for w € V, degp(w) = %3, if we consider a set S C M
with more than ¥3! vertices, we have that |[Np(S)| = v > |S]| as
in corollary 1. Any subset S’ of M with at most ”2;3 vertices will
satisfy [Np(S")| > |S'|- Any subset S” C M of cardinality 3!
which contains some vertex M;(i = 1,3,5,...,2%=} — 1) will satisfy
INg(S)| > |S|. Suppose that the set S = {Mg,M,;,]VIG,...,J\/Izi:_:}

has |Ng(S)| = % Then we change slightly our set of “half match-
ings”. Let E € M,. We will get the set of “half matchings” {M{, M3, ...,

M=),
where
M} = My U {E}
M; =M, - {E}
M!=M; fori =3,4,...,2¢&

In the corresponding colour class non-incidence graph B’ we will then
have |[Np:(S")| = %52 > |S"|. Hence Hall’s condition is satisfied and
there is a perfect matching from M to V in B (or B’). Using lemma
2 completes the proof.0
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3 X, for Cyclic Steiner Systems

In order to prove the result for cyclic Steiner systems we will require a few
more preliminaries concerning them. See [4],[5] for further details. Let H be
a cyclic Steiner system S(2, k,v). Then if the vertex set of H is {0,1,...,v—
1} the mapping i — i+1 is an automorphism. The automorphism partitions
the blocks of the Steiner system into orbits. When v =1 (mod k(k — 1))
each orbit contains exactly v blocks. When v = k£ (mod k(k — 1)) each
orbit except one contains v blocks. The exception, the short orbit, contains
% blocks. All of these preliminaries are taken from [5].

The study of cyclic Steiner systems and difference families are inex-
tricably linked. A (v,k,1) difference set D = {dy,da,...,d}} is a set of
k residues modulo v such that for any residue z Z 0 (mod v) the con-
gruence d; — d; =z (mod v) has exactly one solution pair (d;,d;) with
di,d; € D. Every (v,k,1) difference set generates a cyclic Steiner system
S(2,k,v), whose blocks are B(i) = {dy +i,d3 +4,...,d; +i} (mod v),
t=0,1,...v — 1. The difference set is then referred to as the starter block
of the Steiner system. A (v,k,1) difference family is a collection of such
sets Dy, Dy,..., Dy each of cardinality k such that each residue z # 0
(mod ) has exactly one solution pair (d;,d;) with d;,dj € Dy, from some
m. Each (v, k, 1) difference family generates a cyclic Steiner system in the
same manner as before. For example the difference family (0, 1, 4), (0,2, 7)
generates the cyclic Steiner system S(2,3,13). Using this definition, an
5(2,3,15) design cannot be represented as a difference family. However,
this Steiner system may be generated by two starter blocks modulo 15, to-
gether with the extra starter block (0,5, 10), which gives rise to an orbit of
the automorphism group containing 3 blocks.

Consider a long orbit of a cyclic Steiner system S(2,k,v), generated
by the starter block D = (dy,da,...,d;). We require two properties of
the block adjacency graph Gp for this orbit. First note that this graph is
k(k — 1)-regular. Then if I is an independent set in this Gp we have

l{vw € E(Gp) :v e I,w & I}| = k(k — 1) || < |E(Gp)| = LUZ_ )

so we must have |7| < £. Second note that for G to consist of (k(k—1)+1)-
cliques, we must have v = I(k(k — 1) + 1) for some integer ! and then D =
(lay,lay, ... ,la;) for (ay,ay,...,a:) a difference set modulo k(k-1)+1.
Note that ! must occur in the difference set D in this case, so this may
happen for at most one starter block of the difference family for given
S(2, k,v). See [5] for further results concerning cyclic Steiner systems.

We are now ready to prove the main result.

Theorem 3 Let H = (V,£) be a cyclic Steiner system S(2,k,v) withk > 3
and v > k, then x,(H) = v.
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Proof: We will construct a hyperedge colouring which satlsﬁes the condi-
tions of corollary 1. Con51der the two cases:

1.v=1 (mod k(k—1)). For each of the orbits of blocks construct
the block intersection graph. This graph is regular of degree k(k —1).
Using Brooks’ theorem this graph may be coloured using at most
k(k — 1) colours unless it is composed of k(k — 1) + 1-cliques. At most
one orbit may yield such a graph.

We have == k( = 1) orbits and each may be coloured using k(k—1) colours

except one which may require k(k — 1) + 1 colours. Hence v colours
will suffice to colour the hyperedges. In the above discussion we have
shown that the hyperedges of each colour class contain at most 3
vertices and we have
v—1_wv
VTk¥C172

for v > 3. Hence by corollary 1, x.(H) = v.

2.v = k (mod k(k — 1)). Here we have Hvk;—% full orbits and
one short orbit. The full orbits may be coloured as above. Hence
the hyperedges of each full orbit colour class will contain less than
v— TT vertices. The short orbit may be coloured using two colours.
One colour will colour a single edge of the short orbit and the other
colours the remainder. Hence the hyperedges of all colour classes
contain at most v— :—"i vertices except one whose hyperedges contain
v — k vertices. Hence by corollary 1, x.(H) =v.0

6 Conclusion and Open Problems

The Erdés, Faber and Lovasz conjecture remains one of the outstanding
unsolved problems of combinatorial mathematics. In this paper we have
presented a conjecture relating the Erdds, Faber and Lovasz conjecture to
one for hypergraph total colouring, and provided evidence for our conjecture
by determining the total chromatic number for projective planes, resolvable
Steiner systems and cyclic Steiner systems. It would be interesting to prove
the truth of conjecture 1 for a wider range of Steiner systems, or to find a
counterexample. It is our hope that by consideration of total colouring of
hypergraphs we may open up a new and interesting angle of attack for the
Erdds, Faber Lovasz conjecture.
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