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Abstract
In a ¢-(v,k, A) directed design the blocks are ordered k-tuples and
every ordered t-tuple of distinct points occurs in exactly A blocks
(as a subsequence). We show that a simple 3-(v, 4, 2) directed design
exists for all v. This completes the proof that the necessary condition
Av = 0 (mod 2) for the existence of a 3-(v,4,)) directed design is
sufficient.

1 Introduction

A t-(v,k, A) directed design is a pair (P, B) where P is a set of v elements,
called points, and B is a collection of ordered k-tuples of distinct elements
of P, called blocks, with the property that every ordered t-tuple of distinct
elements of P occurs in exactly A blocks (as a subsequence). A (v, k, A)
directed design with no repeated blocks is called simple. A t-(v,k,1) dir-
ected design is necessarily simple. Background information on directed
designs is given in (2] and [3].

We usually specify a directed design by listing its blocks. For example,
the following blocks form a 3-(4,4, 1) directed design:

(1,2,3,4), (2,1,4,3), (3,1,4,2), (4,2,3,1), (3,2,4,1), (4,1,3,2).

Here, for example, the block (1,2,3,4) contains the ordered triples (1,2, 3),
(1,2,4), (1,3,4) and (2, 3,4).

A t-(v,k, A) directed design is cyclic if it has an automorphism which
permutes its points in a cycle of length v. The base blocks below, developed
modulo 6, form a cyclic 3-(6,4, 1) directed design. This design is given by
Soltankhah [13].

(0,1,3,5), (0,4,2,1), (0,3,1,2), (0,5,1,4), (0,5,2,3).

The following result (which is straightforward to prove) gives necessary
conditions for the existence of a t-(v, k, A) directed design.
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Result 1.1 Let D be at-(v,k, \) directed design. Then D is an s-(v,k, \,)
directed design for 0 < s <t where

(u—-s) t!

3y \t—s
N =M

t—-s

Hence As must be an integer for s =10,1,2,...,t —1.

2-(v, k, A) directed designs have been studied quite extensively. For such
designs, the necessary conditions of Result 1.1 reduce to 2 \v(v — 1) = 0
(mod k(k — 1)) and 2A(v — 1) = 0 (mod k — 1). It has been shown
(1, 7, 12, 15, 16] that for k € {3,4,5,6} these necessary conditions are
sufficient, with two exceptions, namely that no directed designs with para-
meters 2-(15,5,1) or 2-(21,6,1) exist.

In this paper, we are concerned with 3-(v,4, A) directed designs. For
these, the necessary conditions of Result 1.1 reduce to the condition \v =
0 (mod 2). It has been shown, by Soltankhah [13] building on work of
Levenshtein [9], that this necessary condition is sufficient for all values of
v, except possibly v = 3 and 11 (mod 12).

Both Levenshtein and Soltankhah make use of the following result in-
volving t-(v, K, A) designs. A t-(v, K, \) design is a pair (P, B) where P is a
set of v elements, called points, and B is a collection of subsets of P, called
blocks, with the property that the size of every block is in the set K and
every t-element subset of P is contained in exactly A blocks. A ¢-(v, K, \)
design with no repeated blocks is called simple.

Result 1.2 (Replacement Lemma) If there ezist a t-(v, K, \;) design
and a t-(k',k, Ag) directed design for each k' € K, then there exists a t-
(v,k, My Ag) directed design. A sufficient condition for the resulting directed
design to be simple is that all original designs be simple and either K = {k}
or A\; = 1.

Proof Replacing each block of the t-(v, K, A;) design with a copy of a
directed ¢-(k', k, A2) design with point set the points of that block gives a
t-(v, k, A A2) directed design. The claim about simplicity is clear. m]

Levenshtein’s contribution to the result we mentioned earlier was to
prove, using the replacement lemma, that a 3-(v, 4, 1) directed design exists
for all even v. His proof is essentially as follows. Hanani [4, 5] has shown
that there exists a 3-(v,4,1) design for v = 2 or 4 (mod 6), and a 3-
(v,{4,6},1) design for v = 0 (mod 6). Hence, provided that there exist a
3-(4,4,1) directed design and a 3-(6,4,1) directed design, it follows using
the replacement lemma that a 3-(v,4,1) directed design exists for all even
v. These two small designs do indeed exist: we gave them as examples
earlier.
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In a similar way, Soltankhah [13] uses the replacement lemma to deduce
the existence of simple 3-(v,4,2) directed designs for v = 1 or 5 (mod
12) from the existence of simple 3-(v,4,2) designs for these values of v.
Except for the case v = 13, the existence of these latter designs follows
from Theorem 1 of Khosrovshahi and Ajoodani-Namini (8]. The argument
relies on the existence of a large set of mutually disjoint 2-(u, 3,1) designs;
these exist for u = 1 or 3 (mod 6), u # 7 [10, 11, 17]. The missing simple
3-(13,4,2) design, corresponding to u = 7, appears in Hanani [5].

Soltankhah [13] also uses the replacement lemma to show that there
exists a simple 3-(v,4,2) directed design for all even v. In addition, she
proves, using more complicated methods, that a simple 3-(v, 4,2) directed
design exists for v =7 or 9 (mod 12).

Since A; copies of a 3-(v,4,)) directed design form a 3-(v,4, A1) di-
rected design, these results imply the result we mentioned earlier; that is,
there exists a 3-(v,4, A) directed design for all v and A satisfying the nec-
essary condition Av = 0 (mod 2), except possibly in the cases v =3 or 11
(mod 12).

In the next section we deal with the two remaining cases.

2 Main Theorem
In this section we complete the proof of the following theorem.
Theorem 2.1 There ezists a simple 3-(v,4,2) directed design for all v.

This theorem, together with Levenshtein’s theorem stating that a 3-
(v,4,1) directed design exists for all even v, immediately gives the following
result.

Theorem 2.2 There exists a 3-(v,4,A) directed design for all v and A
satisfying the necessary condition Av =0 (mod 2).

Our method, which was suggested by Soltankhah [14], is to use the
replacement lemma to deduce Theorem 2.1 from the following theorem of
Hanani [6).

Result 2.3 There ezists a 3-(v, {4,5,6,7,9,11,13,15,19,23,27,29,31},1)
design for all v.

Thus we need to show that a simple 3-(v,4,2) directed design exists
for all values of v in the set {4,5,6,7,9,11,13,15,19,23,27,29,31}. All
these values except v = 11, 15, 23 and 27 are covered by the results of
Soltankhah [13] that we mentioned earlier. We now exhibit a simple 3-
(v,4,2) directed design for each of the four remaining values of v.
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Developing the 9 base blocks below using the automorphism group {z—
a?z+b:a,b€ Zy1,a# 0} yields a simple 3-(11,4,2) directed design.

(0, 1) 2) 4)’
(0,1,7,10),

0,1,2,5),
(0,1,8,10),

(0,1,3,5),
(1’ O? 7’ 4)?

(0’ 1?6) 9),
(1,0,8,3).

(0, 17 79 8)?
Developing the 91 base blocks below modulo 15 yields a simple 3-
(15,4,2) directed design.

(0.1,2,3),  (0,1,3,4),
(0.1,10,11), (0,1,11,12),

(0,1,8,7),

,9,
(0,1,12,13), (0,1,13,14),  (0,2,1,4).

9

2

0,2,4,1), (0,2,56), (0,257, (0,2,811), (0,29.12).
(0.2,10,12), (0,3,1,5), (0,3,1,6), (0,3,2,6), (0,3,2,10),

(0,3,7,9), (0,3,8,12), (0,3,10,13), (0,3,11,8), (0,3,12.11),
(0,4,3,14), (0,4,7,2), (0,4,7,3), (0,4,8,13), (0,4,10.5).
(0,4,12,5), (0,4,13,1), (0,4,14,2), (0,5,2,8),  (0,5.4,6),
(0,5,4,8), (0,5,9,2), (0,5,10,3), (0,5,11,14), (0,5,12,1),
(0.5,12,7), (0,5,13,1), (0,5,14,11), (0,6,2,7),  (0.6,3,7),
(0,6,4,11), (0,6,10,2), (0,6,11,1), (0,6,12,4), (0,6,12,14).
(0.6,14,13), (0,7,1,5),  (0,7,6,8), (0,7,8,1).  (0,7,14,11).
(0.7,14,12), (0,8,2,9), (0,8,3,9), (0.8,5,3),  (0,9.1,6),
(0.9.4,10), (0,9,8,14), (0,9,11,7), (0.9.13,3).  (0,10.6.5).
(0.10,7,3), (0,10,8,2), (0,10,9,4), (0,10,12,6), (0,11,2.14),
(0.11,6,5), (0,11,6,10), (0,11,7,13), (0,11,8,4), (0.11.9,3).
(0.11,9,5), (0,12,7,4), (0,12,9,2), (0,12,11,3), (0.12,14,10),
(0.13,8,6), (0,13,8,12), (0,13,9,11), (0,13,10,4), (0,13.11,4).
(0.13,12,2), (0,13,14,5), (0,14,7,13), (0,14,8,4), (0.14.8.6).
(0.14,12,9).

Developing the 21 base blocks below using the automorphism group
{z—a%2+b:a,b€ Zy3,a # 0} yields a simple 3-(23, 4, 2) directed design.

(0‘ 11 29 3)a
(0.1,8,11),
(0.1.17,15),
(1.0,15,8),
(1.0,22,18).

(0,1,3,4),
(0.1,8,14),
(0,1,20,18),
(1,0,17,4),

0,1,4,5),
(0,1,11,19),
(1,0,3,14),
(1,0,19,6),
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(0,1,5,6),
(0,1,12,22).
(1.0,6,4),
(1,0,20.5),

(0,1.6,10).
(0.1,14,192).
(1,0.11.3).
(1.0,21,22).



Developing the 25 base blocks below using the automorphism group
{z — a2z +b: a,b € GF(27),a # 0} yields a simple 3-(27.4,2) directed
design. Here p+ gz +r? with p,q,r € GF(3) is represented as p+ 3¢+ 9r.
The irreducible polynomial used is z° — z — 1.

0.1,2,3), (0,1,2,4), (0,1,4,5), (0,1,6,9), (0,1,6,16).
(0.1,7,12), (0,1,7,13), (0,1,8,13), (0,1,8,25), (0,1,10.17).
(0.1,10,25), (0,1,11,15), (0,1,11,24), (0,1,15,20). (0,1,17,20).
(0,1,23,24), (0,1,26,21), (1,0,7,23), (1,0,8,15), (1,0,8,25),
(1,0,10,20), (1,0,12,17), (1,0,14,25), (1,0,20,21), (1,0,24,23).

This completes the proof of Theorem 2.1.
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