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ABSTRACT. The Ramsey numbers r(Cy4, G) are determined for all
graphs G of order six.

1. INTRODUCTION

For graphs G and H the Ramsey number »(G, H) is the least number
N such that in each two coloring (R, B) = ( red,blue ) of the edges of Ky
there is a red copy of G or a blue copy of H. All triangle-graph Ramsey
numbers for connected graphs of order six were found by Faudree, Rousseau
and Schelp [7]. Subsequently exact values of (C3, G) have been determined
for |G| < 8. See Radziszowski [17] for a survey. Much less research has been
done on r(C4, G). It has been shown by J.A. Bondy and P. Erdés [1] that
7(Cn, K;) = (n— 1)(r— 1)+1, if n > v =2 and Clancy (see [2]) has found
all Ramsey numbers for a quadrilaterals vs. all graphs on five vertices.
Also r(C4, Kg) > 18 has been proved by Exoo (see [6]) and the authors
have proved that 7(C4, K¢) = 18 [15). There are 112 connected graphs and
44 disconnected graphs on six vertices. A few of the first numbers could be
found using Ramsey numbers of Cy vs. trees and books(see (8] and [16]).
Most of the later Ramsey numbers are found using (2],[12],[4], [13] and [11].

2. MAIN REsSULTS

We look for the numbers r(C4, G) where G has exactly six points.
Also let G; be the graphs consistent with the notation of [2]. Let V =
{v1,v2, ......, v, } denote a set of vertices. Let [v]* = (R, B) be a two coloring
in which we ascribe to each edge of the complete graph of order p a color,
either red or blue. This two-coloring defines two edge-induced graphs of
order p and we use < R > and < B > as symbols for these graphs. The
statement K, — (F,G) means that if |V| = p, then for every possible
two-coloring (R,B) of [V]?, either < R > contains ( a subgraph isomorphic
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o) F or < B > contains G. The Ramsey number 7(F, G) is the smallest
natural number p such that K, — (F,G).

The quadrilateral Ramsey number for graphs of order 6

r(Ca, H) =18 if and only if H = K¢ = MF.
r(Cy, H) =16 if and only if H = K¢ — e = MS.

r(Cq, H) =14 if and only if H® is one of the graphs
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7(C4, H) = 10 if and only if H is one of the graphs
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or H¢ is one of the graphs
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Remark: The proof of the main result follows by the following sequence

of lemmas.
Notation: Let H; = M for each i € [78].

Lemma 1. »(Cy, H,) = 18 and r(Ca, H) = 11 if H equals Hs , Hoy , Ha7 ,
Hig.

Proof. The proof of the first equality is given in detail in [15]). See figure 5
for a Cy-free graph on 17 vertices with maximurm independent set of size 5,
which would be give us »(Cy, Hy) > 18)

Let’s next consider r(Cy, Hs). As Ks \ e is a subgraph of Hs by [2] we
find that »(Cy, H5) > 11. So we must show that K3 — (C4, Hs). Let
V = {vy,vo,...... , 11} and suppose on the contrary that, there exists a
two coloring (R, B) of [V]Z such that < R > contains no C4 and < B >
contains no Hs. But then there will be a blue K5 — e say without loss of
generality on X = {v, va, ...... vs} with e = (v, v2). Let ¥ = V\ X and
W = {vs,v4,v5}. Then there can be at most three vertices in Y adjacent in
< R > to at least two vertices of W. So we get two vertices in Y adjacent
in < B > to at least two vertices in W. But one of these vertices of Y
must be adjacent in < B > to v; or vz (in order to avoid a red Cyq ). Thus
we get a blue Hs as required. Finally the later three equalities are true as
7(C4, Hs) = 11 and »(C4, K \ ) = 11 (see [2]). O

Lemma 2. »(Cy, Hg) =11, v(C4, Hi5) =11 and r(Cy, Hyg) = 11.

Proof. Ks\e is a subgraph of Hg and Hg (see [2]) and Ryo.; doesn’t contain
Hys in the complement (see figure 4(b)), it suffices to show that Kz —
(Ca, Hg). Clearly there exists a blue K5\ esay on V = {v1,va,...... , Us}
but no K5 (Since if there was a blue K5 it would force a blue Hyg). Let
e = (v1,v3) and X = {wg, vz, -..... ,v11}. Define a partition X = {Xgr, Xr5,
XBr, XBp} according to whether the pair of edges (zvy, zvs) is in R x R,
Rx B, Bx Ror B x B. Clearly |Xgr| < 1and |Xpg| < 1.

Claim : |Xgp| < 2.

Proof of Claim: Suppose the claim is false. Then we can find three vertices
say v, v7,vs belonging to Xgp. But in order to avoid a red C4 without
loss of generality ve, v7 and vg, vg edges are blue. But then we would get a
blue Hg containing vq, v, ....., v7 unless say vg (or vz )is adjacent in < R >
to vs,v4,vs but then {vs, vy, ...... ,v7} forms a blue K5. Hence the clain.
By symmetry we also get |Xppr| < 2. Next as | X| = 11 we would get that
IXrrl = 1, |Xsr]=2,|Xge| =2, |Xes| =1. Suppose that vs, v7 ¢Xpgr,
vg €Xpp and vy € Xgg. Since there is no red Cy4 or blue Hg, so without loss
of generality we would get the following diagram (see figure 2).
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----- indicate red edges,other lines indicate blue edges
(Figure 2 )

Next to avoid a blue Hg, (vg, v7) will be forced to be red. Also to avoid
a red Cyq (v7,v9) will be forced to be blue. Note vy cannot be adjacent
to vz or v4 in red as it would force a red Cy. So we would get a blue Hg
containing vertices vy, vs, 4, vs, V7, Vg. O

Lemma 3. 7‘(04, H3) =14 s T'(Cq, H7) = 14 and 7‘(04, H13) = 14.

Proof. As K3y is a subgraph of Hy; and »(Cy, K5) = 14. It suffices to show
K14 = (C4, H3). First we can find a blue K5 as »(C4, K5) = 14. But out
of the 9 vertices at least one vertex is adjacent in blue to at least three
vertices of the Ky forcing a blue H3 as required. (]

Lemma 4. r(Cy, H2) = 16.

Proof. As H is not a subgraph of R ; (see Figure 3(a) ), it suffices to
show K16 — (Cs, H2) Let V = {vy, va, ...... v16} and suppose on the contrary
that, there exists a two coloring (R, B) of [V]? such that < R > contains
no Cy and < B > contains no Hy. But then there will be a blue K5 say
on X = {v,vy,......,v5}. (since r(Cy, Ks) =14). Let Y = V' \ X. But out
of the remaining 11 vertices there must be at least one vertex adjacent in
< R > to at most one vertex of X. ( since there can be no red Cy4). Thus
we end up getting a blue H, as required. O
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Ris.1 and Rg
(Figure 3 )

Lemma 5. 7(C4, Hy) = 13 and »(Cy, Hg) = 13.

Proof. As H4 and He not a subgraph of RY, | (see figure 6 ), it suffices to
show K3 — (C4, Hy4) and K13 = (C4, He). First note that a blue Ky ( say
on vertices vy, vs,.....,v5) must exist as all Cy-free graphs on 13 vertices
with independence number 4 ( namely R;3.; (see [15]) ) contains a H4 and
a Hg in its complement. Hence there can be at most two vertices in the
remaining 8 vertices adjacent in red to three or more vertices of K. Thus
there must be at least six vertices adjacent in red to two vertices of K.
But this would directly give us K15 — (Cjs, Hs). So we are left to show
that /K13 — (C4, H4). First it should be noted that there cannot be four
such vertices adjacent in red to say (vi,v2), (vs,vs), (vs,va), (v4,vs) and
(vs, v1) respectively (as it would force a red C4). Next using ¢(5) = 6 (see
[3]) without loss of generality would get these six vertices are adjacent in
red to (v1,vs), (v2,vs), (vs,v1), (v1,v4), (v4,v5) and (vs,v;). But then one
of the remaining vertices will be in a red Cj. (]

Lemma 6. r(Cy, Hyg) = 10, 7(C4, Hso) = 10 and r(Cy4, Hso) = 10.

The graph Ro.; and Ry
(Figure 4 )
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Proof. As Ry ( see figure 4 ) doesn’t contain Hsg in its complement, it
suffices to show Kj9 — (Cs, His). First note that a blue K5 \ e (say
X = {vy,vs,.....,v5} with e = (v, v2)) must exist as all graphs on ten
vertices without K5 \ e contains Hig (see [11]) ). Also we can assume the
edge e is red as otherwise we would get a blue H;5. Next there can be at
most two vertices outside X adjacent to three or more vertices of X in red.
So there must be at least three or more vertices outside of X adjacent to
exactly two vertices of X. Let denote these set of vertices by Y. Then if
y1 and y, are adjacent to v , vz and vy , v4 respectively or vy , vy and vy |
v4 Then we would get a red Cy4. But this would force a |Y| < 2, which is
the required contradiction. O

Lemma 7. r(Cy, H) = 10 if H equals Hyg , Hsa , Has , Has and further
T(Cq,H) =11 1fH equals H]o B H23 ’ H“ ’ H34.

Proof. This first set of equalities follows from 7(Cy, K4) = r(C4, H1s)
(see [4]) and the next from r(C4, H34) = 11 (see [16]) and r(Cy, Hs)

= 10
=1

1.
O

Lemma 8. If G is a Cy-free graph on 8 verlices whose complement doesn’t
contain a G2, then G is isomorphic to Rgy (see figure 3 )

Proof. This is a result proved in [13]. a

Lemma 9. r(Cy,G) is equal to 8 if G equals Msg , M77 , Hsy , Haa ,
Hes , Hyo , Hap , Hyz , Hye , Has , H77 , Hes , Hay , He1 , Her.

Proof. As Rz, ( which is Rg; with a divalent vertex deleted, see figure 3(b)
for Rg.1 ) is a Cy-free graph which doesn’t contain a G7 , Gy7 , Msg or He
in its cornplement, it suffices to show Ky — (C4, Has). First note that a
blue G21 (say on X = {v1,v,.....,vs} with e; = (v1,v2) and ez = (v3, v4) )
exists by the previous lemma. Let Y = {vs, v7, v3} be the remaining three
vertices. But then each yeY must be adjacent in blue to at most two vertices
in the four cycle of (G4; to avoid a blue Hys. But then this would force a
red Cy4 as required. ]

Lemma 10. r(C4, M3,) = 8 and 7(C4,G) = 7 for any forest G on six
vertices (without isolated vertices). In particular r(Cy4,G) > 7 for any
graph on siz vertices without isolated vertices.

Proof. We get the first equality directly from [2] and further we also get
that r(Cy, G) = 7 for any tree G on six vertices (without isolated vertices).
But since K5 is Cy-free graph on six vertices we also get that r(Cy, H) > 7
for any connected graph H on six vertices. These two results combined
gives us the second equality. O
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Lemma 11. Let r =r(C4,G). Then

(7 if G equals Mag , Mes , Mzq , My, , Hes , Hra , Mgs ,
Mz , M5 , Msy , Mas , Mys , Mgy , Mg,

J M7y, Msy , Mas , Maa \Mes, Maz , My ,
(1) r= Mss , Msa , Me3, May;
8 ’lfG equals M'” , HG4 ) H62 ) ng ; M?z ’ M73 ’ Hsg ’
Mss;

\9 1fG equals Haz s H57 , H36 f H73.

Proof. First let’s show r(Cy, Myg) = 7. Clearly »(Cy4, Mag) > 7 as Hyg is
connected. So we must show K7 — (Ca, Myg). First note that a blue Gis
(say on X = {vy,vo,..... ,Us} with vy, va, vs inducing the only blue triangle
of G15) exists as r(Cy, Gy5) = T(see [2]). Next the only way to avoid a blue
Mag is for both the remaining two vertices to be adjacent in red to v; and
vz, but then this would give a red C, as required.

It should be noted that each of these graphs can be obtained by a graph on
five vertices with a pendant edge added in two possible ways. Thus using
the exact same argument as above with #(Cy, G) is equal to 7 if G equals
Ghz(see [2]) and equal to eight if G equals G7 , G\7 , My, (see [16), (8]) and
equal to nine if G equals G4, , G5 one would get the above result. O

Lemma 12. v(C4,G) if equal to 7 if G equals Heg , Mgz , Mgo , Mgy.

Proof. To show the first four equalities it suffices to show K7 = (C4, Hes)
(since 7(Cy, Hyo) = 7). First there must be a blue G, (consisting of
{v1,v3,u3} , {v1,v3,v4} , {v1,v4,vs} triangles) since #(Cy, G16) = 7. Next
vz (or vs ) can be adjacent in blue to exactly one vertex of the remaining
two vertices. Also they must be adjacent in blue to different vertices to
avoid a blue Hgs. So without loss of generality (vs,vs) ,(v7,vs) are blue
edges if vg,v7 are the remaining two vertices. Next to avoid a blue Hegg,
(vs, 1) ,(vs,vs) , (v7,v1) ,(v7,v4) would have to be blue edges and to avoid
a red Cy, (v7,v3) would have to be blue edge. But this would force a blue
Heg as required. O

Lemma 13. T’(C4, H) =7 lfH equals H7u B M33 : M3() s 1'160 ,MG].

Proof. Let’s first consider the first three equalities. As My3 and My are
connected it suffices to show K; — (Cy, Hzp). First there must be a blue
G112 (consisting of two triangles v), vy, v5 and U1, v4, Us With v; the common
vertex) since 7(C4,G12) = 7. Also let vg,v7 be the other two vertices.
Without loss of generality vg is adjacent to vy in blue. Next to avoid a
blue H7o , v¢ must be adjacent in red to v4,vs5. But then without loss of
generality we may assume that v7 is adjacent to vs in blue. Next in order
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to avoid a blue H7p, v7 must be adjacent to vz, v3 in red. And finally to
avoid a red Cj4, without loss of generality vz must be adject to v4 in blue.
Thus we have two possible cases.

Case 1: (vs,va) is red. But then in order to avoid a red Cy, (ve,v7)
and (v2,v4) must be blue. But this would force a blue Hzg.

Case 2: (v3,va) is blue. But then in order to avoid a blue Hyo , the
edge (vz, vs) must be red, next to avoid a red Cy, the edge (vs, v7) must be
blue. Further to avoid a blue Hvy the edge (vg,vs) must be red. Next to
avoid a red Cy the edge (vs,v4) must be blue. But this would give a blue
Hag.

To show the next two equalities use r(Cy, Hes) = 7, 7(Cs, Cs) = 7 to prove
K7 = (C4, Heo) , K7 — (C4, Mg1) respectively and proceed similarly. O

Lemma 14. 7(Cs,G) = 10 if G equals H7s , Ms7 , Hag , Hr1 , Mg ,
H7y , Hss , Mgy , Hsz , Hag , Haa , Hig , Hy2 , Hyo , Hoy.

Proof. First let’s consider r(C4, H12). To show that 7(Cy, Hy3) = 10 it
suffices to show that Ko — (Cs, H12) (since 7(Cy, K4) = 10). Let V =

{v1,v2, ... ,v10} and suppose on the contrary that there exists a two col-
oring (R, B) of [V]? such that < R > contains no C4 and < B > contains
no Hjs. First note that a blue Ks \ ¢ (say X = {v1,v2,....,u5} with

e = (v1,v2)) must exist as all graphs on ten vertices without Ks \ e con-
tains Hyy (see [11]) ). Let Y = V\ X and W = {v3,v4,vs}. Then there can
be at most three vertices in Y adjacent in < R > to at least two vertices
of W. So we get two vertices in Y is adjacent in < B > to at least two
vertices in W. But one of these vertices of Y must be adjacent in < B > to
v or vy (in order to avoid a red Cy ). Thus we get a blue H; as required.
The other equalities will follow by using r(Cy, K4) (see [2] ), 7(Ca, Hi6) ,
7(Cy, Hy2) are all equal to ten and Hyg is not contained in the complement
of three disjoint triangles. O

Lemma 15. Let r =r(Ca,G). Then

(6 if G equals My , My , My , My , Ms , M7 , Mg , Myy ,
My , Mg, Mo,

7 lfG equals Ms B Mu] ; M13 ) M15 ) M19 B 1\/120 N le y
Mays , Mas , Mas , Mas , M37 , M3g, Mss;

8 ’lfG CQUCIIS M39 s M55,'

9 lfG equals M53 , H73 N

11 i G equals Hug;

Ll4 if G equals Ha;.

Proof. These directly follows from [2] , [12] , [4] , [13] and [11]. It should
be note that Ry7.1 \ N(v) is a C4-free graph on 13 vertices with maximum
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independent set of size 4 which would give us #(Cy, Hy;) > 14 (see figure 5
for Rn‘]). O

The graph Rz,
(Figure 5 )

Lemma 16. 7‘(04, Hsg) =9.

Proof. As Rg. doesn’t contain Hgg in its complement, it suffices to show
K9 — (C4, Hgo). First note that a blue K5\ 2K, (say X = {v1,vs,....., vs}
with e; = (v;,v3) e = (v, v4) ) must exist as all graphs on nine vertices
without K5\ 2K, contains Hgg (see [11]). Also we can assume the edges
e}, es are red as otherwise we would get a blue Hgg. Next there must be
one vertex outside X adjacent to vy, vz or va, v3 or v, v4 Or vg4, vy in blue.
Also to avoid a blue Hgg it must be adjacent in red to the remaining two
vertices of {vy, vy, .....,vq}. Thus say ve is this vertex adjacent in blue to
v1, vz and adjacent in red to vz, v4. Next out of the remaining three vertices
one vertex must be adjacent in blue to v; or va. Say this vertex is v7 and it
is adjacent in blue to v3. But to avoid a red C4 and a blue Hgg, vy also must
be adjacent in blue to vs. Arguing in this manner we can show that without
loss of generality that {vg,v7,.....,ve} are adjacent to {v1,vs} , {v2,vs} ,
{vs,va} , {v4,v1} in blue and {v3,va} , {vi,va} , {v1,v2} , {v2,v3} in red
respectively. Further to avoid a red C4 and a blue Hgg we can show that
any two vertices of {vg, v7, vg, vg} must be adjacent to each other in blue.
Also two vertices out of out of {vs,v7,.....,v9} (say ve ) must be adjacent
to vs in blue. But then this would give a blue Hgg as required. O

Lemma 17. T(C4,G) =9 ‘lfG equals H53 f Hgg ’ Has ; Hsz B H33.

Proof. The first equality directly follows from #(C4, G5} = 9 ( see [4] ) as
any graph on 9 vertices must contain a G5 but in order to avoid a red Cy
one of the remaining four vertices must be adjacent in blue to two, divalent
vertices of (1g. The second equality directly follows from r(Cy4, Gay) = 9
(see [4] ) as any graph on 9 vertices must contain a G; but in order to avoid
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a red Cy4 one of the remaining four vertices must be adjacent in blue to two,
trivalent vertices of G13. To show the third equality it suffices to show that
Kg — (C4, Hsg) (since 7(Cs,G1g) = 9 as shown in [4]). Let G be a graph
on 9 vertices containing no blue Hyg then clearly first it must contain a
G and further in order to avoid a red Cy4, both the degree four vertices
of Gz must be adjacent to at least three of the remaining four vertices in
red. But this would force a red C4. as required. The later two equalities
directly follows from the above leinma aud »(Ca, Ps) is equal to 4. O

Lemma 18. r(Cy, H) =9 if H equals Hsa , Hy7 and »(Cy, Hy) = 11.

Proof. First let’s show that »(Cy, Hs2) = 9. Since Hys is not a subgraph of
Rg.i complement (see figure 3) it suffices to show »(Cy, Has) < 9. Suppose
there is a Cy-free graph on 9 vertices containing no 34 in its complement.
First. note that there cannot be a degree one vertex as it would force a Hys
( since »(Cy, G17) = 8). Also as the maximum number of edges of a Cy-free
graph G on nine edges is 13 there must be a degree 2 vertex (see [3] for
t(9) = 13). Also the degree two vertex cannot be adjacent to a vertex of
degree two or to a vertex of degree three, satisfying the additional condition
that that these two vertices are in a triangle, as it would force a Hyy ( since
r(C4,2K2) = 5). So we have the following two cases. Let’s denote the
degree two vertex by v and its neighbors by w, r.

Case 1: If at least one of the neighbors of the degree two vertex is
adjacent to two vertices of V(G)\ {v,w,r}. Say w is adjacent to s,{. Then
in order to avoid a Hjys the remaining four vertices must contain a K’y 3
and 7 will have to be adjacent to the degree three vertex and a degree one
vertex of /{1 3. But then by the same argument the four vertices not in the
closure of the neighborhood of v, r will also contain a Ky s which will give
us a C4.

Case 2: Il both neighbors of the every degree two vertex are adjacent
to three vertices of the complement of the closure of its neighborhood, then
clearly (w, ) is not a edge as if this was the case one of there neighbors will
be forced to have degree one. So w is adjacent to wy, wy, w; and 7 is adjacent
to 71,79, 73. But to avoid a Cy4 at least two vertices of wy, ws, wy, 1,74, 73
will be forced to have degree two but then as the assumption is valid for
each vertex of degree two we would get a Cy as required.

Thus to show 7(Cy4, Hi7) = 9 it suffices to show Ko — (C4, Hy7). By the
above part there must be a a blue Hgzs. But this would extend to a blue
Hy7 unless we would have a red Cy4 as required.

Next let’s show that »(Cy, He) = 11. The proof of this is very similar to the
previous counting argument but a bit more detailed. Since Hy is not a sub-
graph of Ryg.; completnent (see figure 4) it suffices to show »(Cy, He) < 11.
Suppose there is a Cy-free graph G on 11 vertices containing no Hyg in its
complement. Suppose there is no vertex of degree two then since all Cy-free
graphs on 11 vertices and 18 edges contain a Hg in its complement (see [3])
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we would get all vertices of (¢ must be of degree 3 except for one vertex of
degree four. By a counting argument this degree four vertex (say w) must
contain an edge in its neighborhood (say (r,s)). But then as there are 6
vertices not adjacent to both r and s and r(Cy4, Cy) = 6 (see [9]) we would
get a Hg as required. So there must be a vertex of degree 2 in G say v with
neighbors p and ¢. By the above p and ¢ must be adjacent to at least three
vertices in V(G)\ {v,p, ¢}. Then we would have one of the following cases.

Case 1: If without loss of generality say p is adjacent to three vertices
in V(G)\{v,p, ¢} say p1, p2, ps then by the above argument the five vertices
not adjacent to v, p must be have no Cy in it or its complement. But since
there are only two such graphs namely Cs or G a direct computation will
show this would force a Cy contrary to the assumption.

Case 2: If without loss of generality say p and ¢ are both adjacent to
four vertices each say p,p2, p3,pa and ¢y, ¢4, ¢s, ¢a respectively. Clearly it
should be noted that all vertices X = {P1, 12, 3, P4y 1, 92, 43, g4} Will be
forced to have at most degree three in order to avoid a Cy. If say there is
a vertex (say z) of degree 2 in X by a earlier remark as the neighbor of
in X has degree at most three we would get a Hq as required. So we may
assuine that all vertices of X has degree three each, but this would force
G to be a Cy-free graphs on 11 vertices and 18 edges. But as all Cy-free
graphs on 11 vertices and 18 edges contain a Hy in its complement (see [3]),
we would get the required contradiction. O

Lemma 19. »(Cy, M4v) =7, r(Cq, H) =8 if H equals Hzs , Hss , Hsy |
H35'

Proof. See [14] and [9] for r(Cq, Mag) = 7. Siuce Hzs is not a subgraph of
Rz.2 complement (see figure 6) and r(Cjy, His) = 8 we would directly get
r(C4, Hz5) = 8 as required. Clearly r(Cy4, Hss) > 8 as r(C4, M3;) = 8. So
it suffices to show that Kg — (C4, Hss). By a previous lemma as R
contains a Hys in its complement we can assume there exists a blue Ga;
say on X = {v1,vs,.....,v5} with the center denoted by v,).

The graph R7.4 and Rys,
(Figure 6 )
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First it should be noted v, cannot be adjacent in blue to any vertices
outside of X as it would force a red C4 or a blue Hss. So all vertices of
X°¢ = {vg,v7, vg} must be adjacent in red to v; and thus in order to avoid
a red C, there must be a blue P; say {ve,v7,vs} in X°. Next it should
be noted that if say vs ( or vs ) is adjacent in red to say v, then it would
force v7 and vg to be adjacent in blue to vy forcing a blue Hss. Hence by
symmetry vs and vg will have to be adjacent in blue to vy, v3, v4, v5 giving
a blue Hgs as required.

To show r(C4, Hs1) = 8 as Ry, (which is Rg; with a divalent vertex
deleted, see figure 3(b) for Rs; } is a Cs-free graph which doesn’t con-
tains a Hs; in its complement it suffices to show Kg — (Cs, Hs1). First
note that a blue Gy, (say on X = {v1,v2,.....,vs} with e; = (vs,v3) and
e2 = (vq,vs) ) exists by a previous lemma as Rg.; contains a Hs; in its com-
plement. Let Y = {ve,v7,vs} be the reraining three vertices. But each
vertex of {vs, vs, v4, vs} must be adjacent to at most one vertex of Y in or-
der to avoid a red C4 or a blue Hs;. But then each vertex of {vg, vs, v4,v5)
would be adjacent in red to at least two vertices of Y forcing a red Cy as
required.

By the above result in order to show »(Cy, H3s) = 8 it suffices to show
Kg — (Ca, Has). By above part there must be a blue Hss. But this would
extend to a blue Hss unless we would have a red Cy as required. O
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