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Abstract :

Let 02(G) = min{dg(u)+da(v) | v,v € V(G), u,v & E(G)} fora
non-complete graph G. An [a, b]-factor of G is a spanning subgraph
F with minimum degree §(F) > a and maximum degree A(F) < b.
In this note, we give a partially positive answer to a conjecture of M.
Kano. We prove the following results:

Let G be a 2-edge-connected graph of order n and let k > 2 be an
integer. If 03(G) > 4n/(k +2), then G has a 2-edge-connected [2, k]-
factor if k is even and a 2-edge-connected [2, k + 1)-factor if k is odd.
Indeed, if k is odd, there exists a graph G which satisfies the same
hypotheses and has no 2-edge-connected [2, k]-factor. Nevertheless,
we have shown that if G is 2-connected with minimum degree 6(G) >
2n/(k +2), then G has a 2-edge-connected [2, k]-factor.

I. INTRODUCTION.

We consider graphs without loops or multiple edges. Let G be
a graph of order n, with vertex set V(G) and edge set E(G). We
denote by dg(z) the degree of the vertex z in G, and by 6(G) and
A(G) the minimum and maximum degree of G, respectively. Define
0p(G) = min{dg(u1) + ... + de(up) | {u,...,up} stable set } for a
graph with independence number a(G) > p. Recall that |z] denotes
the largest integer satisfying |z) < z, and [z] is the smallest integer
satisfying z < [z].

A spanning subgraph F of G is called an [a, b}-factor of G if a <
dr(z) < b for all z € V(G). An [a, a]-factor is called an a— factor.
For an extensive survey of results on [a, b]-factors, see [1]. If there
is no further requirement on the factor then there is a well-known
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necessary and sufficient condition for the existence of an [a, b]-factor
[4] : G has an [a, b]-factor if and only if b|.S| —aITl+Z de\s(v) >0,
v€T

for all pairs of disjoint subsets S, T of V(G).

We are interested by the existence of [a, b]-factors satisfying fur-
ther connectivity requirements. The investigation of connected fac-
tors was initiated by M. Kano [2]. This topic is closely related to
the hamilton cycle problem, as a connected 2-factor is obviously an
hamiltonian cycle. On the other hand, we remark that a connected
k-factor is a connected k-regular spanning subgraph.

In [2], M. Kano gives the following conjecture :

Conjecture 1 Let G be a 2-edge-conneited graph of order n > k +
3 for an integer k > 2. If 02(G) > 7:%’ then G has a 2-edge-
connected (2, k]-factor.

We prove this conjecture if & is even, and disprove the conjecture
if k is odd. If k£ is odd, we show that the hypothesis implies that G
contains a (2, k + 1]-factor.

II. EXISTENCE OF A 2-EDGE CONNECTED FACTOR
IN A GRAPH.

The proof of the following theorem is strongly close to that of a

result of S.Brandt (private communication).

Theorem 1 If the vertices of a 2-edge connected graph are covered
T
by 2-edge connected subgraphs Gy,---Gr with 2r < Y _A(G;) for
i=1
some r > 2, then G has a 2-edge connected factor H with A(H) <
T

;A(G’i) .

Proof. Let G’ be the spanning subgraph of G induced by the set
of edges E(G1) U E(G2) U---U E(G,). We call "supergraph” of G’
any spanning subgraph J such that E(G') Cc E(J).
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Let B; be a 2-edge connected component of a supergraph of
G'. Define the weight of B; by w(Bi) = Y. A(Gj). Note that
G;CB;
every graph G; is contained in precisely onJe component and that
T

dow(Bi) =Y _A(G)).
H j=1

One can verify that every connected component B’ of G’ is 2-edge
connected, and we remark that

r
A(G') £ D A(GY)
i=1
2 < A(B') < w(B') for every component B'.

Let H be a subgraph of G of maximum size among the subgraphs
satisfying the following properties :

(i) E(G") c E(H)

(i) Every connected component By is 2-edge connected and
satisfies A(By) < w(Bpy).

Then H is connected : otherwise, let B; and B; be 2 components
of H. Since G is 2-edge-connected, by Menger’s Theorem there must
be two edge-disjoint paths Py, P2, each one joining a vertex of B;
to a vertex of By, and having no further vertex with B; or Bs in
common.

Now consider the graph H' = (V(G), E(H) U E(P1) U E(R)).
Note that every component of H' is 2-edge-connected. B; and Bs
belong to the same component B’ of H' and B’ may contain further
components Bs, ..., B, of H. If it is the case, then

A(B') < max(A(B1) +2, A(B2) +2, 4+ max A(By)
_:_

and so, as A(B;) > 2 for any i,
t t
A(B') £ Y A(Bi) < Y w(B;) < w(B').
i=1 i=1
If B’ contains only B; and Bs,
A(B') <2+ max(A(By) , A(B2)) < w(By) + w(Bs) = w(B').

So, H' contradicts the maximality of H. Hence, H is connected,
and by (ii), H is 2-edge connected. o
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Corollary : Let G be a 2-edge-connected graph of order n and k > 2
an integer. If 02(G) > 4n/(k + 2) then G has a 2-edge-connected
[2, k]-factor if k is even and a 2-edge-connected (2, k + 1]-factor if k
is odd.

Proof. We first show that o,(G) > gaz(G) for any integer p

- If p is even it is immediate.

- If p is odd, let us consider a stable set {z1,::-,Zp} and suppose
d(z,) = Max {d(z;) ,1 < i < p}. So, d(z1) + d(z2) = 02(G) and
then d(a:l) > %G)- We have

S i) = dlan) + 3 od(es) = 2D L 221 5,6) =B 0y(G).

i=1 j=2
It follows that o,(G) > 5 o2(G).

Now, as 02(G) > —kl:%, we get that ok_;g(G) > (k+2)02(G)/4 2

n if k is even and O'k_;-:s(G) > n if k is odd. Kouider and Lonc [5]
proved that if o541(G) = n or a(G) < h+1, then the vertices of the
graph are covered by at most h cycles. Hence there is a collection C

of at most [k/2] cycles covering the vertices of G, and then we apply
Theorem 1. o

The bounds on ¢ are best possible :

In the case k odd, let us set k = 2h—1, and consider the graph Go
of order n, with n/h € N, consisting of h disjoint complete graphs
A; with |A;] = z for 1<i<h-1,|Ax| = E—1 and an extra vertex

h
2n 4n
z adjacent to all other vertices. We get 09(Go) = — —12

h “k+2
hEh+1) _ (k+DE+2) ) ooiming that Go hes a

as

soon as . >

2-edge-connected [2, k]-factor F', there are at least two edges between
z and each A; in this factor, and thus dr(z) > 2h = k+ 1. So Go
satisfies the hypothesis of the corollary and has no 2-edge-connected

[2, k]-factor.
In particular this example shostthat Conjectlge 1 fails for odd
. n n noo.. . i
k. Note that §(Gy) = — — 1 Py > F 12 if n is suffi

ciently large, so even thc correspondmg minimum degree condition
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6 > 2nk + 2 does not imply the existence of a 2-edge-connected [2, kJ-
factor. Nevertheless, if the graph is 2-connected, then we can show
that the minimum degree condition implies the existence of a (2, kJ-
factor. Note that the previous example G has connectivity 1.

In the case k even, let us set k = 2h. The construction above
gives an example of graph G| which has no 2-edge-connected [2, k—1]-
factor. So the result we got is sharp.

Let us now turn to 2-connected graphs.

Theorem 2 Let G be a 2-connected graph and k > 3 be an integer.
Suppose 6(G) > 2n/(k +2). Then G has a 2-edge-connected [2, k]-
factor.

Proof. By the corollary of Theorem 1, we are done if k is even.
So we may assume tha. We already know that V(G) is covered by

1
cycles. In the desired factor, we want that the max-

at most
degree of the vertices is no more than k. The only case we have then

1
to study is when there are exactly ¢ = + s covering V(G) and
when the cycles Cy,---,Crs1 have at least one common vertex, say

z. In view to decrease the degree of  in the factor composed by the
last family of cycles, we shall replace the last cycle by a family of
paths we define below.

In [3], it is proved that ¢ < [n/6] — 1. On the other hand, the

inequality § > ;—:2 (that isn < -k—;:—}-é +6/2) implies [n/8] —1 <

t+1 k
k% =¢,and thenc=[n/é] - 1= %1 So, we have :
n=%6+6lwith0<5lsg (1).

The previous family of cycles C; , 1 < i < [n/§]—1 is obtained by

a recursive construction (see [3], page 765) : the vertices on U C;
j<i-1

form two disjoint paths P; and @, hanging respectively on {u;,z}
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and {z,v;} to U C; and ae end of the construction, z has degree
j<i—1
k + 1 in the cais'é we study.

This construction gives an oriented tree T', each vertex of which
corresponds to one of the cycles of the previous family ; this tree T
has the cycle C) as root and dF(C1) = 1. Let m(C) be the number of
vertices of G covered by a cycle C and not covered by the ascendants
of Cin T, so we have >_(m(C;)) = n. Furthermore, by (3}, m(C1) =

1
26, d(C)<2forany CinT.
For any C which is not a leaf in the tree T, following the sketch
of the proof of [3], we have : m(C) > § if C has exace son in T and
m(C) > 26 — 1 if C has two sons in T. We will show tha there exists

a leaf C; such that m(C;) < 6/2 In fact,

* either 7T is a path ; for every internal node C, we have m(C) >
& . Let C, be the leaf of T different from the root. Then we have, by
(1), c6+6 =n>26+ (c—2)6+m(Cy), so m(Ce) <61 < 6/2.

= or T' is not a path ; consider the set of nodes of T that satisfy
d+(C) = 2, and the node C;. Let ¢; be its cardinality; we have
c 2 2.

Suppose that for any leaf C, m(C) > 6/2. Remark that the
number of leaves in T different from the root is also ¢;.

- the number of vertices covered by the ¢; nodes is > (26—1)c1+1

- the number of vertices covered by the leaves is > ¢16/2

- the number of vertices covered by the other nodes is > (c—2¢;)é.
We then obtain :

Sc+6/2>n>ci1(26—1+6/2—26)+6c+1, thatis §/2—-1>
¢1(6/2 — 1), a contradiction.

We may suppose that C; = C..

Now, in the graph G, the m(C.) new vertices covered by C. form
a family of paths {P; = [a;,b;] , j =1,---p} with possibly a; = b;.
Let I = Ujcj<p{aj,bj}. If this family of paths contains exactly
r paths of length different from zero, then |I| = p +r. We have
|I| < m(C.) < 6/2. Let B be the set of vertices of the paths, and
A=V(G)\B.

Suppose that we have defined a minimum number of such paths
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covering the set B. So no extremity of one path is adjacent to the
extremity of another path. Let 24 be an element of I. We have :

- if the family of paths contains a path of at least 2 vertices,
dp(zg) < m(Ce) — [I| +1, s0 da(zg) > 6§ —m(C.) + || -1 >
21l -1 (a).

- otherwise, each path is a single vertex and dg(zy) = 0 ; and
so da(zg) > 6. As in this case |I| = |B| = 6§ < 6/2, we get
da(ey) 2 21 (B).

In any case, we can define a set of edges between I and A by the
following way : if the path P; is reduced to one vertex, we choose two
edges between I and A, and if not, we choose one edge between a;
and A (resp. between b and A), in such a way that all the extremities
in A are different. This is possible by the previous inequalities ()
and (B).

Finally, the 2-edge-connected [2, k]—factor is defined by the cy-
cles Cy,---,Cc_) and the subgraph formed by the paths P; and the
previous set of edges. o
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