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Abstract. We show that, for all primes p =1 (mod 4), 29 < p <
10,000, p # 97, 193, 257, 449, 641, 769, 1153, 1409, 7681, there
exist Z-cyclic triplewhist tournaments on p elements which are also
Mendelsohn designs. We also show that such designs exist on v
elements whenever v is a product of such primes p.

1. Introduction A whist tournament Wh(v) for v = 4m + 1 players is a
schedule of games (a, b, ¢, d) involving two players a, c opposing two other players
b,d such that

(1) the games are arranged into 4m + 1 rounds, each of m games;

(2) each player plays in exactly one game in all but one of the rounds;
(3) each player partners every other player exactly once;

(4) each player opposes every other player exactly twice.

It may be helpful to think of (a,b,c,d) as the cyclic order of the 4 players
sitting round a table, with partners sitting opposite each other. See [1, 2]
for basic information about whist tournaments, and note in particular that a
Wh(4m + 1) exists for all m > 1.

We are concerned here with two refinements of this structure, called triple-
whist tournaments and directedwhist tournaments. Call the pairs {a,b} and
{c,d} pairs of opponents of the first kind and {a,d}, {b,c} pairs of opponents of
the second kind. Then a iriplewhist tournament TWh(v) is @ Wh(v) in which
every player is an opponent of the first (resp. second) kind exactly once with
every other player. We further say that b is a’s left hand opponent and ¢’s right
hand opponent, and make similar definitions for each of a, ¢ and d. Then a
directedwhist tournament DWh(v) is a Wh(v) in which each player is a left
(resp. right) hand opponent of every other player exactly once. Directedwhist
tournaments are equivalent to resolvable perfect Mendelsohn designs of block
size 4.

If the players are elements in Z4m41, and if the ith round is obtained from
the initial (first) round by adding i — 1 (mod 4m + 1) to each element, then we
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say that the tournament is Z-cyclic (see, e.g. [3-8]). By convention, we always
take the initial round to be the round from which 0 is absent. We note that the
games (tables)

(alsbhcl:dl)) s ,(am’bmvcvmdm)

form the initial round of a Z-cyclic TWh(dm + 1) if

(@) Utasbisci0di} = Zamsa - {0},

(8) g{i(as — &), £(b — &)} = Zamyn — {0},
™ g{i(ai = bi), £(c: — &)} = Zams1 — {0},
() Q{i(af — di), (b ~ &)} = Zams1 — {0,

whereas they form the initial round of a Z-cyclic DWh(4m + 1) if (a) and (8)
hold along with

(e) U{bf — @iy ¢ — by, di — ¢, 0; — di} = Zymyr — {0}

(The differences in (¢) are known as the forward differences.)

In a recent paper [5] the present authors gave the first examples of whist
tournaments which are simultaneously triplewhist and directedwhist tourna-
ments. Such tournaments are denoted by DTWh(v). For the initial round of a
Z-cyclic DTWh(4m + 1) all of (a)-(¢) must be satisfied.

Example 1.1 (5] A Z-cyclic DTWh(29). Take as the initial round games

(1,19,10,9), (24,21,8,13), (25, 11,18, 22), (20,3, 26, 6),
(16,14,15,28), (7,17, 12,5), (23,2, 27, 4).

It was shown in [5] that DTWh(p) exists for all primes p = 5 (mod 8),
P 2 29, and indeed that a DTWh(v) exists whenever v is a product of such
primes. In this present paper we consider primes p = 2%t + 1, t odd, k > 3.
We show that Z-cyclic DTWh(p) exist for all such p, 41 < p < 10, 000, except
possibly for nine exceptional values of p. We then extend these results to all
products of such primes.

We close this introductory section by presenting the initial round of three
Z-cyclic DTWh(p). In each case the reader can check that all of (a)-(¢) hold.
How these designs were obtained will be explained in Section 2.
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Example 1.2 Initial round of a Z-cyclic DTWh(41)

(1,3,31,34), (36, 26, 9,35), (10, 30, 23, 12), (32, 14, 8, 22),
(18,13, 25, 38), (33, 17, 39, 15), (16,7, 4, 11), (2, 6, 21, 27),
(37,29,40,28), (20, 19, 5, 24).

Example 1.3 DTWh(73)

(1,26,47,36), (19, 56,17, 27), (16, 51,22, 65), (12, 20, 53, 67),
(37,13, 60, 18), (46, 28, 45, 50), (8, 62, 11, 69), (6, 10, 63, 70),
(55,43,30,9), (23, 14, 59, 25), (4, 31,42, 71), (3, 5, 68, 35),
(64.58,15,41), (48, 7, 66,49), (2,52, 21, 72), (38, 39, 34, 54)
(32,29, 44, 57), (24, 40, 33, 61).

Example 1.4 DTWHh(89)

(1,3,88,61), (9, 27, 80, 15), (64, 14, 25, 77), (42, 37, 47, 70),
(2,6,87,33), (18,54, 71,30), (39, 28, 50, 65), (84, 74, 5, 51),
(4,12, 85,66), (36, 19, 53, 60), (78,56, 11,41), (79, 59, 10, 13),
(8,24,81,43), (72, 38, 17, 31), (67, 23, 22, 82), (69, 29, 20, 26),
(16,48, 73,86), (55, 76, 34, 62), (45, 46, 44, 75), (49, 58, 40, 52),
(32,7,57,83), (21, 63, 68, 35).

2. Construction of Z-cyclic DTWh(p) Let p= 25t +1 be prime, k>3, ¢
odd. Throughout this section we write d = 2%, m = 2F~1, n = 2~2, We shall
make use of the following two results.

Theorem 2.1 (Liaw [9, Proposition 3.1}.) Let p = 2¥t + 1 be prime, t odd,
k > 3 and let W be o primitive root of p. Let d = 2* and n = 252, Then the
games

(1, W, =W, W'+2) times W¥+%, 0<i<n-1,0<j<t-1,
form the initial round of a Z-cyclic TWh(p) provided
a=2"1~1 (mod d), (2.1)

and
" 2Wet — 1), (W +1)(W°® - 1), (W —-1)(W°® +1) (2.2)

are all squares in Zp.
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Lemma 2.2 Let y be any residue (mod 2¥) and let s € {0,1,...,2¥~1 — 1} be
fized. Then

2k-2_)

U v+2,y+2s+1+2,y+251 +2i,y+ 2571 + 25+ 1+ 23)
i=0

is a complete set of residues (mod 2F).

Construction A Consider Liaw’s construction of TWh(p) presented in The-
orem 2.1. The forward differences () are

{W —1,-2W, W (W* + 1), -(W**+! — 1)} times W2+4.

If we write W — 1 = We, =2W = W/, W(W® +1) = W9, 1 — Wetl = Wk
then, by Lemma 2.2, Condition (¢) will be satisfied provided

{e.fr0,h} ={y,y+2s+ 1L, y+m,y+2s+1+m} (2.3)

is a subset of Z4 for some s € {0,1,...,m—1},y € {0,1,...,d—1}.

In Table A (placed at the end of the paper) we tabulate choices of (p, W, a)
which satisfy (2.1), (2.2) and (2.3), thereby establishing the existence of a
DTW h(p) for the majority of p < 10, 000.

Example 2.1 Consider p=73. Heret =9,k =3,d=8 m=4,n =2
As in Table A, we take W = 26 and a = 51 to obtain initial round games of a
DTWh(73) to be

(1,26,47,36) times 26%+85, 0<i<1, 0<j<8.

These are the games exhibited in Example 1.3.
To deal with further values of p, we now consider a more general construction.
Consider the initial round games

(1, We, W/, —Wwe) times WHtY 0<i<n, 0<j<t (2.4)

where ¢ = a + kid (a odd), e = kod, f = m + o + k3d. (Note that the case
c=a=1l,e=1l+a-mt, f=m+1+m(t—1)=mt+1 yields Construction
A as a special case.)

The choice y =0, & = 2s + 1 in Lemma 2.2 shows that the elements of the
games in the initial round (2.4) do indeed constitute the set Z, — {0}.

It is straightforward to check that the triplewhist conditions (8)-(8) are
satisfied provided

(WY = 1)(We + W), (W - 1)(We + W), (We +1)(We -W/)

are all nonsquares.
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Observe next that triplewhist conditions (3)-(d) are preserved under a per-
mutation of the positions in the tables. So we introduce three variants of the
proposed general construction (2.4):

GC1: (1,We,-We, Wf) times W2i+dj;
GC2: (1,-We,We,W/) times W2+,
GC3: (I:Wc! Wf’_Wc) times W2"+dj,

For all but nine of the primes p < 10,000 not covered by Table A, we have
found choices of c, e, f for which one of GC1, GC2, GC3 yields a DTWh(p).
This data appears in Table B (also placed at the end of the paper) in the form
(P. GC#9 Wa c €, f)'

Example 2.2 Consider p=41. Heret =5, d =8, m=4,n=2. In
construction GC1 take W = 6, ¢ = 15, e = 8, f = 19 to get initial round games
(1,65, —68, 619) times 6%+8%/ i.e. (1,3,31,34) times 621*87, 0 <i<1,0<j < 4.
These are the games of Example 1.2.

Example 2.3 Consider p = 89. Heret =11, d =8, m =4, n =2 In
construction GC1 take W =3,c =1, e =0, f = 69 to get initial round games
(1,3,-1,3%) times 3%+%J, i.e. (1,3,88,61) times 3%+8. That is to say the
games of Example 1.4.

Combining the results of this section with those of (5], we now have the
following theorem.

Theorem 2.3 Ifp=1 (mod 4) is prime, 29 < p < 10,000, p ¢ {97, 193, 257,
449, 641, 769, 1153, 1409, 7681} then a Z-cyclic DTWh(p) exists.
The excluded cases remain open.

Remark The general constructions GC1-GC3 contain not only Construction
A as a special case, but also all of the constructions used in [5] for the case k = 2
(ie.d=4,m=2):

GC1 with ¢ =1, e = 0, f = 3 gives Construction 1 of [5);

GC1 with ¢ =3, e = 2(t + 1), f = 5+ 2(t — 1) gives Construction 2 of [5];
GC1 with ¢ = 3, e = 4, f = 2t + 3 gives Construction 3 of [5];

GCl1 with c =1, e =4, f = 2t + 1 gives Construction 4 of [5);

GCl with ¢ = 2t + 3, e = 4, f = 2t + 1 gives initial round games

(1,-W3,—-W4,—W) times W*/ which is just Construction 6 in [5] with
games (tables) written in reverse (anticlockwise) order.

3. Products of primes We now establish
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Theorem 3.1 Let py,ps,...,pn be primes such that a Z-cyclic DTWh(p;)
ezists for all i. Then there ezists a Z-cyclic DTWh(p§! - - - p2~) for all choices
ofa; > 1.

This result follows by repeated application of the following product theorem
which is proved by the method recently developed by the authors and P. Leonard
(6]

Theorem 3.2 Suppose that Z-cyclic DTWh(v) and DTW h(p) exzist where p
is a prime, p = 1 (mod 4). Then a Z-cyclic DTW h(pv) ezists.

Proof We show how to construct the initial round of the required tournament.
First take the initial round of a DTWh(p) and multiply each element by v.

Next, for each table (a,b,c,d) in the initial round of the DTWh(v), construct
the tables

(a+iv,b+ 2iv,c—iv,d - 2iv), 0<i<p-1.

It is then routine to check that these tables include each nonzero element of
Zpv, not divisible by v, exactly once, and that (a)~(¢) hold. For example, in
checking (), suppose that

a; +iv — (¢; — i) = %[bs + 2jv — (dp — 25v)](mod pv).

Then a; — ¢; = *(b2 — d2)(mod v), contradicting (8) for the DTWh(v). Simi-
larly, in checking (€), suppose for example that

by + 2iv — (a1 + @) = [dz — 2jv — (c2 — jv)](mod pv).

Then by — ay = £(d2 — c2)(mod v), contradicting (¢) for the DTW h(v).

Example 3.1 A DTWh(1189). Take p =29 and v = 41 (pv = 1189), and use
Examples 1.1 and 1.2. The initial round game of the required DTW h(1189) are

(41,779,410, 369), (984, 861, 328, 533), (1025, 451, 738, 902),
(820,123, 1066, 246), (656, 574, 615, 1148), (287,697, 492, 205),
(943, 82,1107, 164);

(1 + 41,3 + 823,31 — 414,34 — 82i), 0<i<28;
(36 + 414,26 + 82,9 — 414,35 — 823), 0<i<28
(10 + 414,30 + 82:,23 — 414,12 - 82i), 0<i < 28;
(32 + 414,14 + 82,8 — 414,22 — 82i), 0<i<28;
(18 + 414,13 + 82:,25 — 414,38 — 82i), 0 <i < 28;
(33 + 414,17 + 82,39 — 414,15 — 82i), 0 <i < 28;

(16 + 414, 7 + 82i,4 — 417,11 — 82i), 0<i<28;
(2 + 414,6 + 823,21 — 413,27 — 82i), 0<i<28;
(37 + 414,29 + 82i,40 — 414,28 — 82i), 0 < i< 28;
(20 + 414,19 + 82i,5 — 414,24 — 823), 0<i<28.
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Table A
k=3 (pWa)

(73,26,51), (137,40, 99), (233, 34, 155), (281, 23, 67), (313, 17, 147), (409, 29, 201),
(457,26, 443), (521, 3,331), (569, 6, 163), (601, 7, 27), (617, 3, 275), (809, 11, 347),
(857,3,19), (937, 10, 531), (953, 10, 643), (1033, 5, 299), (1049, 3, 331),
(1097,3,163), (1129, 11, 339), (1193, 3, 171), (1289, 6, 1091), (1321, 13, 491),
(1433,7,331), (1481, 6,1019), (1609, 7, 83), (1657, 15, 35), (1721, 12, 115),
(1753,7,83), (1801, 11, 243), (1913, 3, 107), (1993, 5, 219), (2089, 11, 1011),
(2137,10,299), (2153, 3, 1483), (2281, 7,43), (2297, 5, 203), (2377, 5, 523),
(2393,3,27), (2441, 6,1299), (2473, 5,515), (2521, 17, 219), (2617, 5, 267),
(2633,3,1003), (2713, 5, 123), (2729, 3, 11), (2777, 3, 403), (2857, 22, 307),
(2953, 13, 1899), (2969, 3, 1163), (3001, 23, 195), (3049, 11, 1347), (3209, 3, 59),
(3257,3,1379), (3433, 5, 1163), (3449, 3,315), (3529, 17, 1307), (3593, 3, 707),
(3673,5,147), (3769, 7, 603), (3833, 3, 2915), (3881, 17, 955), (3929, 3, 1203)
(4057,5,947), (4073, 3,2091), (4153, 5, 1571), (4201, 11, 19), (4217, 3, 227),
(4297, 5,75), (4409, 3, 3595), (4441, 21, 739), (4457, 3, 267), (4649, 3, 2419),
(4729,17,259), (4793, 3, 683), (4889, 3, 315), (4937, 3, 1995), (4969, 11,379),
(5081, 6,907), (5113, 19, 643), (5209, 17, 531), (5273, 3, 1011), (5417, 3, 643),
(5449, 7,3955), (5641, 14, 1131), (5657, 3, 1499), (5689, 11, 59), (5737, 5, 459),
(5801,3,371), (5849, 3, 1379), (5881, 31, 4067), (5897, 3, 1307), (6073, 10, 59),
(6089, 3,195), (6121,7, 211), (6217, 5,2051), (6329, 3, 1227), (6361, 19, 1491),
(6473,3,595), (6521, 6, 411), (6553, 10, 995), (6569, 3, 139), (6761, 3, 691),
(6793, 10, 571), (6841, 22, 835), (6857, 3, 739), (7001, 3, 1299), (7129, 7, 2283),
(7177,10,1251), (7193, 3, 283), (7321,7,467), (7369, 7, 2131), (7417, 5, 715),
(7433,3,1011), (7481, 6, 715), (7529, 3, 2595), (7561, 13, 523), (7577, 3, 603)
(7673, 3,195), (7753, 10, 1235), (7817, 3, 2699), (7993, 5, 139), (8009, 3, 179),
(8089, 17,731), (8233, 10, 1139), (8297, 3, 35), (8329, 7, 19), (8377, 5, 99),
(8521,13,1027), (8537, 3,43), (8681, 15, 291), (8713, 5, 803), (8761, 23, 787),
(8969, 3,891), (9001,7, 1131), (9049, 7, 299), (9161, 3, 907), (9209, 3, 2339),
(9241, 13, 467), (9257, 3,3083), (9337, 5, 355), (9433, 5, 1291), (9497, 3, 643),
(9689, 3,1051), (9721,7, 2867), (9769, 13, 2563), (9817, 5, 643), (9833, 3, 363),
(9929, 3,1043),

k=4 (p,W,a)

(241,99, 39), (337, 46, 279), (401, 236, 343), (433, 57, 87), (593, 5, 487),

(881,15, 535), (977, 5, 759), (1009, 33,311), (1201, 29, 1063), (1297, 15, 359),

(1361, 24, 487), (1489, 29, 759), (1553, 5, 263), (1777, 10, 407), (1873, 37, 903),
(2129,3,775), (2161, 69, 1143), (2417, 17, 1159), (2609, 6, 1799), (2801, 3, 471),
(2833, 10, 1383), (2897, 5, 1607), (3089, 3, 1287), (3121, 44, 215), (3217, 15, 87),
(3313, 35, 1335), (3697, 20, 1767), (3761, 19, 2535), (3793, 19, 3687), (3889, 29, 2311),
(4049, 3,4023), (4177,11,151), (4241, 51, 23), (4273, 7, 1367), (4337, 12, 4151),
(4561, 11,823), (4657, 35, 231), (4721, 7, 7), (4817, 10, 1943), (5009, 29, 2887),

(5233, 13,1975), (5297, 17, 695), (5393, 3, 1655), (5521, 11, 2743), (6257, 3, 5111),
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(6353, 5,5015), (6449, 6, 3447), (6481, 28, 1639), (6577, 30, 1575), (6673, 10, 6535),
(6737, 10, 5575), (6833, 3, 1703), (6961, 13,5015), (7057, 5, 3255), (7121, 3, 3207),
(7537,7,1111), (7793, 5, 3495), (8017, 5, 631), (8081, 3, 119), (8209, 7, 6919),
(8273,3, 71), (8369, 12, 23), (8689, 13, 5991), (8753, 3, 5847), (8849, 3,6103),
(9041, 11, 3527), (9137, 3, 5319), (9521, 3, 295), (9649, 7, 103),

k=5 (pWa)

(673,485, 175), (929, 382, 239), (1249, 55, 1135), (1697, 27, 815), (1889, 24, 1487),
(2017, 107, 879), (2081, 17, 1327), (2273, 76, 175), (2593, 26, 623), (2657, 6,1583),
(3041, 132, 2351), (3169, 94, 2031), (3361, 31,2415), (3617, 24, 2895),

(4001, 135, 1391), (4129, 131, 3151), (4513, 28, 3951), (5153, 12, 2799),

(5281, 91, 3119), (5857, 266, 4143), (6113, 44, 335), (6689, 13,1103), (7393, 15, 3919),
(7457,31,911), (7649, 56, 1071), (7841, 51,4687), (8161, 97, 4847), (8353, 15, 2447),
(8609, 15, 2895), (8737, 37, 5199), (8929, 19, 2959), (9377, 24,3087), (8697, 88, 2447).

k=6 (pW,a)

(1217, 89, 1119), (2113, 413, 479), (4289, 368, 543), (4673, 872, 4447),
(4801, 861, 2207), (5441, 332, 991), (5569, 342, 3231), (5953, 798, 2143),
(6337, 1456, 4959), (6977, 54, 1951), (7489, 69, 6751), (7873, 14, 7519),
(8513, 96, 5471), (8641, 47, 3295), (9281, 69, 6559).

k=8 (p,W,a)
(7937,11,127).

Table B
(p, GC#,W,c,e, f):

(41,1,6,15,8,19), (89, 1,3,1,0,69), (113,1,3,17,0,89),

(353, 1,3, 23,96, 167), (577, 2, 5,9, 384, 169), (1601, 3,3, 39, 64, 647),
(2689, 2, 19, 121, 1792, 2105), (2753, 1, 3,47, 704, 527),

(3137, 2, 3,21, 64, 2293), (3329, 3, 3,307, 256, 1203),

(3457,3, 7,215, 768, 3223), (4481, 3, 3, 105, 3200, 169),

(4993,1,5, 63,128, 1919), (6529, 1,7, 39, 640, 871),

(7297,3, 5,123,128, 5051), (9473, 1,3, 183,1024,7223),

(9601, 3, 13, 69, 640, 9093), (9857, 1, 5, 77, 384, 3853).
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