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Abstract

A Kuratowski-type approach for [2,3]-graphs, i.e. hyper-
graphs the cardinality of whose edges not more than 3, is pre-
sented, leading to a well-quasi-order in such a context, with a

complete obstruction set of six forbidden hypergraphs to plane
embedding.

A Kuratowski-type result is presented for finite hypergraphs, the
cardinality of whose edges is not more than 3. Motivation goes back
to [1, 2] and is related to the representation of graphs that can be
interpreted as hypergraphs all of whose edges have cardinality 3. (For
example, the graphs G, 4 of [1] are nonplanar for n > 19, n odd).

The statement "graphs to be considered may have loops and mul-
tiple edges”, used in Graph Minor Theory, is generalized as follows.
Given a set V and a positive integer r, an r-multisubset M of V is a
collection {(v1, u1), (v2, #2), . .., (v, 2¢)} such that: (1) v; € V; (b)
t and u; are positive integers, for j = 1,2,..,¢t; (c) 1+ ...+ =r.
The integer p; is called the multiplicity of v; in M, for j =1,...,t
We also write M = {vy,..., vy, (p1, times),..., vy, ..., v, (1etimes)}.

A finite hypergraph G is defined as a tuple

(301 VG,ECZ;,E?;,---, 69¢ G1 ) )t

where 1 < s = sg € 2, Vg and E; are finite sets (whose elements
are called respectively vertices and r-edges of G) and ®7; is a corre-
spondence from E7; into the family of r-multisubsets of Vg (called
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the r-incidence correspondence of G), so if ®;(e) = {v1,..,vr} then
v1,.., U in Vg are incident with e, pairwise adjacent among them-
selves and called the endvertices of e in Eg, for r = 2,...,5. We
define Eg to be the union of all the sets E, for r = 2,...,s and say
that if e € E, then e is an edge of G. An r-edge e of G is said to be
proper if ®%(e) is an r-subset of Vg, i.e. if the multiplicities of this
multisubset are all 1. The collection of all finite hypergraphs will be
denoted by H.

Let H, be the family of all finite hypergraphs with r-edges, where
2 < r < s. Hypergraphs in H, are said to be [2,..., s]-graphs. Our
result holds for [2,3])-graphs. If u, v, w are vertices of a (2,3]-graph G,
then an edge in G may have respectively exactly endvertices: (1) u
twice; (2) u and v, once each; (3) u three times; (4) u twice and
v once; (5) u,v,w, once each. Edges as in (2) and (5) are proper
edges.

In the complex plane, consider the set {a; = e2mik/rik=1,...,r}
and its convex hull I,, for r = 2,3. Given a finite [2,3]-graph G, we
say that an embedding of G in the Euclidean plane P, also called a
plane embedding of G, consists of:

1. an embedding of Vg in P;

2. for each r-edge f of G with endvertices uy,us,...,u, (Where
2 < r < 3), a simple-curve r-polygon, (simple curve if r =
2), namely a continuous map, ®; : I, — P such that: (a)
®s|(I- \ {a1,...,a,}) is one-to-one; (b) ®(s;) = us(;), for j =
1,2,...,r and some permutation o of {1,2,...,r};

and satisfies the condition that the images ®;(I; \ {a1,...,a,}) as-
sociated to the r-edges f of G, for r < 2, and the sets {v} associated
to the vertices v of G are pairwise disjoint. In particular this implies
that the simple curve r-polygons corresponding to all the r-edges of
G are set so that each corresponding ®(I,) is disjoint from its com-
plement in the union U{®;(I,); f € EG,2 < r < 3}. We consider
simple curve r-polygons with r = 3, namely simple-curve iriangles.
If such a triangle ®; has vertices ®(a1), @(az), ®s(as), then the
side of ®; between vertices a; and ag is the restriction of & to the
side (al, 0,2) of 13.

118



L

4060
n

e
<
S

Figure 1: Nontrivial éxample of a planar [2,3])-graph.

If G has a plane embedding, then G is said to be a planar
hypergraph.  Clearly, planar graphs are also planar hypergraphs.
As a nontrivial example of a planar [2,3]-graph G, consider Vg =
{u,v,w}, E%Z = 0 and E% = {f, g}, both f and g having endvertex
set V. Figure 1 contains a plane embedding representation of G.

A necessary and sufficient condition is found for a [2,3]-graph G to
be planar. This condition will be expressed in terms of the following
operations defined on G:

1. Deleting a vertex v of G, thus deleting all the edges incident to
v;

2. deleting an edge of G;

3. contracting an edge e in G with endvertex set {(v1, 1), (v2, p2),
«+os (v, 1e) }, (2 > 1) by identifying v; and v, into a new vertex
v and replacing e by e’ with endvertex set {(v, 1),..., (v, 1)}
Thus, if e is an edge of G two of whose endvertices are v; and vy,
this operation applied to an edge different from e may produce
indirectly:

(a) if e is a 2-edge, a bending of e onto a loop, that is a 2-
edge with a vertex v repeated twice (v is the identification
verter of v; and v;);

(b} if e is a 3-edge with vertex set {(vy,1), (vg,1), (vs, 1)} or
{(v1,1), (v2,2)}, a bending of e onto a 2-edge whose end-
vertex set is respectively {(v,2), (v3,1)} or {(v,3)}.

4. reducing the multiplicity g; > 1 of an endvertex v; of an 3-edge
of G to a lower value > 0.
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Figure 2: Example of application of operation 3.

Example. By applying operation 3. to the [2,3]-graph depicted on
the left of Figure 2 (with vertex set formed by vertices u, o', v,v’, v", w
and edge set formed by edges fi = {u,v'}, fo = {u,v}, 5 =
{v,v,v"}, f4 = {u,¢,v}, f5 = {u,v,w}), we obtain the graph H
depicted on the right of the same figure, having exactly the edges (1)
to (5) given above as cases of edges of a [2,3]-graph. More precisely,
the passage from the graph on the left of Figure 2 to the one on its
right is produced by identification of the vertices u and u’ and of the
vertices v, v’ and v”, with the corresponding accompanying changes
in edge structure. Here, the graph representation on the right of the
figure may be thought of as being obtained by continuous geometric
deformation in the plane from the graph representation on the left of
the figure. This deformation either keeps each side of a simple-curve
triangle representing a 3-edge as an finite curve with separate ends
or bends it into a closed curve (or loop). The interior of each repre-
sentation of a 3-edge f;, (i = 3,4,5), in the left of Figure 2 is kept
topologically equivalent after such a deformation, becoming the inte-
rior of the corresponding representation of the 3-edge e; in the right
of the figure. This agrees with the use made of curved r-polygons in
the definition of a plane embedding of a [2,3]-graph. «

The operations 1.-4. expressed above make H into a quasi-order,
i.e. a class with a reflexive transitive relation, [3]. In our case, this
relation will be expressed by saying that given two finite hypergraphs
G and G',G is a hyperminor of G', written G < G', if G = G’ or
if G can be obtained from G’ by means of a sequence of operations
o1,...,04, where o; is one of the operations 1.-4., for j = 1,...,¢,
meaning that such a sequence of operations takes G’ onto a finite
hypergraph isomorphic to G. Thus, (H, <) is a quasi-order.
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Figure 3: Four of the claimed obstructions.

It is not known whether there exists a finite obstruction set Oy
to plane embedding in this quasi-order, i.e. a set of nonplanar hy-
pergraphs, each of which does not have proper non-planar subhyper-
graphs and such that each nonplanar hypergraph has an element of
On as a hyperminor. (If such an obstruction set existed, then (H, <)
would be seen to be a well-quasi-order in the sense of [3]). However,
we do establish a restriction result for the quasi-order (Hj, <), where
the corresponding obstruction set Op, will be composed by six [2,3]-
graphs. They are:

L Vo = {u,v,w}; E% = 0; EG3={ /1, f2, f3}, where f; has end-
vertices u, v, w, for j = 1,2, 3; we denote this: G = G, = 3T;;

II. Vg = {u1,u2,u3,v}; Eg2 = {e1, €2, €3}, where e; has endver-
tices u; and v, for j = 1,2,3; Eg3 = {1, f2}, where f; has
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endvertices uj, for k = 1,2 and j = 1,2,3; we denote this:
G=G,=2T+S;

L. Vg = {ul,u21“3av11 vZ};EG2 = {ekyj;k = 172;j = 1’2a3}9
where ey, ; has endvertices vk and u;, for k= 1,2 andj=1,2,3;
E3 = {f}, where f has endvertices u;, for j = 1,2, 3; we denote
this: G =T + 2S5 = G3;

IV. This is the standard graph Kj33; we denote this: G4 = K33 =
3S;

The four graphs just given (see Figure 3) may be built from a ver-
tex set {uy, uz, uz} by the attachment of three [2,3]-graphs each one
of which is isomorphic either to T' (defined as having only one 3-
edge with endvertices uy, ug, u3) or to S (defined as having vertices
uy, Up, U3, an extra vertex v and exactly three 2-edges with respective
endvertices u; and v, for j = 1,2,3).

V. This is the standard graph Ks; We thus take G5 = Ks;

VL. Vg = {u, vy, v9, w1, w2}; EL = {exji k,j = 1,2}, where e ; has
endvertices v; and wj, for k, j € {1,2}. (These four edges form
a 4-cycle); EZ = {fu, fw}, where f, has endvertices u,y1,y2,
for y = v, w; We denote G = Gé.

Let Hj be the family of finite vertex-colored graphs satisfying the
following two conditions:

1. A graph in Hj has its vertex set partitioned into two colored
classes: a class Vg whose elements are said to be black vertices
and a class Vi whose elements are said to be white vertices;

2. each black vertex has degree 3 and its three neighbors are pair-
wise different white vertices.

We define a map O3 : Hz — H} as follows: Let G € Hj be a (2,3}
graph. Let ©3(G) be a graph in Hj with vertex parts Vw = Vg and
Vg = E3 and edge set Eg,g) = Eg2 U F, where

F={(v,f);veVg, f€ E% and v is an endvertex of f}.
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Then clearly ©3(G) is well defined. Moreover, ©3 is a bijection.
Figure 3 illustrates the images through ©3 of the six claimed ob-
structions given above, where the black vertices are represented by
"e” and the white ones by "0”. These six 2-colored graphs have
underlying graphs K5, K33 or subdivisions of K3 3.

Let G be a [2,3]-graph. Assuming that the plane P is provided
with the usual cartesian metric, if G is planar, then a plane embed-
ding of G can be found in which the area of each simple curve triangle
representing a 3-edge of G is arbitrarily small. Such an embedding
may be obtained as follows:

Let ©3(G) be embedded in the plane. Then each edge e of ©3(G)
with endevertices say u and v is given in this embedding by means
of a simple curve ® = &, ,, : [0,1] = P with $(0) = v and ®(1) =
v. Let y be a black vertex of ©3(G) and let u,v,w be its white
vertices adjacent by means of respective edges c,d,e. Consider the
composition simple curves

Tuw = Pdpy 0 ((I)c.u.y)—lv Tv,w = (‘I)e,w,y) ° (q’d.v.y)_l

and
Twu = (‘I’c,u,y) o ((I)e'w,y)-l,

Given an arbitrarily small real number 6§ = §, > 0, let t,,,, : [0,1] = P
be such that

1. 0 < |tuu(z) — Tup(z)| < 4, for every z € (0, 1);
2. tyy(z) = Tyu(z), for z =0, 1;
3. tu([0,1]) N P4 ((0,1]) = 0.

We can define similarly simple curves ¢, ,, ¢y, 4, in such a way that
a compact connected region ¢(y) = t5(y) with positive area is deter-
mined, whose frontier is given by ¢,,[0,1]U¢, [0, 1]U ¢, [0, 1], and
having the vertex y of ©3(G) in its interior.

So, G may be embedded in the plane if there is a plane embedding
of ©3(G), for in such a case, the star st(y) of each black vertex y of
©3(G) in its plane embedding may be slightly fattened to a simple
curve triangle ¢(y) = t5(y) with y in the interior of £(y) and such that
the vertices of ¢(y) are the white neighbors of y. Moreover, by taking
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0 small enough, this fattening of the stars of the black vertices of
©3(G) may be performed so that each fattened star ¢(y) has empty
intersection with its complement in G. This complement coincides
with the complement of the thin star st(y) in ©3(G).

This argument shows that an obstruction set Oy, for the plane
embedding problem of [2,3]-graphs by means of the quasi-order struc-
ture of (H3, <) must be constituted by [2,3]-graphs whose images via
©3 are nonplanar graphs, 2-colored as indicated.

Clearly, ©3(G) = white K5 and ©3(G) = white K33 can be
included, corresponding these to G = G5 and G = G4 above, respec-
tively. Also K33 with one, two and three independent black vertices,
and the remaining vertices white, will provide graphs ©3(G) for ad-
equate obstructions G in Op,, being these exactly G = G3,G», Gy,
respectively.

Other [2,3]-graphs in Oy, must yield through ©3 at most sub-
divivisions of K5 or K33. Let K33 be vertex-colored with only two
black vertices u and v joined by an edge e and the remaining ver-
tices white. By subdividing e into two edges by means of new white
vertex, we get ©3(Gs), and so Gg can be included in Oyj,.

If we assume that a subdivision of K33 is 2-colored so that there
is a path of length 4 through three black vertices and two white
ones or an 8-cycle with alternate black and white vertices, then this
does not lead to an obstruction in Oy, for it is not difficult to find
that the resulting [2,3]-graph has G2 as a hyperminor. (A graph G
that has associated ©3(G) as a subdivision of K33 with an 8-cycle
as above reduces to a graph G’ that has its associated ©3(G’) with
exactly a path of length 4 as above; but this G’ reduces to G” with
its own associated ©3(G") having exactly a path of length 2 with
black endvertices).

Any subdivision of Kj is readily excluded as a candidate ©3(G)
for a new obstruction G € O, for either it is all white and so it has
a white Ky as a minor; or it has a black vertex of degree 4, which
is not specified in the definition of H} = ©3(H); or it has a black
vertex of degree 3, going back to the analyzed cases with underlying
K3 3. This shows that Oy, can be taken exactly as constituted by
the graphs Gj , for j = 1,2,3,4,5, 6. This establishes our main goal.

Theorem 1 A [2,3]-graph is nonplanar if and only if it has as a
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hyperminor an element of Oy, .
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