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Abstract

In this paper, we determine the spectrum of support sizes of inde-
composable threefold triple systems of order v for all v > 15.

1 Introduction

A )-fold triple system of order v, denoted T'S(v, ), is a pair (V,B)
where V is a v-set and B is a collection of 3-subsets (called blocks
or triples) of V' such that each 2-subset of V is contained in precisely
A blocks of B. It is well known [5] that the necessary and sufficient
conditions for the existence of a T'S(v, ) are

Av—1)=0 (mod2
,\1;((1;—1))50 mdti)) (1)

Let (V,B) be a T'S(v,A). If there exists a subcollection B; of B

such that (V, B;) is a T'S(v, A1) for some A3, 1 < A; < A, then (V, B)
is called decomposable. Otherwise it is called indecomposable.
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It can be easily seen that the number of blocks cW
TS(v,A) is
b= v(v—1)/6 (2)

In the definition of T'S(v, A), repeated blocks are permitted. For a
TS(v,A) (V,B), let B* be the set of all the distinct blocks of B and
let b* = |B*|. B* is called the support of (V,B) and b* is called the
support size. Let m, = [v(v — 1)/6], then obviously

m, <b <b 3)

A triple system is called simple if it contains no repeated blocks.
In this case we have b* = b.

Designs with various support sizes have interesting applications in
statistics [4] and have been studied extensively. For given positive
integers v and A, let

S5S(v,A) = {b* | 3TS(v, A) with support size b*},
ISS(v,A) = {b* | 3 indecomposable T'S(v, A) with support size b*}.

The support size problem for triple systems, i.e., the problem of
determining the set SS(v,)) has been almost completely solved [1].
But, to our knowledge, the only systematic work done regarding the
support size problem for indecomposable triple systems is the following
result for A = 2:

Theorem 1.1 [8] Forv=0,1 (mod3), v > 15,

{m, +6,m, +8,---,2m,}, ifv=1,3 (mod6),
ISS(v,2) = ¢ {8v,8,+2,+-+,2my}, ifv=0,4 (mod 12),
{so +1,8, +2,-++,2my}, ifv=6,10 (mod12).

where m, = v(v — 1)/6, 3, = v(v + 2)/6.

In this paper, we consider the support size problem for indecom-
posable threefold triple systems. It follow from (1) that there exists a
TS(v,3) if and only if

v=1 (mod2) (4)
The support size problem for threefold triple systems was completely
solved:

Theorem 1.2 [2] Let m, = [v(v — 1)/6]. If v =1,3 (mod 6), then

{my,my +4,my +6,---,3m,}, if v>13,

— {1}3 ifvo= 3,
583 =19 (7,11,-..,21}\ {12,16}, ifo="1,
{12, 18,20, - - -, 36}, ifv=0.



Ifv= 5 (mod 6), then
SS(‘U,3) = {Tno +7,my+ 10"",3mu + 1}

Forv=5 (mod 6), every T'S(v,3) is indecomposable since in this
case there is no T'S(v, 1) exists. Sq we have

I85(v,3) = $S(v,3) = {m, + 7,m, +10,--+,3m, + 1}

forally =5 (mod 6). Thus we need only to consider the problem for
v=1,3 (mod 6). Our main purpose in this paper is to determine the
spectrum of support sizes for indecomposable threefold triple systems
for all v > 15.

2 Necessary Conditions

Obviously, ISS(»,3) C SS(v,3). It follows from Theorem 1.2 that
my + k ¢ ISS(v,3) if k € {1,2,3,5}. The purpose of this section is
to prove that for v =1,3 (meod 6), if k € {0,4,6,7,8,9,10,11}, then
my + k ¢ I1SS(v,3).

Let (V, B) be a T'S(v, 3) and by, b2 and b3 be non-negative integers.
The vector (by, ba, b3) is called the fine structure of (V, B) if B contains
exactly b; i—times repeated blocks for i = 1,2, 3. For any T'S(v, 3) with
support size m, -+ k and fine structure (by, b2, b3), if v =1,3 (mod 6),
then

b= by + 2by + 3b3 = 3m,

For a T'S(v,3) (V,B), let B; denote the set of all distinct i-times
repeated blocks of B, 1 <7< 3.

Lemma 2.1 For v=1,3 (mod 6), if (V,B) is a T'S(v,3) with fine
structure (by, bz, b3), then by > ba. If by = by, then (V, B) is decompos-
able.

Proof. Each 2-subset of V contained in a block of B, must also be
contained in a block of B; and so by > b,.

If b; = by, then each 2-subset of V is contained in a block of B,
if and only if it is contained in a block of B;, then (V,B; UBj3) is a
TS(v,1) and so (V, B) is decomposable. u]

Lemma 2.2 [3] Forv=1,3 (mod 6), if (b1, b2, b3) is the fine struc-
ture of a TS(v, 3), where by = 33—2¢, by =t and b3 = m, —s, then 0 <
t<s<my,sé¢{1,23,5}and(t,3) & {(1,4),(2,4),(3,4),(1,6),(2,6),
(3,6),(5,6),(2,7),(5,7),(1,8),(3,8),(5,8)}.



Lemma 2.3 Forv=1,3 (mod6), ifke {0,4,6,7}, then m, + k ¢
185(v,3).

Proof. Let (V,B) be an indecomposable T'S(v,3) with support size
my + k and fine structure (by, b2, b3) with b, = 3s — 2¢, b, = ¢ and
b3 = my — s. It follows from (5) that

by=2k—3s, bp=t=2s—k. (6)

Since (V, B) is indecomposable, then b, > b2, by Lemma 2.1. It follows
from (6) and the fact b, > 0 that

k/2<s<k ™)

and so k = 0 is impossible.

By (6) and (7), if k = 4, then (¢,8) = (0,2),(2,3); if k = 6, then
(¢t,8) = (0,3),(2,4) or (4,5); if k = 7, then (¢,38) = (1,4),(3,5) or
(5,6). By Lemma 2.2, all of these cases are impossible.

This completes the proof. (]

A partial triple system PTS(v,]) is a pair (X,B) where X is a
v-set and B is a collection of 3-subsets (called blocks or triples) of X
such that each 2-subset of X is contained in at most A blocks.

Forv=1,3 (mod 6),let (V,B)be a TS(v,3), A=B;U2B; and
X be the following subset of V:

X ={z €V |3IB € A such that z € B}.

Let w = |X]|, then (X, A) is a PT'S(w, 3) with the propertythat each
2-subset of X is contained in either 0 or 3 blocks of A. For z € X,
the number of blocks of A containing z is called the degree of z and
denoted d(z). It can be easily verified that if A # ¢, then

d(z) =0 (mod 3)
6 < d(z) < 3w - 1)/2 ®)
w < |A|/2, 3my > |A]

Let (X,A) be a PTS(w,3). (X,A) is said to be a PTS(w, 3) of

degree type
T = ((R1)rys (R2)ras - <1 (Ba)r,)
if there are s positive integers ry,72,++«,7, withry +r2 44+, =w
and s positive integers hq, ho,---, h, with 0 < hy < hy--- < h,, such
that there are exactly r; elements of X of degree h;, 1 <i < s.
If (V, B) is a T'S(v, 3) with fine structure (b1, b2, b3) and (X, A) is
of degree type ((h1)r,,***y(hs)r,), then

ir.-h.' = E d(z) = 3b; + 6b,. (9)

i=1 zeX



A 2-subset of X is called an i-pair if it is contained in exactly ¢
blocks of B;.

Lemma 2.4 Forz € X, let n, be the number of distinct 3—pairs con-
taining z. If  appears in exactly t; blocks of B;, i = 1,2. Then

ne = 2(t1 — t2)/3 (10)

Proof. Each block containing = contains 2 pairs containing z. Each
pair contained in a block of B; is contained in a unique block B € B,
and B contains no 3-pairs. So we have 2t; = 3n, + 2¢, and the
conclusion follows. ]

Lemma 2.5 Forv=1,3 (mod 6), let (V,B) be a T'S(v,3) with fine
structure (by, b2, b3). If by — b2 = 3 and the 8 3-pairs form a block B
of B, then (V,B) i3 decomposable.

Proof. In fact, (V,{B} UB; UB3) is a T'S(v,1) and so (V,B) is
decomposable. (]

Lemma 2.6 Let (X,A) be the above defined PTS(w,3). If X con-
tains ezactly 8 3-pairs, then

(i) If z is contained in a 3-pair, then d(z) > 9;

(i3) There are at least 3 elements z € X with d(z) > 9;

(#i) w > 9. Ifd(z) < 9 for all z € X, then w < 12 and (V,B) is
decomposable;

(iv) Each z € X i3 contained in at least 2 distinct blocks of B.

Proof. Let X = {1,2,---,w}. For any z € X, it follows from Lemma
2.4 that n; must be even. Since there are only 3 3-pairs, then n, = 0
or 2 for each £ € X. Thus, without loss of generality, we may assume

that the 3—pairs are (1,2), (1, 3), (2,3) and either.

(1) {{1,2,3},1{1,2,4}{1,2,5},{1,3,6},{1,3,7},{2,3,8},{2,3,9}}
CB
or '

(@) {{1,2,4},{1,2,5},{1,2,6},{1,3,7},{1,3,8},{1,3,9},{2,3,10},
{2’ 31 11}’ {2, 3, 12}} g B1~

In case (1), each of the pairs {1, 4}, {1, 5}, {1, 6}, {1, 7}, {2, 4}, {2, 5},
{2,8},{2,9}, {3,6}, {3,7},{3,8} and {3,9} must be contained in some
blocks of B3, and so d(z) > 9 for z € {1,2,3}. In case (2), it can be
proved similarly that d(z) > 12 for z € {1,2,3}. Obviously, w > 9 in



Y

\/
case (1) and w > 12 in case (2). If w < 12, then case (2) is impossible
and so the 3 3—pairs {1, 2}, {1, 3} and {2, 3} form a block {1,2, 3}, then
(V, B) is decomposable by Lemma 2.5. Thus we have proved (i), (ii)
and (iii).
For z € X, in both cases (1) and (2), we have

{2 fze{L23),
""{0 if z € X\ {1,2,3). (11)

If z € {1,2,3}, then d(z) > 9. By (10) and (11), we have
t1—12 =13, t1+2t2=d(2) >9

and so t; > 2. If z € X \ {1, 2,3}, then d(z) > 6. It follows from (10)
and (11) that ¢ > 2.
This completes the proof. ]

E.J.Morgan [7] enumerated all non-isomorphic T'S(7,3) systems;
there are ten in total. An examination of them shows the following
result.

Lemma 2.7 There ezxists a simple indecomposable TS(7,3). AnyTS(7,3)
with repeated blocks is decomposable.

Lemma 2.8 Ifv=1,3 (mod 6), then m, + 8 ¢ ISS(v,3).

Proof. Let (V,B) be an indecomposable T'S(v,3) with support size
m, + 8 and fine structure (b1, b2, b3) = (3s — 2¢,%, m, — s). It follows
from (6), (7) and Lemma 2.2 that

t=235-8,4<3<8, s#£b.

(i) f s = 7, then (b1,bs,b3) = (9,6,m, — 7). By (8), we have
w < |A|/2 = 21/2 < 12. By Lemma 2.6 (iii), (V,B) must be
decomposable. A contradiction.

(i) If 8 = 6, then (by,bds, b3) = (10,4, m, — 6) and |A| = 18, and so
7<w<9by (8).

case 1. w = 7. In this case, by (8), we have 6 < d(z) < 9 for each

z € X. So the degree type of (X,A) is 7 = (63,94). If
d(z) = 9, since w = 7, then each 2-subset of X containing
z is contained in 3 blocks of A. Let X = {1,2,3,4,5,6,7}
and assume d(1) = d(2) = d(3) = d(4) = 9. Then each 2-
subset of X, except {5,6}, {5,7} and {6, 7}, is contained in
3 blocks of A and none of {5, 6}, {5, 7} and {6, 7} appear in
any block of A. Thus (X, AU{{5,6,7,}, {5,6,7},{5,6,7}})
is a TS(7,3) with repeated blocks and so is decomposable
by Lemma 2.7. So (V, B) is also decomposable.



case 2. w = 8. Let X = {1,2,3,4,5,6,7,8}. In this case, for each
z € X, 6 <d(z) <9. So the degree type of (X,A) is
7 = (66,92). Suppose d(1) = 9 ,since w = 8 and any 2-
subset of X appears in either 0 or 3 blocks of A, then there
is a unique element of X, say 2, such that {1,2} appears in
no blocks of A.
If d(2) = 9, let p be the number of distinct pairs {a, b} such
that {1,a,b} € B,. Then there are exactly 9 — 2p distinct
pairs {z,y} such that {1,z,y} € B;. It follows that we
must have {2,q,b} € B; and {2,z,y} € B;. Then p = 3
and |B;| > 6 > b, which is impossible.
If d(2) = 6. Suppose d(3) = 9 and let d be the unique
element of X such that {3,d} appears in no blocks of A.
Obviously d # 2. Put d = 4. There exist z,y € X such that
{1,4,2},{1,3,y} € B;. Then we must have:

A = {{13z},{13z}, {13y}, {14=}, {14y}, {14y},
{12122}, {12122}, {12122}, {232}, {23y}, {23y},
{24y}, {24z}, {242}, {32122}, {32122}, {32122}}

This is impossible since A can not contain 3—times repeated
blocks.

case 3. w = 9. In this case, the degree type of (X, A) is 7 = (6,).
Let X = {1,2,3,4,5,6,7,8,0}. Obviously (X,A) can not
contain a T'S(5,3). So we may suppose, without loss of
generality, that A contains the following 12 blocks:

{124}, {125}, {125}, {135}, {134}, {134},
{624}, {624}, {625}, {635}, {635}, {634},

But then {789} must appears 6 times in A which is impos-
sible.

(iii) If s = 4, then (by,bs,b3) = (12,0,m, — 4) and so |A| = 12,
w = 6 and the degree type of (X,A) is 7 = (6g). Let X =
{1,2,3,4,5,6}. Since each 2-subset of X contains in either 0 or
3 blocks of A, a simple calculation shows that there are 3 2-
subsets of X not contained in any block of A. Assume {1,6} is
one of them. Then A must contain the following 6 blocks.

{123}, {124}, {125}, {134}, {135}, {145}.

The other 2 2—subsets not contained in A must be of the form
{=,6}, say {2,6} and {3,6}. Then A must contain {2,3,4},
{2,3,5}, {2,4,5} and {3,4,5}. Since these 10 blocks form a
TS(5,3) on X\ {6}, then we can not find the last 2 blocks for A.



This completes the proof of the lemma. ]

Lemma 2.9 Ifv=1,3 (mod 6), then m, +9 ¢ 1SS(v,3).

Proof. Let (V,B) be an indecomposable T'S(v,3) with support size
m, + 9 and fine structure (by,d2,b3) = (33 — 2¢,¢,m, — 8). Then
t=2s—9,5< s<8. By LemmaZ2.2,(t,38) # (1,5),(3,6),(5,7). So we
need only to consider the case (%, s) = (7,8). In this case (b, b2, b3) =
(10,7, my — 8). So we have |[A| =24 and 9 < w < 12. f w < 12, then
(V, B) is decoposable by Lemma 2.6 (iii). If w = 12, then d(z) = 6 for
each z € X. This is impossible since by Lemma 2.6 (ii), there exists
z € X with d(z) > 9.

This completes the proof. (]

Lemma 2.10 Letv=1,3 (mod 6), if (V,B) is a T'S(v,3) with fine
structure (b, ba, b3) = (12,9, m,y — 10) or (11,8, m, — 9), then (V,B)
i3 decomposable.

Proof. Let X = {1,2,---,w} and let {1,2},{1,3} and {2, 3} be the
3 3-pairs of X. By Lemma 2.5, we need only to consider the case
{1,2,3} ¢ B; and so we may assume that w > 12 and B; contains the
following

By:  {{1,2,4}{1,2,5},{1,2,6},{1,3,7},{1,3,8},
{1,3,9},{2,3,10},{2,3,11},{2,3,12}}.

iFrom (10) and by Lemma 2.6 (iv) necessarily we have

B, = Bju{{4,7,10},{5,8,11},{6,9,12}},
B; = {{174;7}9{1’ 9, 8}a {1:61 9}’{2’41 10}’{2,5’ 11},
(2,6,12},{3,7, 10}, {3,8,11}, {3,9,12}}.

Let

C = {{ls 2, 4}’ {lv 3, 7}’ {lv 5, 8}, {11 6, 9}, {2, 3, 10}1
{3,8,11}, {3,9,12},{2,5, 11},{2,6,12},{4,7, 10}},

then C C A and (V, CUB3) is a T'S(v, 1) and so (V, B) is decompos-
able. This completes the proof. |

For each (X, A), let G be the following graph on vertex set X: For
a,b € X, a #b, we join a and b by an edge of G if and only if {a, b} is
a 3-pair of X. G is called the single-edge graph of (X, A).

10



For each (X, A), let M be the following graph on X: For a,b € X,
a # b, we join a and b by an edge of M if and only if {a, b} is contained
in no blocks of A. M is called the minimizing graph” of (X, A).

Obviously, any vertex of G is of even degree and any vertex of M
is of degree w — 1 — 2d(z)/3.

Lemma 2.11 Letv=1,3 (mod 6). If(V,B) is a T'S(v,3) with fine
structure (by, bz, b3) = (13,7, m, — 9) or (12,6, m, — 8), then (V,B) is
decomposable.

Proof. There are exactly 6 3—pairs of X and so there are only 3
possiblilities for the single-edge graph G:

case 1.

case 2.

Two disjoint triangles {1,2, 3}, {4,5,6}.

In this case, if C = {{1,2,3},{4,5,6}} C By, then (V,CUB,U
B3) is a T'S(v,1) and so (V, B) is decomposable.

If {1,2,3} ¢ B,, then |By| > 16 > b; which is impossible.

Two triangles with one common vertex:
{1,2,3},{1,4,5}.

In this case, if {{1,2,3},{1,4,5}} C B, then (V,B) is decom-
posable, as in case 1. If {1,2, 3} ¢ B;, then we may suppose that
B; contains the following 12 blocks.

{1,2,4}, {1,2,5}, {1,2,a}, {1,3,4}, {1,3,5}, {1,3,b},
{2,3,¢}, {2,3,d}, {2,3,e}, {4,5,1}, {4,5,f}, {4,5,9}).
and [{a,b,¢,d,e}| =5, |{f,9}| = 2, {a, b}N{f,9} = ¢ (otherwise
the pair {1,4} or {1,5} would appear in B;). We may let ¢ =

f=06and d =g =17. Then it can be seen that

{{1,2,4},{1,2,5},{1,2,a},{1,3, 4},
{1,3,5},{1,3,%},{2,3,6},{2,3,7},

{2’ 3’ e}, {4’ 5’ 1}’ {4’ 5’ 6}’ {4’ 5’ 7}) {a7 b, e}}'
B, = {{6,2,4},{6,3,5},{7,2,5},{7,3,4},
{1,a,0},{2,a,€},{3,b,e}}

B,

Let

C = {{1,2,4},{1,3,5},{2,3,6}, {4,5,6},{3,4,7},
{2,5,7},{1,a,b},{2,0,€},{3,b,¢}}.

Then C C A and (V,CUB2;UB3) is a T'S(v,1) and so (V,B) is
decomposable.

11



case 3. A cycle with 6 vertices: {1,2,3,4,5,6}. It is easily seen that we
have either

B, = {{126}7 {123}1 {120}? {342}1 {345}, {34a},
{561}, {564}, {56¢c}, {162}, {23c}, {45z}}

B, {{a13}, {a24},{c26}, {c35}, {15}, {z46} }

or

B: = {{126},{123},{12a}, {342}, {345}, {34b},
{561}, {564}, {560}, {16}, {23z}, {450}},
B: = {{al5},{a24}, {835}, {846}, {13}, {26}}.

In either case, (V, B) is decomposable.

This completes the proof. o

Lemma 2.12 Letv=1,3 (mod 6). If (V,B) is a T'S(v,3) with fine
structure (b1, b2, b3) = (13,4, m, — 7) or (15,3, m, — 7), then (V,B) is
decomposable.

Proof. We have |A| = 21 and so it follows from (8) that 7 < w < 10.
If w =7, then (X, A) is a T'S(7, 3) with repeated blocks and so is
decomposable by Lemma 2.7. Then (V, B) is also decomposable.
For the degree type of (X, A), it follows from (8) that

(63,9s) ifw=8
T= (66, 93) or (67, 91, 121) fw=9
(69,91) if w=10.

() w = 8. Let X = {1,2,3,4,5,6,7,8}, N = {1,2,3,4,5}, § =
{6, 7,8} such that d(z) = 9 for each £ € N and d(y) = 6 for each
y € S. For each z € X, the degree of = in the minimizing graph
M of (X,A)is1ifz € N and is 3 if = € S and so there are only
two possibilities for M.

case 1.

{{1,2},{3,6}, {4, 7}’ {5,8}, {6, 7},{6,8},{7,8}} = M.
Then the 21 blocks of A are of the following forms:

{13°}’ {13'}$ {13'}, {14'}’ {14'}’ {14'}a
{1 " '}9 {1 * ’}’ {1 y '}, {23'}’ {23'}’ {23'}’
{24'}$ {24’}’ {24’}a {2 ‘ °}: {2 : '}a {2 ° '}’
{34'}) {34'}s {34}’

12



case 2.

Since d(5) = 9, it is impossible to arrange 5 into 9 of the
above 21 blocks such that each pair containing 5 appears in
either 0 or 3 blocks.

{{1,6},{2,6}, {3,7},{4,7}, {5,8},{6,8},{7,8}} = M.

Each of 1, 2, 3 , 4 and 8 can not meet the 3 blocks of A
containing {6, 7} and this is impossible.

(i) w=09. Let X = {1,2,3,4,5,6,7,8,9}. If 7 = (66,9s), then let

N =

{1,2,3}, S ={4,5,6,7,8,9} such that

_J 9 ifzeN
d(”)-{s, ifzes

For each = € X, let d’(z) denote the degree of z in the minimizing
graph M of (X, A). Then

case 1.

case 2.

case 3.

4 — 2, fz€N,
d(”)"{ 4, ifz €S

There exists ¢ € N, say z = 1, such that {{1,2},{1,3}} C
M. In this case, if {2,3} € M, then there are 9 blocks of
A containing z for each z € {1,2,3} and so |A| > 27 > 21
which is impossible. If {2,3} ¢ M, then A contains 9 blocks
of form {1, a, b}, 6 blocks of form {2, ¢, d}, 6 blocks of form
{3, e, f} and 3 blocks of form {2, 3, g} where a,b,¢c,d, ¢, f,g €
S. It follows that |A| > 24 which is also impossible.

There exist two elements of N, say 1 and 2 , and an element
of S, say 4, such that {{1,2},{1,4}} C M. Then for each
z € S\ {4}, the pair {1,z} appears in 3 blocks of A. There
is a unique z € S\ {4} such that {2, z} is not contained in
any block of A. There are 18 blocks of A conaining 1 or 2.
Since d(3) = 9, d(4) = d(z) = 6 and |A| = 21, then the last
3 blocks of A must be {3,4,z}, {3,4,2} and {3,4, 2z}, but
this is impossible.

There exist a,b€ N andc€ S,saya=1,b=2and c =4,
such that {{1,4},{2,4}} C M and {1,2} ¢ M. Then A
contains 3 blocks of form {1, 2, a}, 6 blocks of form {1,,c},
6 blocks of form {2, d, e} and 6 blocks of form {4, f,g}. Since
{1,2} ¢ M and {1,4} € M, then {1,2,4} ¢ B, and so there
exists m € S \ {4} such that {1,2,m} € A. It follows that
the number of blocks of A of form {1, m,z} or {2,m,y} is 4
or 5. As d(m) = 6, {4, m} must be contained in 3 blocks of
A and so d(m) > 7, but this is impossible.
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case 4.

case 5.

With the above discussions, from now on, without loss of
generality, we may suppose that

{{1,4},{1,5},{2,6},{2,7},{3,8},{3,9}} c M.

{{4,6},{4,7}} C M. In this case, if {4,5} € M, then A
contains a 3-repeated block {4, 3, 2} which is impossible. So
{4,5} ¢ M and we may suppose that {4,8} € M. It fol-
lows that {4,z} ¢ M if z € {2,3,5,9} and so the blocks of
A containing {4, 3} must be {4, 3,2}, {4,3,5} and {4,3,z}
where z € {2,5}. The remaining blocks of A conaining 4
must be {4,9,2}, {4,9,y}, where {z,y} = {2,5}. It follows
from d(9) = 6 and {1,9} ¢ M that {9,1,2},{9,1,5} € A.
But this is impossible since {1,5} € M.

From now on, without loss of generality, we may assume that

{{1,4},{1,5},{2,6},{2,7},{3,8},{3,9},{4,5},{4,6},
{4,8},{6,7},{8,9},{5,7},{5,9}, {6, 2}, {7, y}} = M,
where {z,y} = {8,9}.
Since we must have {{5,2}, {5,6}} N M = ¢, and d(5) = 6,
then A contains 3 blocks of form {5,2,z} and 3 blocks of
form {5,6,y} where z,y ¢ {2,6}.
Now we have either {6,8} € M or {6,9} € M. Since {5, 8} ¢
M, then {5,8} must be contained in 3 blocks of A, then
we have {{5,2,8},{5,6,8}} C A and so {6,8} ¢ M and
{{6,9},{7,8}} C M. The blocks of A containing 5 are

{5, 2, 3}, {5, 2, 8}, {5, 2,4}, {5, 6, 3}, {5, 6,8}, {5,6, b}
where {a,b} = {3, 8}. The blocks containing 8 are

{8, 5,2}, {8, 5,6}, {8,5,c},{8,1,2},{8,1,6},{8,1,d}
where {c,d} = {2,6}. The blocks containing 2 are

{2,5,3}, {2,5,3}, {2,5,8}, {2,1,9}, {2,1,8},
{2,1,8}, {2,4,3}, {2,4,9}, {2,4,9}

or

{2’ 5’ 3}’ {2’ 5’ 8}, {2’ 5’ 8}, {2? 1’ 8}’ {2’ 11 9}’
{2,1,z}, {2,4,3}, {2,4,9}, {2,4,9}.
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where {z,y} = {3,9}.
1t follows that the 21 blocks of A are

(H {1,2,8}, {1,2,8}, {1,2,9}, {1,6,3}
- {1,6,3}, {1,6,8}, {1,7,3}, {1,7,9}
{1) 7’ 9}’ {4’ 29 3}’ {4’ 2’ 9}’ {4) 2’ 9}’
{4,7,3}, {4,7,3}, {479}, {523}
{5,2,3}, {5,2,8}, {5,6,3}, {5,6,8}

{5,6,8},
or

In {1,2,3}, {1,2,8}, {1,2,9}, {1,6,3},
{1,6,8}, {1,6,8}, {1,7,3}, {1,7,9),
{1,7,9}, {4,2,3}, {4,2,9}, {4,2,9},
{4,7,3}, {4,7,3}, {47,9}, {5,2,3)},
{5,2,8}, {5,2,8}, {5,6,3}, {5,6,3},
{5,6,8},

(1) {1,2,8}, {1,2,9}, {1,2,9}, {1,6,3},
{1,6,8}, {1,6,8}, {1,7,3}, {1,7,3},
{1,7,9}, {423}, {4,2,3}, {4,2,9},
4,7,3}, {479}, {4,7,9}, {523},
{5,2,8}, {5,2,8}, {5,6,3}, {5,6,3},
{5,6,8}.

So we have by = b, = 7 in case (I) or case (III), b, = 9
and bz = 6 in case (II). But all of these cases are impos-
sible since (b1,b2,b3) € {(13,4,my, — 7),(15,3,m, — 7)}.
Now if Il = (67,91,12,), then let D = {1}, N = {2},
$=1{3,45,6,7,8,9}, and

12, ifz=1,
diz)=¢ 9, ifz=2,
6, ifzes.
Then for the degree d’'(z) of  in M, we have
0, ifz=1,
d'(z) = 2, ifz=2,
4, ifzes.

Without loss of generality, we may suppose that {{2, 3}, {2,4}}
C M. Then it follows from d(3) = d(4) = 6 that {3,4} ¢ M
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and A contains 3 blocks {3,4,z}, {3,4,z}, {3,4,y} where
z,y € S\ {3,4}. Since {{2,3}, {2,4}} C M, then we have

{{1, 3’33}’ {1, 4, 1:}, {1a3a y}a {1a4a y}$ {1)3, y}v {1143 y}} CA
and so {1,y} is contained in at least 4 blocks of A, a con-
tradiction.
(i) w = 10. Let X = {1,2,---,10}, then the degree type of (X, A)
is (69, 91) and

vy [ 3, ifd(z)=09,
d(z)"{s, ifd(a:§=6.

At most 12 distinct pairs are contained in the blocks of By and
since |B;| > 13 then without loss of generality, we may suppose
that {1,2,3} € A and {1,2}, {1,3} and {2, 3} are 3—pairs. Since
there is only an element @ € X with d(a) = 9,then (X, A) con-
tains a TS(5,3) (Y,B) with Y = {1,2,.-.,5}. It is easy to see
that if a ¢ Y then {a,y} € M for each y € Y which is impossible
and if a € Y then A contains 3-repeated block {a,z,z} where
{z,z} C {6,7,8,9,10} which is also impossible.

This completes the proof of the lemma. m}

Lemma 2.13 Ifv=1,3 (mod 6), then m, + 10 ¢ I55(v, 3).

Proof. Let (V,B) be a T'S(v,3) with b* = m, + 10 and fine
structure (b1, bz, b3). By Lemma 2.2

(b1, b2, b3) ¢ {(14,2,m, — 6), (15,0, m, — 5)}.
So we have
(b1, bz, b3) € {(10, 10,m,—10), (11,8, m,—9), (12, 6, m,—8), (13,4, m,—7)
By Lemma 2.1, and Lemmas 2.10 — 2.12, for all the above 4 cases
(V, B) is decomposable. This completes the proof. ]
Lemma 2.14 Ifv=1,3 (mod 6) then m, + 11 ¢ ISS(v, 3).

Proof. Let (V,B) be a TS(v,3) with b* = m, + 11 and fine
structure (by, b2, b3). By Lemma 2.2,

(bh bZa ba) ¢ {(14, 5,my, — 8)7 (161 1,m, - 6)}
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So we have
(b1, b2, b3) € {(11, 11, m,—11), (12,9, m,—10), (13, 7, m,~9), (15,3, my,—7)}.

By Lemma 2.1 and Lemmas 2.10 - 2.12, for all the above cases,
(V, B) is decomposable. The proof is completed. a

Combining Lemmas 2.2, 2.3, 2.8, 2.9, 2.13, 2.14 gives our main
theorem in this section.

Theorem 2.15 If m, + k € ISS(v,3), then 12 < k < 2m,,.

3 Recursive constructions

In this section we give several recursive constructions for inde-
composable triple systems with various support sizes.

Let (X,A) be a T'S(u,A) and (Y,B) be a TS(v,)). Y C X
and B is a subcollection of A, then (Y, B) is callled a subsystem
of (X, A), or (Y, B) is embedded in (X, A).

The following lemma will be useful for our constructions and the
proof is obvious.

Lemma 3.1 If a TS(u,)) contains an indecomposable TS(v,A)
as a subsystem, then the T'S(u, ) is also indecomposable.

An incomplete triple system 7'S(u, v, A) is an ordered triple (X,Y, A)
where X is a u-set and Y is a v—subset of X, and A is a collection
of 3-subsets (called blocks or triples) of X such that
(i) each pair of distinct elements of X, not both from Y, is
contained in exactly A blocks of A,
(ii) each pair of distinct elements of Y is contained in no blocks
of A.

Let (X,Y, A) be a TS(u, v, \), the umber of distinct blocks of A
is called the support size of the T'S(u, v, A). Let

55(u,v,A) = {k | 3TS(u, v, A) with support size k}.

Lemma 3.2 If k; € §5(u,v,)) and ky € ISS(v, A), then ky +
k2 € ISS(u, ).

Proof. Let (X,Y, A) be a T'S(u, v, ) with support size k;, (Y, B)

be an indecomposable T'S(v,A) with support size k3. Then A N
B = ¢ and so (X, AUB) is a T'S(u, A) with support size k; + k,
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and contains (Y, B) as a subsystem. By Lemma 3.1, (X, A UB)
is indecomposable. This completes the proof. O

To give our main construction for incomplete triple systems with
given support sizes, we need the following result:

Lemma 8.3 [9] Let u,v=10r3 (mod6), u>2v+1,v>7.
Letn = u—v and K,, be the complete graph of order n with vertex
set Z,. Then we can always choose (n — v — 1)n/2 edges from
K, to form (n—v—1)n/6 triples, and the remaining edges form
a cyclic subgraph of K, of degree v which can be partitioned into
v I-factors.

Main construction. Let u,v =1 or3 (mod6), u=2v +k,
v>Tandk>1. If0<3<2v,8#1, then

(k—1)(v+k)/6+ (v+3)(v+k)/2€ SS(2v + k,v,3).

Proof. Let Y = {001,002,--,00,} and X = Zy4;. By Lemma
3.3, we may choose (k — 1)(v + k)/2 edges from K41 to form a
set Bg of (k — 1)(v+ k) /6 triples and the remaining edges can be
partitioned into v 1-factors Fy, Fy,:--, F,.

Define 2 permutations o and 7 on the set {1,2,--,v} such that

i = o(i) = 7(3), forl1<i<m,
i = o(i) # 7(3), forri +1<¢<r1 41
it#o(@)#7(@) #4, forry+ra+1<i<ri+r2+73

and

T1+2r2+3r3 =8+,

T1+ T2+ T3 =7,
r1,72,73 > 0

This is always possible for any s € {0,2,3,---,2v}. Now let
Gi=F;UF,;)UF;), 1<i<w.
Then G; is a 3—factor. Lelt '
B; = {{i,a,b} | {a,0} € G}, 1<i<w
and

B=3Bou{ |J Bi}.

1<i<y

Then (X, Y, B) is a T'S(u, v, 3) with support size (k—1)(v+k) /6+
(v+3)(v+Ek)/2

18



Combining Lemma 3.2 with the main construction gives the fol-
lowing theorem:

Theorem 8.4 Let u,v =1 0or3 (mod6), u=2v+k, v>7
andk > 1. If my, +t € 155(v,3) and 0 < 3 < 2v, s # 1, then

Moosk + 1+ 8(v + k)/2 € ISS(2v + &, 3).

Let k =1 or 3 in Theorem 3.4, we then have the 2v+ 1 construc-
tion and the 2v + 3 construction:

Corollary 1 (2] Letv=10r3 (mod6),v>7. Ifm,+t¢€
I§5(v,3) and 0 < 3 < 2v, s # 1, then

Maes1 +1t+3(v+1)/2€ ISS(2v + 1, 3).

Corollary 2 Letv=3 (mod6),v>9. Ifm, +¢ € ISS(v,3)
and 0 <3< 2v, s#1, then

Moo43 + 1+ 8(v + 3)/2 € ISS(2v + 3, 3).

We may easily generalize our main construction and Theorem 3.4
for arbitrary A with A < v:

Theorem 3.5 Let u,vu =1 or3 (mod6), u=2v+k, v>7,
k>1andA<v. Let0<s<(A=1)v, s# 1. Then

() (k—1)(v+k)/6+ (v+ s)(v+k)/2 € SS(2v + k,v,)).

(i) If my, +1t € ISS(v,)), then

Mook +1+ (v +k)/2 € ISS(2v + k, )).

In order to give constructions for T'S(v, A)s with support sizes
close to Am,, the following lemma is also needed:

Lemma 3.6 Let u, v and A be positive integers, u,v = 1 or 3
(mod6) andu>2v+1,A<v-2. Ifm, +t€ ISS(v,A), then

Amy — (A= 1)m, +t € ISS(u, \).
Proof. It is proved in [9] that, for such parameters u, » and
A, there exists a simple T'S(u, v, \), i.e. a T'S(u,v, ) with sup-

port size A(m, — m,). The conclusion then follows from Lemma
3.2, (]

A group divisible design GD(k,n;v) is ordered triple (X, G, A)
where X is a v-set, G is a set of n-subsets (called groups) of
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X, G partitions X, and A is a set k-subsets (called blocks) of X
such that each pair of distinct elements of X from distinct groups
appears in a unique block, and each pair of elements of X from
a same group appears in no block.

In some particular cases, we also need the following construction
using group divisible designs.

Theorem 8.7 (i) If there exists a GD(3,n;v) such that

mn+t1€ISS(n,)\), mn+t21mn +tSESS(naA)1

then
m3, + 11 +12 + 13 € ISS(30, A).

(ii) If there ezists a GD(3,n;v) such that
Mp41+t1 € ISS('IH‘]., /\), Mp41+t2, Mup1+t3 € SS(n+1, /\)

then
M3v41+t1+ 12413 € ISS(3'D1,z\).

Proof. Let (X, G, A) be a GD(3,n;v), let G = {G1,G2,G3}.

(i) Form an indecomposable T'S(n, A) with support size m, +1%;
on Gy, a TS(n,\) with support size m, + ¢z on G2, and
a T'S(n,\) with support size my + t3 on G3, and let each
block of A A-times repeated. This gives an indecomposable
TS(3v,)) on X with support size may + 81 + t2 + t3.

(ii) Let oo be a new element. Form an indecomposable T'S(n +
1,)) with support size my41 +t1 on Gy U {o0}, form a
TS(n + 1,)) with support size mq41 + 2 on Gz U {0},
and a T'S(ny,\) with support size mq41 + t3 on G3 U {0},
and let each block of A A-times repeated. This gives an in-
decomposable T'S(3v + 1, A) on X U {oo} with support sizes
M3p41 + 11+ 22 + 15,

This completes the proof. o

4 Support sizes for small v

In this section, we give constructions for indecomposable three-
fold triple systems with given support sizes which will be used in
proving our main theorem of the paper.

ISS(7,3) was determined by Lemma 2.7; we restate the result in
the following form:
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Lemma 4.1 [7] ISS(7,3) = {21}.
Lemma 4.2 ISS5(9,3) = {24,25,.--,36}.
Proof. Since mg = 12, then, by Theorem 2.15, if mg + &k €
I55(9,3), then k > 12, and so
24<mg+k=0>b"<b=36.
For each b* € {31, --,36}, an indecomposable T'S(9, 3) with sup-
port size b* can be found in [6]. For each b* € {24,--.,30}, we
form an indecomposable T'S(9, 3) with support size b* in the fol-
lowing:
(i) o* =24, X = ZgU {a,b,c}.
B;: 013,014, 035,124,235, 245, al5,
a34, 501, b24, b35, c03, c14, c25.
B;: b04, b15, 523, c05, c12, ¢34, al3, a45.
B;: abe, a02.
(ii) b* =25. X = Zg U {a,b,c}.
B;: all, a24, a35, b01, b24, b35, c03, c14,
€25, 013, 124, 235, 340,451, 502.
B.: a2, al3, a45, b23, 440, b51, c12, ¢34, c50.
B;: abe.
(iii) b* =26. X = Zg U {a,b,c}.
B;: a01, a24, a35, b01, b25, b34, c03, c14,
c24, c34, ¢35,013,124, 235, 340, 451, 502.
B,: a2, al3, a45, b04, b15, 523, c05, c12.
B3: abc.
(iv) b* =27. X = Z,.
By : {i,i+1,i+2},{i,i+1,i+4},i€ Z,.
B, : {i,i+2,i+5},‘i € Z,.
B3 H ¢.
(v) b =28. X = Z3 U {o0}.
B; : {i,i+2,00},i € Zsg,
{i,i+4,00},i=0,1,2,3,
{i,i+1,i+4},i € Z5.
B; : {i,i+1,i+3},i€ Zs.
B3 : ¢
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(vi) b* =29. X = Z,.
B; : 012,123,234,456,567,678, 780, 801,
325, 346,014, 125,026, 347, 458, 560,
671, 782, 803, 025, 045, 046.
B, : 136,247,358,571,682,703,814.
B3 H ¢.
(vil) b* =30, X = Z3 U {oo}.
By : {{i+1,i+4},i€ s,
{i,i+2,00},2€ Zg,i # 1,
{0,1,3},{0,1,6},{0,2,3}, {0, 2,6}, {0,4, oo},
{1,5, 00}, {1,6,00},{2,3, 00}, {3, 7, 00}.
B; : {i,i+2,i+3},i€ Z5,i#0,6.
B; : ¢.
This completes the proof. ]

Lemma 4.3 If0 <t <8, then 36 + 4t € $5(13,5, 3).

Proof. Let u = 13, v = 5, X = Zg U {004, 002,003, 004, 005 }.
Form the following 7 1-factors on Zs:

Fy = {01,23,45,67}, F, = {12,34,56,70},

Fs = {02,46,13,57}, F, = {06,24,35,71},

Fs = {03,25,47,61}, Fs = {14,36,50,72},

F; = {04, 15,26, 37}.
Let

Bo = {{i,i+2,i+4} |i € Zs}.

Now we form an ITS(13,5,3) (X, B) with support size 36 + 4t
for each ¢, 0 < ¢t < 8. Let B = |J;_, B; where B; = {{00;,a,b} |
{a,b} € A}, 1 < i< 5and A;; 1 < i< 5 are shown in the
following table:

A A, A; A, As
F\F"\Fy, F;FoF, Fs5FsFs FeFgFg F3FyF;
FW"F, FF3F, F3FsFs FegFgF; F3F4Fg
F\F1\F3 FyFyF, FsFyFs FeFgFy FiF4Fg
F\F\F3 F,F,Fy FsFsFs FeFgF; F1FyF
F\A\F3 FFoFy FyFsFy FegFgF; F1FgFg
FF,F3 FF;Fy FyFyFs FeFeF; F1FsFg
F\F,F3 F\FoFy Fi1FsFy FegFgF; FpFgFg
F1\F,F3 FyF,Fy FsFysFg FsFeF; FiFpFg
FWF,Fy F\F;Fg F\FsFg F;FsFg F3F4Fy

O NI W PO
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This completes the proof. (]

Lemma 4.4 If0 <t <7, then 38 + 4t € S5(13,5, 3).
Proof. Let X = Zg U {001, 002, 003,004,005} Let
Fo = {02,13,45,67}, F5 = {01, 23,46, 57},

and let Fy, Fy, Fy, Fs, Fg, F; be as in Lemma 4.3. Let By =
{{i,i+ 2,4+ 4} | i € Zg}. For 1 <i <5, let A; shown in the
following table.

A, A, Aj Ay As
F\F\F3 FyFyF, FsFsFs FoFeFs FoF Fy
F\F\F3 FFoF; FsFsFs FgFgF; FoF,F
F\F\F3 FoFoF; FsFsFs FeFgF; FoF,.F;s
F1F3Fs FFoF; FsFsFg FgFeF; FoFiFy
F\F3Fs F\FyFy F5FsFg FeFgF; FoF,F,
F\F3Fs F\FoFy; F3FsFg FyFgF; FoF,F,
F\F3Fs F\FF, F3FsFg FsFeF; FoF,Fg
F\F3Fs F\FyFy FFsFg FsFgF; FoF,F

NO TR WN = O

Let

5
U Bh

=0

B; = {{oo;,a, b} | {a, b} € A,'}

then for each ¢, 0 < ¢ < 7, (X, B) is ITS(13,5,3) with support
size 48 + 4t for each ¢ with 0 < ¢ < 7. This completes the
proof. ]

B

Lemma 4.5 If0 <t < 12, then 43 + 2t € $5(13,5, 3).

Proof. Let X = Zg U {001,002, 003, 004, 005}. Let Fy, F», Fj,
Fy, Fs, Fe, F7 be as in Lemma 4.3, and let By = {{i,i+1,i+2} |
i € Zg}.

(i) For 0 <s<4,let

A1 = F3F3F4
A, = FsFsF;
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(it)

and let A3, A4 and As be shown in the following table:

Aj Ay As
F\F;Fy FeFsFs FqF7Fy
FyF,Fs F4FcFs FpF1Fy
F\FeF; F4FeFg FyF1Fy
F\F,Fg F4FsF7 FeF7Fy
F\FgF; FoFeF7; F4FelFy

W RO ®

Let B = J;_, B; where
B; = {{0i,a,b} | {a,b} € Aj}, 1<i<5
(X, B) is an ITS(13,5,3) such that
P = {{001,0,2}, {001, 3,5} {002, 0,3}, {002,2,5}} CB, 0 < s < 4

and so (X, B') is an IT'S(13, 5, 3) with support size 43 + 43,
0 < 3 < 4 where

B' = (B\P)U {{001, 0, 3}1 {0011 2, 5}{002, 0, 2}: {°°21 3, 5}}-
For 0 <s<4,let

Ay, = FRFFy,
A; = F3F3F,,

and let Az, As and As be shown in the following table:

As A, As
F4FsFs FeFeFe F5F7Fy
FyFsF5; FsFeFs FeFrFq
FyFsFs FsFeFg F5FrFy
FyFsFs FsFeF7 F4FeFq
FsFgF; FsFeFr F4FsFg

(- CR I

Let B = |J;_, B: where
B; = {{o0i,a,b} | {a,b} € As}, 1<i<5
(X,B) is an IT'S(13,5, 3) such that
P = {{o01,1,2}, {oc1, 3,4}, {002, 1,3}, {002,2,4}} CB, 0 < s < 4

and so (X, B’) is an ITS(13,5, 3) with support size 49 +4s,
0 < 3 < 4 where

B’ = (B\P)u{{001, 1,3}, {01, 2,4}, {002, 1,2}, {002, 3,4} }.
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(iii) Let

A, = FFFy,

A2 = F3F3F,,
A3 = FyFsF;,
Ay = FsFeFs,
As = FR\F4Fy,

Let B = J;_, B; where
Bo = {{i,i+2,i+5} | i € Zg}.

and
B; = {{o0i,a,b} | {a,b} € A;}, 1<i<5

(X,B) is an ITS(13,5, 3) such that

P C B with P as in (ii) and so (X,B') is an ITS(13,5,3)

with support size 45, where

Bl = (B\P)U{{OO], 1, 3}’ {°°11 21 4}’ {°°2) 1) 2}) {002: 3) 4}}-
(iv) Let

A, = FFRF,

A; = F3F4Fy,
Az = FsFeFy,
Ay = FsFgFy,
As; = FsFeFy,

and let B = (J_, B; where
B; = {{c0i,a,b} [ {a,b} € A;}, 1 <i<5
(X,B) is an IT'S(13, 5, 3) such that

P= { {°°2a 0, 6}7 {°°2$ 2» 4}’ {°°21 0’ 2}, {002, 3: 5}a
{0033 07 4}1 {003: 2) 6}7 {003’ 0’ 3}7 {003) 21 5}} C Ba

and so (X, B') is an IT'S(13, 5, 3) with support 67, where

B' = (B \ P) U {{°°2’ 0, 4}a {°°2’ 2, G}a {°°2’ 0, 3}7 {002’ 2, 5}},
{°°31 0, 6}’ {0031 2, 4}y {003’ 0, 2}, {003, 3, 5}} CB,
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(v) Let Fg = {02,13,45,67},F, = {01, 23, 46, 57},

A,
Az
A;
Ay
Aj

Let B ={J;_, B; where
Bo = {{i,i+2,i+4}|i€ Zs}.

and

F3F4Fy,
FFy Fg,
FyFq Fg,
F\F>Fy,
= FiFiFs,

B; = {{cciya,b} | {a,b} € A;}, 1<i<5
(X,B) is an ITS(13,5, 3) such that
P = {{001,4,6}, {001,1,7},{002,4, 7}, {002, 1,6}} C B,
and so (X, B’) is an IT'S(13, 5, 3) with support size 63, where
B’ = (B\P)U {{c01,4, 7}, {001, 1,6}, {002, 4, 6}, {02, 1, 7}}.

This completes the proof.

o

Lemma 4.6 If46 < k <78, k # 47, then k € 1SS(13,3).

Proof. By theorem 1.2, there is a T'S(5,3) with support size
10, which must be indecomposable and so, by Lemma 3.2 and
Lemmas 4.3 - 4.5, if 46 < k < 78, k ¢ {47,49,51}, then k €
ISS(13, 3). Let X = Zg U {00,, 002, 003, 004, 005}. Let Fy, Fy,
F,, Fy, Fs, Fr be as in Lemma 4.3, and let

Fo
Fy
A,
A,
Aj
Ay
As

I

Let B = J;_o Bi U C where
Bo = {{i,i+2,i+4} | i€ Zs).

{01,23,46,57),
{02, 13, 45,67},
FoFy Fy,
F3Fy Fs,
F3Fy4Fy,
FyFo Fs,
FeFeFe,
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B; = {{00i,a,b} | {a,b} € A;}, 1<i<5
and (Y, C) is the T'S(5, 3) with Y = {o0;, 002, 003, 004, 005 }.
(X,B) is an ITS(13,5, 3) such that

P= {{001, 002, °°3}, {°°13 4, 6}’ {7r 002, 4}9 {7’ 003, 6}} CB,

Q=PU {{oola 0, 1}1 {°°1) 2, 3}1 {°°3» 0, 2}) {°°3) 1, 3}} CB.

It is easy to see that (X,B’) and (X,B") are two ITS(13,5,3)
with support sizes 49 and 51 respectively, where

B = (B \P) U {{001, 002, 4}, {001, 003, 6}, {7, 002, 003}{7, 4, 6}}
and

B" = (B \ Q) U {{001, 0) 2}! {°°17 1! 3}v {°°3r Os 1}1 {°°3’ 2: 3}y
{001, 002, 4}’ {Oolv 03, 6}: {71 002, °°3}, {7’ 4) 6}}'

This completes the proof. ]

5 Main result

To prove our main theorem the following lemmas are also needed.
Lemma 5.1 Ifu =19 or 21, then
ISS(u,3) = {my + 12, my +13,---,3m,}.

Proof. Let u =2v+ k&, v =9 and k = 1 or 3, the conclusion follows
from Theorem 2.15 and Theorem 3.4. o

Lemma 5.2 ISS(25, 3) = {mzs + 12, mp5 + 13, - - -, 3'm.25}.

Proof. Let 25 = 2v + k where v = 9, k = 7, it follows from Theorem
3.4 that

I55(25,3) D {mas + 12, ma5 + 13, - -+, 3mas} \ {125,126, 127}.

Let n = 8, v = 24. There exists a GD(3, 8;24) and mg +¢ € ISS(9,3)
for 12 <t < 24 and mg € §5(9,3). Let ¢; =12, ¢, € {13,14,15} and
t3 = 0 in Theorem 3.7 (i), it follows that

mas + 12+ ¢, = 112 + t; € ISS(25, 3).

‘This completes the proof. a
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Lemma 5.3 If u € {27, 31, 33,37}, then
188(u,3) = {my +12,m, +13,---,3my}.
Proof. In Theorem 3.4, let v = 13 and
u=2v+k, ke€{1,5711}.

Since
IS85(13,3) D {mi3 + 22, my3 + 23, -+, 3ma3}.

by Lemma 4.6, then for u = 26 + k, k € {1,5, 7,11}, we have
I85(u,3) D {my + 22, my +23,--,3my}.

Now let u = 2v + k where v =9, k € {9,13,15,19} in Theorem 3.4, it
follows that

185(u,3) D {my +12,my +13,---,my + 24}

and then
ISS(u,3) = {my + 12,my + 13, -+, 3my}

for u € {27,31,33,37}. 0

Now we are in a position to prove our main Theorem:

Theorem 5.4 Let m, = [v(v—1)/6]. Ifv=1,3 (mod6), v > 15,
then :
IS5(v,3) = {my +12,m, + 13,---,3m, }.

Ifv=5 (mod®6),v>5, then
ISS(v,3) = {my + 7,my + 10, +,3m, + 1}.

Proof. For v = 5 (mod 6), since any T'S(v,3) is indecomposable,
then I8S(v,3) = SS(v,3) and the conclusion follows from Theorem
1.2. For the case v = 1,3 (mod 6), the theorem is proved in Lemmas
5.1-5.315<v<37.

For v > 39, let

26t +1)+1, if v=12¢t+43,
26t +3)+1, ifv=12t+7,
2(6t+3)+3, ifv=12t+9,
2(6¢+3)+7, ifv=12t+13.

The conclusion then follows from Theorem 2.15 and Theorem 3.4.
a
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