A sufficient condition for pancyclic graphs

Ferenc Balogh

School of Mathematical Sciences, Australian National University

Abstract. In this paper we prove that, except for the 4-cycle and the 5-cycle, every 2-connected K(1,3)-free graph of diameter at most two is pancyclic.

Introduction

All graphs considered in this paper are undirected and finite, without loops or multiple edges. A graph is called K(1,3)-free if it has no induced subgraph isomorphic to K(1,3), where K(m,n) denotes the complete bipartite graph on m and n vertices. Let C denote an oriented cycle in a graph G = (V(G), E(G)), and C^{op} the same cycle with the opposite orientation. We use x^+ for the successor of x on C and x^- for its predecessor; we also write $x^{++} = (x^+)^+$, $x^{--} = (x^-)^-$, and so on. If $x, y \in V(C)$, then (xCy) denotes the path on C from x to y (excluding x and y, so this path may be empty) according to the orientation of C. Also, (yCx) denotes the path on C from y to x (excluding x and y) according to the orientation of C, $(yC^{op}x)$ is (xCy) in reverse orientation, and similarly $(xC^{op}y)$ is (yCx) in reverse orientation. If P is a path and $x, y \in V(P)$, then x < y indicates that x precedes y in P. The neighborhood N(x) of a vertex x is the set of all vertices adjacent to x. For notation and terminology not defined here, see Bondy and Murty [1].

Recently, there have been results dealing with sufficient conditions for K(1,3)-free graphs to be pancyclic. For example, see Faudree et al. [4] and [5]. In this paper we consider a well-known sufficient condition for K(1,3)-free graphs to be hamiltonian. In [2] Gould showed that every 2-connected K(1,3)-free graph of diameter at most 2 is hamiltonian. There have been several generalizations of this result (for example see Gould [6]), but none of them considered pancyclicity. The aim of this paper is to fill the gap: by using a different approach, we prove that this condition is sufficient for a graph (except the 4-cycle and the 5-cycle) to be pancyclic.

This result provides further support for Bondy's 'Metaconjecture' which asserts that almost every nontrivial condition which implies that a graph is hamiltonian also implies that the graph is pancyclic (see [3]).

Postal address: Ferenc Balogh, 4 Habgood Place, Kambah, Canberra, ACT 2902, Australia.

Main result

Theorem. Every 2-connected K(1,3)-free graph of diameter at most 2, except the 4-cycle and the 5-cycle, is pancyclic.

Proof. We assume throughout that

G = (V(G), E(G)) is a 2-connected K(1,3)-free graph with diam $G \leq 2$,

and that

G is neither a 4-cycle nor a 5-cycle.

The first thing to note is that G must contain a triangle. (Given that G is K(1,3)-free, the alternative is that G is a cycle, but if a cycle has more than five vertices then its diameter is greater than 2.) This easy observation provides the initial step for a proof by induction. Our inductive hypothesis will be that

G contains a cycle of length k, $3 \le k < |V(G)|$.

We prove that then G must contain a cycle of length k+1 as well. To this end, we assume the inductive hypothesis and that

G has no cycle of length k+1,

and show that this leads to a contradiction.

Let C be an oriented cycle of length k in G, and let H be a component of G-V(C). Since G is 2-connected, there necessarily exist two distinct vertices a and b on C, having the following properties: (i) there exist vertices $u,v\in H$ (possibly u=v) such that a is adjacent to u and b is adjacent to v; (ii) no vertex $x\in V(aCb)$ (this set may be empty) is adjacent to a vertex in H. Let P be a path in H with initial vertex u and end vertex v. Choose H, (aCb), (bCa) and P so that

|V(P)| is minimal.

Before proceeding, we prove that $|V(P)| \in \{1,2,3\}$. Suppose that |V(P)| > 3. Then $u \neq v$ and $uv \notin E(G)$, but since diam $G \leq 2$, there exists a vertex $d \in N(u) \cap N(v)$. If d were in V(H), we would have |V(P)| = 3, so this is not the case. As d cannot be in any other component of G - V(C), we must have $d \in V(C)$. Then $d^+u \notin E(G)$ and $d^+v \notin E(G)$, so $\{u,v,d^+,d\}$ induces a K(1,3). This contradiction proves that $|V(P)| \leq 3$.

Now we distinguish two main cases and several subcases. In each, we derive a conclusion that contradicts one or another of the assumptions displayed above.

Case 1. $|V(aCb)||V(bCa)|[|V(aCb)|-1][|V(bCa)|-1] \neq 0$.

Case 1.1. There exist vertices $p, p^+ \in V(aCb)$ such that

$$|[N(u) \cap N(p)] \cup [N(u) \cap N(p^+)]| > 1.$$

Let $m \neq n$, $m \in N(u) \cap N(p)$ and $n \in N(u) \cap N(p^+)$, then by property (ii) $m, n \in V(C)$ and $m, n \notin V(aCb)$. If n < m in b(bCa)a, then |V(nCm)| > 2 (otherwise a cycle of length k+1 can be obtained), and, since $m^-m^+ \in E(G)$ and $n^-n^+ \in E(G)$ (otherwise $\{m, u, m^+, m^-\}$ or $\{n, u, n^+, n^-\}$ induces a K(1, 3), or a cycle of length k+1 can be obtained), then

$$m^-m^+(m^+Cp)pmunp^+(p^+Cn^-)n^-n^+(n^+Cm^-)m^-$$

is a cycle of length k+1. If m < n in b(bCa)a, then also |V(mCn)| > 2, and

$$m^-m^+(m^+Cn^-)n^-n^+(n^+Cp)pmunp^+(p^+Cm^-)m^-\\$$

is a cycle of length k+1.

Case 1.2. For every pair of vertices $p, p^+ \in V(aCb)$,

$$|[N(u) \cap N(p)] \cup [N(u) \cap N(p^+)]| \le 1.$$

Using the diameter condition, property (ii) for all $p \in V(aCb)$, and the fact that $|V(aCb)| \ge 2$, we conclude that $|N(u) \cap N(p)| > 0$ for all $p \in V(aCb)$. Obviously,

$$|[N(u) \cap N(p)] \cup [N(u) \cap N(p^+)]| > 0$$

for every pair of vertices $p, p^+ \in V(aCb)$, so, without loss of generality,

$$|[N(u) \cap N(p)] \cup [N(u) \cap N(p^+)]| = 1$$

for every pair of vertices $p, p^+ \in V(aCb)$. Clearly $aa^+ \in E(G)$, and assume that $ap \in E(G)$ for $p \in V(aCb)$, where $p < b^-$ on aCb. We can see that $a = N(u) \cap N(p) = N(u) \cap N(p^+)$ (otherwise the set $[N(u) \cap N(p)] \cup [N(u) \cap N(p^+)]$ would contain at least two vertices, since both $N(u) \cap N(p)$ and $N(u) \cap N(p^+)$ are nonempty) and, consequently, ap^+ is an edge of G. By induction on the vertices of the interval V(aCb),

we derive that $ap \in E(G)$ for all $p \in V(aCb)$. If |V(P)| = 1 (that is, if u = v), then

$$a^-a^+(a^+Cb^-)b^-aub(bCa^-)a^-\\$$

is a cycle of length k+1. If |V(P)|=2 (that is, if $uv \in E(G)$), then

$$a^{-}a^{+}(a^{+}Cb^{--})b^{--}auvb(bCa^{-})a^{-}$$

is a cycle of length k+1. It remains to consider the possibility that |V(P)|=3, that is, $V(P)=\{u,y,v\}$ where $uy\in E(G)$, $yv\in E(G)$ and $uv\notin E(G)$. If now |V(aCb)|=2 then auyvb(bCa)a is a cycle of length k+1, while if |V(aCb)|>2 then

$$a^{-}a^{+}(a^{+}Cb^{---})b^{---}auyvb(bCa^{-})a^{-}$$

is a cycle of length k+1.

Case 2. |V(aCb)||V(bCa)|[|V(aCb)|-1][|V(bCa)|-1]=0.

Here we distinguish three main subcases.

Case 2.1. |V(aCb)||V(bCa)| = 0 and $|V(aCb)| - 1||V(bCa)| - 1| \neq 0$. Without loss of generality |V(aCb)| = 0 and $|V(bCa)| \geq 2$, where $b = a^+$.

Case 2.1.1. |V(P)| = 1. In this case aub(bCa)a is a cycle of length k+1.

Case 2.1.2. |V(P)| = 2. If there is vertex $x \in V(bCa)$ such that $x^-x^+ \in E(G)$, then

$$auvb(bCx^{-})x^{-}x^{+}(x^{+}Ca)a$$

is a cycle of length k+1. Suppose that $x^-x^+ \notin E(G)$ for every vertex $x \in V(bCa)$. Clearly $dx \notin E(G)$ for every vertex $d \in V(H)$, otherwise, since G is K(1,3)-free, a cycle of length k+1 can be obtained. Since $ux \notin E(G)$ for all $x \in V(bCa)$, $ua^+ \notin E(G)$, and by the diameter condition $ax \in E(G)$ for all $x \in V(bCa)$, so $\{u, x^-, x^+, a\}$ induces a K(1,3).

Case 2.1.3. |V(P)| = 3. If |V(bCa)| = 2, we have a 5-cycle. If |V(bCa)| > 2, then $ya^{++} \notin E(G)$ and by the diameter condition there necessarily exists a vertex $d \in N(y) \cap N(a^{++})$. Obviously $d \notin V(P)$ (otherwise a cycle of length k+1 can be obtained) and $d \notin \{a^-, a, a^+\}$ (by the minimality of |V(P)|). If $d \notin V(P) \cup V(C)$, then again either a cycle of length k+1 can be obtained, or we violate the minimality of

|V(P)|, or $\{u,v,d,y\}$ is a K(1,3). If $d \in V(C) - \{a^-,a,a^+,a^{++}\}$, then $a^{++}d^+ \in E(G)$ (otherwise $\{y,d^+,a^{++},d\}$ induces a K(1,3)), and

$$a^{++}d^+(d^+Ca)auyd(dC^{op}a^{++})a^{++}$$

is a cycle of length k+1.

Case 2.2. $|V(aCb)||V(bCa)| \neq 0$ and |V(aCb)| - 1||V(bCa)| - 1| = 0.

Now we distinguish two subcases.

Case 2.2.1. Without loss of generality |V(aCb)| = 1 and $|V(bCa)| \ge 2$ (where $V(aCb) = \{a^+\}$ and $b = a^{++}$). If now |V(P)| = 1 then, using $a^-a^+ \in E(G)$, a cycle of length k+1 can be easily obtained. If |V(P)| = 2, then $auva^{++}(a^{++}Ca)a$ is again a cycle of length k+1. This leaves us with |V(P)| = 3. If there exists an $x \in V(bCa)$ such that $x^-x^+ \in E(G)$, then

$$auyva^{++}(a^{++}Cx^{-})x^{-}x^{+}(x^{+}Ca)a$$

is a cycle of length k+1. Suppose that $x^-x^+ \notin E(G)$ for every vertex $x \in V(bCa)$. Clearly $dx \notin E(G)$ for every vertex $d \in V(H)$, otherwise, since G is K(1,3)-free, a cycle of length k+1 can be obtained. Since $ux \notin E(G)$ for all $x \in V(bCa)$, $ua^+ \notin E(G)$, $ub \notin E(G)$ (otherwise a cycle of length k+1 can be obtained), and by the diameter condition $ax \in E(G)$ for all $x \in V(bCa)$, so $\{u, x^-, x^+, a\}$ induces a K(1,3).

Case 2.2.2. |V(aCb)| = |V(bCa)| = 1 (where $V(aCb) = \{a^+\}$, $V(bCa) = \{b^+\}$ and $b = a^{++}$). If |V(P)| = 1 then $a^+b^+ \in E(G)$ because G is K(1,3)-free, and so a 5-cycle can be easily obtained. If |V(P)| = 2, obviously a 5-cycle can be obtained. We are left with |V(P)| = 3. Clearly $a^+b^+ \in E(G)$, therefore $yb^+ \notin E(G)$, otherwise a 5-cycle can be obtained. Using the diameter condition, let $d \in N(y) \cap N(b^+)$. If $d \in V(P) \cup V(C)$, then in all possible cases a 5-cycle can be obtained. If $d \notin V(P) \cup V(C)$, then $\{y, v, b, b^+, d\}$ induces a 5-cycle.

Case 2.3. |V(aCb)||V(bCa)| = 0 and [|V(aCb)| - 1][|V(bCa)| - 1] = 0. If |V(P)| = 1 or |V(P)| = 2, we have got a 4-cycle, so consider |V(P)| = 3. Without loss of generality, let |V(aCb)| = 0 and |V(bCa)| = 1 (where $b = a^+$, $V(C) = \{a, b, a^-\}$ and $V(P) = \{u, y, v\}$). Since $a^-y \notin E(G)$ (otherwise we would already have a 4-cycle) and $ua^- \notin E(G)$, $va^- \notin E(G)$, $ya^+ \notin E(G)$, $ya \notin E(G)$ and diam $G \le 2$, there exists a vertex $d \notin V(C) \cup V(P)$, such that $dy \in E(G)$ and $da^- \in E(G)$, and then either $\{d, u, v, y\}$ induces a K(1, 3), or a 4-cycle can be easily obtained.

So in every possible case we get a contradiction, and the proof of the theorem is complete.

References

- J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Macmillan, London, 1976.
- [2] R.J. Gould, Traceability in Graphs. Ph.D. thesis, Western Michigan University, 1979.
- [3] J.A. Bondy, Pancyclic graphs. Proc. Second Louisiana Conf. on Combinatorics, Graph Theory and Computing (Baton Rouge, La., 1971; ed. R.C. Mullin et al.), Congressus Numerantium III, Utilitas Mathematica, Winnipeg, 1971, 80-84.
- [4] Ralph J. Faudree, Ronald J. Gould and Terri E. Lindquester, Hamiltonian properties and adjacency conditions in K(1,3)-free graphs. Graph theory, combinatorics, and applications, Vol. 1 (Kalamazoo, MI, 1988), Wiley, New York, 1991, 467-479.
- [5] R.J. Faudree, R.J. Gould, M.S. Jacobson, L.M. Lesniak and T.E. Lindquester, A generalization of Dirac's theorem for K(1,3)-free graphs. Period. Math. Hungar. 24 (1992), 37-54.
- [6] R.J. Gould, Updating the Hamiltonian problem—a survey. J. Graph Theory 15 (1991), 121-157.