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Abstract. In this paper we prove that, except for the 4-cycle and the S-cycle,
every 2-connected K(1,3)-free graph of diameter at most two is pancyclic.

Introduction

All graphs considered in this paper are undirected and finite, without
loops or multiple edges. A graph is called K(1, 3)-free if it has no induced
subgraph isomorphic to K(1,3), where K(m,n) denotes the complete bi-
partite graph on m and n vertices. Let C denote an oriented cycle in a
graph G = (V(G), E(G)), and C°? the same cycle with the opposite orien-
tation. We use z* for the successor of z on C and z~ for its predecessor;
we also write zt* = (z+)*, 2=~ = (z7)~, and so on. If z,y € V(C),
then (zCy) denotes the path on C from z to y (excluding z and v, so
this path may be empty) according to the orientation of C. Also, (yCx)
denotes the path on C from y to z (excluding = and y) according to the
orientation of C, (yC°z) is (zCy) in reverse orientation, and similarly
(zC°Py) is (yCz) in reverse orientation. If P is a path and z,y € V(P),
then z < y indicates that z precedes y in P. The neighborhood N(z)
of a vertex z is the set of all vertices adjacent to x. For notation and
terminology not defined here, see Bondy and Murty [1].

Recently, there have been results dealing with sufficient conditions for
K(1,3)-free graphs to be pancyclic. For example, see Faudree et al. [4] and
[5]. In this paper we consider a well-known sufficient condition for K(1,3)-
free graphs to be hamiltonian. In [2] Gould showed that every 2-connected
K(1,3)-free graph of diameter at most 2 is hamiltonian. There have been
several generalizations of this result (for example see Gould [6]), but none
of them considered pancyclicity. The aim of this paper is to fill the gap:
by using a different approach, we prove that this condition is sufficient for
a graph (except the 4-cycle and the 5-cycle) to be pancyclic.

This result provides further support for Bondy’s ‘Metaconjecture’ which
asserts that almost every nontrivial condition which implies that a graph
is hamiltonian also implies that the graph is pancyclic (see [3]).
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Main result

Theorem. Every 2-connected K(1,3)-free graph of diameter at most 2,
except the 4-cycle and the 5-cycle, is pancyclic.

Proof. We assume throughout that
G = (V(G), E(G)) is a 2-connected K(1,3)-free graph with diamG < 2,

and that
G is neither a 4-cycle nor a 5-cycle.

The first thing to note is that G must contain a triangle. (Given that G
is K (1,3)-free, the alternative is that G is a cycle, but if a cycle has more
than five vertices then its diameter is greater than 2.) This easy observation
provides the initial step for a proof by induction. Our inductive hypothesis
will be that

G contains a cycle of length k, 3 <k <|V(G)|.

We prove that then G must contain a cycle of length k41 as well. To this
end, we assume the inductive hypothesis and that

G has no cycle of length K+ 1,

and show that this leads to a contradiction.

Let C be an oriented cycle of length & in G, and let H be a component
of G—V(C). Since G is 2-connected, there necessarily exist two distinct
vertices @ and b on C, having the following properties: (i) there exist
vertices u,v € H (possibly v = v) such that a is adjacent to » and b
is adjacent to v; (ii) no vertex z € V(aCb) (this set may be empty) is
adjacent to a vertex in H. Let P be a path in H with initial vertex u and
end vertex v. Choose H, (aCb), (bCa) and P so that

|[V(P)| is minimal.

Before proceeding, we prove that |V(P)| € {1,2,3}. Suppose that
[V(P)| > 3. Then u # v and uwv ¢ E(G), but since diamG < 2, there
exists a vertex d € N(u) N N(v). If d were in V(H), we would have
{V(P)| = 3, so this is not the case. As d cannot be in any other com-
ponent of G — V(C), we must have d € V(C). Then d*u ¢ F(G) and
d*v ¢ E(G), so {u,v,d*,d} induces a K(1,3). This contradiction proves
that |V(P)| < 3. '
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Now we distinguish two main cases and several subcases. In each, we
derive a conclusion that contradicts one or another of the assumptions
displayed above.

Case 1. [V(aCb)||V(bCa)|[|V (aCb)| — 1)[[V(bCa)]| — 1] # 0.
Case 1.1. There exist vertices p,p* € V(aCb) such that

[N(w) " N(p)] U [N(u) A N(p*)]| > 1.

Let m # n, m € N(u)N N(p) and n € N(u) N N(p*), then by prop-
erty (ii) m,n € V(C) and m,n ¢ V(aCb). If n < m in b(bCa)a, then
|[V(nCm)| > 2 (otherwise a cycle of length k + 1 can be obtained), and,
since m™m* € E(G) and n~n* € E(G) (otherwise {m,u,m*,m~} or
{n,u,n*,n~} induces a K(1,3), or a cycle of length k + 1 can be ob-
tained), then

m~m¥ (m*Cp)pmunp™ (p*Cn~")n"nt(nt*Cm~)m~

is a cycle of length k+ 1. If m < n in b(bCa)a, then also |V(mCn)| > 2,
and
m~mt(m*Cn”)n"nt (n* Cp)pmunp* (p*Cm~)ym~

is a cycle of length £+ 1.
Case 1.2. For every pair of vertices p,p* € V(aCb),

[[N(u) N N(@)] U [N@w) nNE*)) < 1.

Using the diameter condition, property (ii) for all p € V(aCb), and the fact
that |[V(aCb)| > 2, we conclude that |N(u)NN(p)| > 0 for all p € V(aCb).
Obviously,

IIN(u) N N(p) U [N(u) N N(*)]| >0

for every pair of vertices p,p* € V(aCb), so, without loss of generality,
IIN)NN@)]U[N@)NNE*)| =1

for every pair of vertices p,pt € V(aCb). Clearly aa* € E(G), and
assume that ap € E(G) for p € V(aCb), where p < b~ on aCh. We
can see that a = N(u) N N(p) = N(u) N N(p*) (otherwise the set
[N(u) N N(p)] U [N(u) N N(p*)] would contain at least two vertices, since
both N(u) N N(p) and N(u) N N(p*) are nonempty) and, consequently,
ap* is an edge of G. By induction on the vertices of the interval V(aCb),
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we derive that ap € E(G) for all p € V(aCb). If |V(P)| =1 (that is, if
u =), then
’ a~a*(a*Cb™ )b~ aub(bCa~)a~
is a cycle of length k + 1. If |[V(P)| = 2 (that is, if uv € E(G)), then
a~at(a*Cb™ )b "auwb(bCa~)a~

is a cycle of length k¥ + 1. It remains to consider the possibility that
[V(P)| = 3, that is, V(P) = {u,y,v} where uy € E(G), yv € E(G)
and uwv ¢ E(G). If now |V (aCb)| = 2 then auyvb(bCa)a is a cycle of
length k + 1, while if |V (aCb)| > 2 then

a"a*(atCh™ 7)o" " auyvb(bCa™)a~

is a cycle of length k + 1.

Case 2. |V(aCb)||V (bCa)|[|[V (aCb)| — 1)[|V (bCa)| — 1] = 0.

Here we distinguish three main subcases.

Case 2.1. |V(aCb)||V(bCa)| = 0 and [|V(aCb)| — 1][|V(bCa)| — 1] # 0.
Without loss of generality |V (aCb)| =0 and |V(bCa)| > 2, where b =a*.

Case 2.1.1. |V(P)| = 1. In this case aub(bCa)d is a cycle of length k+1.

Case 2.1.2. |V(P)| = 2. If there is vertex z € V(bCa) such that
z~z* € E(G), then

auvb(bCx~ )z~ z+(2+Ca)a

is a cycle of length k 4+ 1. Suppose that z-z% ¢ E(G) for every vertex
z € V(bCa). Clearly dz ¢ E(G) for every vertex d € V(H), otherwise,
since G is K(1,3)-free, a cycle of length k¥ + 1 can be obtained. Since
uz ¢ E(G) forall z € V(bCa), ua* ¢ E(G), and by the diameter condition
az € E(G) for all z € V(bCa), so {u,z~,z%,a} induces a K(1,3).

Case 2.1.3. |V(P)| = 3. If |V(bCa)| = 2, we have a 5-cycle. If
|V(bCa)| > 2, then ya** ¢ E(G) and by the diameter condition there
necessarily exists a vertex d € N(y) N N(a*t*). Obviously d ¢ V(P)
(otherwise a cycle of length k + 1 can be obtained) and d ¢ {a~,a,a*}
(by the minimality of [V(P)|). If d ¢ V(P)U V(C), then again either
a cycle of length k¥ + 1 can be obtained, or we violate the minimality of
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[V(P)|, or {u,v,d,y} is a K(1,3). If d € V(C) - {a",a,a*,a**}, then
a**td* € E(G) (otherwise {y,d*,a**,d} induces 2 K(1,3)), and

a*td*(d*Ca)auyd(dCPat*)att
is a cycle of length £+ 1.
Case 2.2. |V(aCb)||V(bCa)| # 0 and [|V(aCb)| — 1][[V (bCa)| — 1] = 0.
Now we distinguish two subcases.

Case 2.2.1. Without loss of generality |V (aCb)| = 1 and |V (bCa)| > 2
(where V(aCb) = {a*} and b = a**). If now |V(P)| = 1 then, using
a~at € E(G), a cycle of length k+1 can be easily obtained. If |V(P)| = 2,
then auva*t(a**Ca)a is again a cycle of length k+1. This leaves us with
[V(P)| = 3. If there exists an z € V(bCa) such that z~z+ € E(G), then

auyvat* (et Cz7 )z 2zt (2T Ca)a

is a cycle of length k£ + 1. Suppose that z=z+ ¢ E(G) for every vertex
z € V(bCa). Clearly dz ¢ E(G) for every vertex d € V(H), otherwise,
since G is K(1,3)-free, a cycle of length k£ + 1 can be obtained. Since
uz ¢ E(G) for all z € V(bCa), uat ¢ E(G), ub ¢ E(G) (otherwise
a cycle of length k + 1 can be obtained), and by the diameter condition
az € E(G) for all z € V(bCa), so {u,z~,z*,a} induces a K(1,3).

Case 2.2.2. |V(aCb)| = |V(bCa)| = 1 (where V(aCb) = {a*},
V(bCa) = {b*} and b= a*t). If |V(P)| =1 then atb* € E(G) because
G is K(1,3)-free, and so a 5-cycle can be easily obtained. If |V(P)| = 2,
obviously a 5-cycle can be obtained.We are left with |V(P)| = 3. Clearly
a*bt € E(G), therefore yb* ¢ E(G), otherwise a 5-cycle can be obtained.
Using the diameter condition, let d € N(y) "N N(b%*). If d € V(P)U V(C),
then in all possible cases a 5-cycle can be obtained. If d ¢ V(P)U V(C),
then {y,v,b,b",d} induces a 5-cycle.

Case 2.3. |V(aCb)||V(bCa)| = 0 and [|V(aCb)| - 1][|V(6Ca)| - 1] = 0. If
[V(P)| =1 or |V(P)| = 2, we have got a 4-cycle, so consider |V (P)| = 3.
Without loss of generality, let |V(aCb)] = 0 and |V(bCa)| = 1 (where
b=a*, V(C) = {a,b,a”} and V(P) = {u,y,v}). Since a~y ¢ E(G) (oth-
erwise we would already have a 4-cycle) and ua™ ¢ E(G), va~ ¢ E(G),
yat ¢ E(G), ya ¢ E(G) and diamG < 2, there exists a vertex
d ¢ V(C)U V(P), such that dy € E(G) and da~ € E{(G), and then
either {d,u,v,y} induces a K(1,3), or a 4-cycle can be easily obtained.

So in every possible case we get a contradiction, and the proof of the
theorem is complete.
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