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Abstract

We study problems related to the number of edges of a graph
with diameter constraints. We show that the problem of finding, in
a graph of diameter k > 2, a spanning subgraph of diameter & with
the minimum number of edges is NP-hard. In addition, we propose
some efficient heuristic algorithms for solving this problem. We also
investigate the number of edges in a critical graph of diameter 2. We
collect some evidence which supports our conjecture that the number
of edges in a critical graph of diameter 2 is at most A(n—A) where A
is the maximum degree. In particular, we show that our conjecture
istruefor A< inorA>n-—5.

1 Introduction

Let G be a graph with the vertex set V(G) and the edge set E(G). The size
of G, denoted by &(G), is the number of edges contained in G. In general,
each edge e of G is associated with a non-negative integer I(e) called the
length of e. For a path P of G joining two vertices = and y, the length [(P)
of P is the sum of the lengths of the edges of P. Thus the distance between
two vertices z and y of G is defined as:

d(z,y) = min{l(P) : P is a path joining z and y}
The diameter of G is defined as:
d(G) = maz{d(z,y) : =,y € V(G)}.
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When I(e) = 1 for each e € E(G), the distance between two vertices =
and y is just the number of edges contained in a shortest path connecting
z and y. Hence the diameter is the maximum distance between all pairs of
vertices. '

The diameter of a graph is an important graph theoretic parameter
with considerable applications, for instance, in communic4)network which
satisfies certain requirements and which is optimal according to some cri-
terion such as cost, output, or performance. The review by Caccetta [2]
contains an excellent account of such work. The problem of characterizing
graphs with a prescribed diameter is very much unresolved. Indeed, not
even graphs of diameter 2 have been completely characterized. In char-
acterizing graphs with a prescribed diameter, it is fruitful to consider a
subclass of graphs, the so called critical graphs which are defined below.

Suppose that G is a graph of diameter k, ie., d(G) = k. An edge e
of G is critical if d(G — e) > k; otherwise e is non-critical. If every edge
of G is critical, then G is called a critical graph of diameter k. Critical
graphs of diameter k with I(e) = 1 can be recognized in time O(n?m),
where |V (G)| = n and |E(G)| = m, see [1].

Suppose that each edge e of G is associated with another non-negative
integer c(e) called the cost of e. For a subgraph G' of G, the cost ¢(G') of
G' is defined to be the sum of all the costs of edges of G'. When c(e) =1
for each e € E(G), the cost of a subgraph G' of G is simply the size of G’
and thus the problem of finding a minimum cost network corresponds to
finding a subgraph of minimum size (and having the prescribed properties).

In this paper, we shall mainly consider graphs with I(e) = c(e) = 1
for each edge e. We study some problems related to the number of edges
in a graph with diameter constraints. These constraints include prescribed
diameter and criticality of edges. We show that the problem of finding, in a
graph of diameter k > 2, a spanning subgraph of diameter £ with minimum
number of edges is NP-hard. In addition, we detail several efficient heuristic
algorithms for solving this problem. We test these heuristics on 100 random
graphs. Our study of critical graphs of diameter 2 leads us to conjecture
that the number of edges in such a graph is bounded above by A(n — A)
where A is the maximum degree. We prove several results which verify this
conjecture for all A < inor A >n-5.
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2 Some NP-hard Problenis

The following practical problem considered by Plesnik [10] arises from net-
work designs.

Problem 2.1 Given a graph G and an integer B, find a spanning sub-
graph H of G with cost c(H) < B and with minimum diameter d(H).

Plesnik [10] showed that the above problem is NP-hard. Given integers
D and B, we can check in polynomial time whether a graph G satisfies
d(G) £ D and ¢(G) < B. Hence the following problem is NP-complete.

Problem 2.2 Given a graph G and integers D and B, does there ezist
a spanning subgraph H of G with d(H) < D and c(H) < B.

In the case when l(e) = c(e) = 1 for each edge e of G, Problem 2.2
in fact asks whether a given graph contains a spanning subgraph which
has diameter < D and at most B edges. Clearly, a spanning subgraph
H of G with diameter < D and with minimum number of edges must be
critical. Suppose that G has diameter k. A spanning critical subgraph of
G of diameter k can be obtained through the following procedure: While
G has diameter k and is not critical, delete non-critical edges. Hence every
graph G contains a spanning critical subgraph H of diameter d(G).

However deleting non-critical edges in different orders may result in
graphs of different sizes. This is due to the fact that a graph can contain
two spanning critical subgraphs of different sizes. For instance, it is easily
seen that K, — e contains spanning critical subgraphs of diameter 2 of
sizes 3 and 4. Figure 1 shows a graph G of diameter 2 which contains two
spanning critical subgraphs Hy and H; of sizes 2(n? +n —2) and 2n — 4
respectively. Thus it is natural to propose the following problem:

Problem 2.3 Let k > 2 be an integer. Given a graph G of diameter
k, find a spanning graph H of G of diameter k of minimum size.

Chung and Garey [4] proposed the following problem.

Problem 2.4 Given a graph G and integers t and k. Determine whether
there exists a subgraph of G obtained by deleting t edges that has diameter
no more than k, and, if so, find such a subgraph.
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Figure 1:

If Problem 2.4 is polynomial time solvable, then so is Problem 2.3. Our
next result shows both of these problems are difficult.

Theorem 2.5 Problem 2.8 is NP-hard.

Proof: We reduce the minimum dominating set problem (which is NP-
hard, cf. [7]) to our problem. Let H be any graph. We construct a graph
of diameter k as shown in Figure 2. Note that the vertices ax_1, -1 and
¢r— are connected to all the vertices in H.

We shall show that every minimum dominating set C of H gives rise to
a spanning critical subgraph Sc of G of diameter k of minimum size and
conversely, every spanning critical subgraph of G of diameter k of minimum
size gives rise to a minimum dominating set C of H.

Given a dominating set C (# V(H)) of H, we define a spanning sub-
graph S¢ of G as follows: The subgraph Sc¢ contains all edges of G incident
with u,v, a;, bi,¢i,di (£=1,2,...,k—2), and cx_1, all edges of G between
C and {ak-1,bk-1}, exactly one edge from each z € V(H) — C to C, and
no other edge of G. It is easy to check that the spanning subgraph Sc¢ is
critical and the number of edges in S¢ is
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Figure 2:
e(Sc) = |C| + 2[V(H)| +4(k — 1) + 1. (1)

Consider a spanning critical subgraph S of G. We show that there exists
a dominating set C’' with €(S) > €(S¢). Clearly S must contain all edges
of G incident with u,v, a;,b;,¢i,d; (1 =1,2,...,k—2), and cx—1. Let

X = {v € V(H) : va-1 € E(S),vbx1 & E(S)},
Y = {v € V(H) : var-1 € E(S),vbe—1 € E(S)},

and
Z = {v e V(H):var-1 € E(S),vbe_1 € E(S)}.

In the subgraph of S induced by V(H), each vertex of V(H) - X -Y - 2
is incident with either exactly one edge to Z or exactly two edges to XUY.
In the latter case one edge is to X and the other is to Y. Let A denote the
set of all vertices of V(H) — X —Y — Z which are incident with exactly one
edge to Z and B the set of all vertices which are incident with exactly two
edges to X UY. Then A, B, X,Y,Z form a partition of V(H). Without
loss of generality, assume that |X| < |Y|. The number of edges in S is

e(S) > [V(H)| +2|X| + Y] +2|Z| +|A| +2|B| + 4(k - 1) + 1.

Note that each vertex in Y (X) must have at least one neighbour in XU Z
(YU Z2). It is easy to see that XUZ = C’ is a dominating set of H. Hence,
by (1), the number of edges in S¢ is
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e(Scr) =|C'| +2lV(H)| +4(k-1)+1
=|V(H)| +2|X|+|Y]|+2|Z| + |A]| + |B| + 4(k—-1) +1
<e(S).

Therefore if Cpmin is a minimum dominating set of H, then Sc¢, ;. (which
can be constructed in polynomial time) is a spanning critical graph of G of
minimum size. This completes the proof. a

Corollary 2.6 Problems 2.2 and 2.4 are NP-complete. (m]

Note that the graph G constructed in the proof of Theorem 2.5 has
maximum degree n — 4k + 5. So we have in fact proved that Problem 2.3
is NP-hard even if we assume that the input graph has maximum degree
n — 4k + 5. When k = 2, Problem 2.3 is polynomially solvable assuming
that the input graph has maximum degree >n—-4k+5=n-3.

3 Critical Graphs of Diameter 2

In this section, we consider only unweighted graphs G of diameter 2.

Plesnik [9] observed that all known critical graphs of diameter 2 have no
more than I_%nzj edges, and that the complete bipartite graph K Ldn,[4n]
is a critical graph of diameter 2 which has exactly |$n?] edges. Simon and
Murty stated the following (cf. (3]):

Conjecture 3.1 Let G be a critical graph of diameter 2. Then
(@) < 13n),

and eguality holds if and only if G = K, LinL[4n]-

Caccetta and Héggkvist [3] proved that every critical graph contains
at most .27n? edges. With more careful analysis and computation, Fan
[5] showed that such a graph contains less than .2532n% edges. From a
completely different approach, Fiiredi [6] proved that there exists an integer
ng such that the conjecture is true when G contains at least ng vertices.
Thxi .integer ngy provided by Fiiredi is huge (a tower of 2’s of height about
1014).

Conjecture 3.1 is believed to be correct. But the complete establishment

of it seems to be difficult. We believe the following stronger conjecture
holds.
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Conjecture 3.2 Let G be a graph of diameter 2 and mazimum degree

A and let v be a vertex of degree A. Suppose that each edge of G not
incident with v is critical. Then

e(G) < A(n-A4).
Moreover, if A # n—2, then e(G) = A(n—A) if and only if G = Kp n-a.

Note that in the above conjecture the edges incident with v are not
assumed to be critical. Also note that there are critical graphs of diameter
2 and maximum degree n — 2 which have 2(n — 2) edges, yet they are not
isomorphic to K3 2, see Figure 3. So the assumption ‘A # n — 2’ is
neccessary.

Figure 3:

When A(G) < in, we have &(G) < inA < A(n — A). Thus the first
part of Conjecture 3.2 is true. In the sequel, we shall show that the first
part of Conjecture 3.2 is true when A > n - 5.

Let z,y,z be three vertices of G. Then (z,y, z) is called an eztremal
triple if z ~ y ~ 2 is the only path of length < 2 connecting =z and 2. Note
that if (z,y, 2z) is an extremal triple then z is not adjacent to z.

For each vertex v of G, let Ly(v) (resp. L2(v)) denote the set of all
vertices which have distance 1 (resp. 2) from v. We shall use the following
notation.

S={zy€ EG): z,ye Li(v) or z, y € La(v)}
and

T={ab¢ E(G): a€ Li(v) and b € Lo(v)}.

Lemma 3.3 Let G be a graph of diameter 2 and let v be a vertez of
degree A. If |S| < |T| (where S and T are defined as above), then

&(G) < A(n - A).
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Proof: Clearly, we fxa.ve
eG)=0+|S|+An-A-1)-|T| < A(n-A).

a

Lemma 3.4 Let G be a graph of diameter 2 and let v be a vertez of
degree A. Suppose that each edge not incident with v is critical and suppose
that, for each edge xy where x,y € Lo(v), there ezists a vertez z € L1(v)
such that (z,y,z) is an extremal triple. Then

&(G) < A(n - A).

Proof: Consider an element zy € S. If z,y € L2(v), then by assump-
tion there exists a vertex z € L; (v) such that (z,y, z) is an extremal triple.
If z,y € Ly(v), then the criticality of zy assures that there exists a vertex
z € Lz(v) such that (z,y, 2) is an extremal triple. Thus f : zy > zz defines
a mapping from S to T. It is easy to check it is an injection. Hence we
have |S| < |T| and, by Lemma 3.3, ¢(G) < A(n — A). o

Corollary 3.5 Let G be a graph of diameter 2 and let v be a vertex of
degree A. Suppose that each edge not incident with v is critical and that
there ezists a vertex u € Ly(v) whick is adjacent to all vertices in Ly(v).
Then

e(G) < A(n-A).

Proof: It is easy to verify that G satisfies the assumption of Lemma
3.4. ]

Lemma 3.6 Let G be a graph of diameter 2 and let v be a vertez of
degree A. Suppose that each edge not incident with v is critical and suppose
that La(v) contains no induced path of length 2, that is, L2(v) is a union
of disjoint (possibly one) cliques. Then

€(G) £ A(n - A).

Proof: We establish an injection f from S to T': let f be defined
the same as in the proof of Lemma 3.4, except for those zy € S with
z,y € La(v) such that there is no z € L, (v) such that (z,y, 2) is an extremal
triple. By the assumption, zy is in some clique C contained in La(v). The
criticality of zy assures that z and y are the only verticesin C andz ~ y is
the only path < 2 joining = and y. Let 2’ € Ly(v) be any vertex adjacent
to z. Then z' # y and we define f : zy — z'y. Now f is an injection from
S to T and hence, by Lemma 3.3, ¢(G) < A(n — A). a
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Lemma 3.7 Let G be a graph of diameter 2 and let v be a vertez of
degree A. Suppose that each edge not incident with v is critical and that
Ly(v) induces a connected subgraph of G with at most n — A — 1 edges.
Then ' ~

e(G) < A(n-A).

Proof: Fori=0,1,...,n—A -1, let
Si ={z € L,(v) : z is adjacent to precisely i vertices in La(v)},

and write 8; = |S;|. Then L;(v) is partitioned into So, S1,...,Sn-a-1. If
Sn—a-1 # 0, then, by Corollary 3.5, we have e(G) < A(n— A). So assume
that Sp,—a—1 = 0. Consider a vertex z € S; where i # n — A — 1. Let
T consists of all vertices z € Lp(v) such that (z,y,2) forms an extremal
triple for some vertex y € L;(v). Since z is adjacent to precisely ¢ vertices
in Ly(v) which induces a connected subgraph, |T;| <n-A-i-2ifi>1
and |T;| < n—A-1ifi = 0. Since each edge zy of L, (v) is associated with
at least one extremal triple (z,y,2) with 2 € Lz(v), the number of edges
contained in L, (v) is at most (n — A = 1)so + Y 1) A2~ A —i—2)s;.

Thus we have

e(G-v)S(n—A—l)so+(n A-2) YA 25 +n-A-1
—A-)Y A g rn-A -1 -T2y
(n A-NA+n-A-1- E"‘A"z

I Y7228 > n— A —1, then we have £(G) < A(n — A). So as-

sume that E:‘:f"z s <n-— A — 1. We may also assume, according to

an earlier remark, that A > -n Thus sg > 2. Since no two vertices of
n—A-2

So are adjacent, each vertex of So is adjacent to at most ) ;= 8; ver-
tices in L, (v) Hence the number of edges contained in L, (v) is at most
802 5+ 2% (n — A — i — 2)s;. Therefore we have

(G - )<soz"-°-2s,+(n A=Y A 25 4n-A-1

=1

=8 ta+(n-A-) YA s - A s tn-A -1

=An-A-1)+(1-s)(n-A- 1-2'.':‘*' 8i)
<A(n-A-1).

o

Lemma 3.8 Let G be a graph of diameter 2 and let v be a vertex
of degree A. Let Q;, i = 1,2,...,l, be the connected components of the
subgraph induced by Ly(v) and n; = |V(Q;:)| for each i. Suppose that each

169



edge not incident with v is critical and eacd Q; contains at most n; edges.
Then
e(G) < A(n-A).

Proof: For each i = 1,2,...,!, let G; be the subgraph of G induced
by {v} U Li(v) U V(Q:) and let H; be the subgraph obtained from G;
by removing all non-critical edges not incident with v. Clearly E(G) =
E(H,) U E(H2)U...U E(H;). Each H; has diameter 2 and satisfies the
assumptions of Lemma 3.7. Hence e(H;) < A(n; +1). Therefore

&(G) S Tl e(H:) - (1-1)A
<Ti Al +1) - (1-1)A
= ATl mi+1)
=A(n-A4).

a

Let G be a graph of diameter 2 and let v be a vertex of degree A.
Suppose that each edge not incident with v is critical. When A > n — 4,
L(v) contains at most three vertices. It is easy to see that G satisfies the
assumptions of Lemma 3.8. Hence ¢(G) < A(n — A). When A =n -5,
Ly(v) contains precisely four vertices. By lemmas 3.6 and 3.8, we may
assume that L,(v) induces a subgraph with precisely five edges. In this case,
for each edge zy in L (v) there exists a vertex z in L, (v) such that (z,y, 2)
is an extremal triple. Hence the assumption of Lemma 3.4 is satisfied and
G contains at most A(n— A) edges. Combining this and an earlier remark,
we have proved the following:

Theorem 3.9 Let G be a graph of diameter 2 and mazimum degree A
with A < %n or A > n—>5. Let v be a vertex of degree A. Suppose that
each edge not incident with v is critical. Then

e(G) < A(n - A).

4 Some Heuristic Algorithms

In this section we demonstrate some heuristic solutions to Problem 2.3
for k = 2. In other words, we would like to find an efficient algorithm
for finding, in a given graph G of diameter 2, a spanning subgraph of G
of diameter 2 containing as few edges as possible. We implemented the
following heuristics on a Silicon Graphics workstation in C:
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Algorithm 4.1 Let ’G be a graph of diameter 2.
while G is non-critical do

1. Remove a non-critical edge incident with a vertez of smallest degree.

2 Uﬁdate G.

Algorithm 4.2 Let G be a graph of diameter 2.
For each vertezv do:

1. Remove all non-critical edges with both endpbints in Ly (v).
2. Remove all non-critical edges with both endpoints in La(v).

3. Remove all non-critical edges connecting vertices in Ly(v) and ver-
tices in La(v).

4. Remove all non-critical edges incident with v.

Among all the n 9-critical subgraphs obtained, choose the one with the
smallest number of edges.

Interchanging steps 1 and 2 in Algorithm 4.2 gives a rise to another
heuristic which we refer to as Algorithm 4.3.

We implemented other algorithms where stages 1-4 above were executed
in other possible permutations. Finally, we compared these algorithms to
the ‘greedy algorithm’.

Algorithm 4.4 [The ‘Greedy Algorithm’] Let G be a graph of diameter
2.
Sort the edges in G in a random order.
While G is non-critical, remove & non-critical edge with the smallest indez.

Checking whether an edge e = (4, j) is critical in G can be easily done
in O(n?), by computing rows 7 and j in the matrix (4. + I)? (where A,
denotes the adjacency matrix of G — €). Hence algorithms 4.2 and 4.3 are
of order O(mn?).

Algorithm 4.1, however, can be implemented more efficiently: note that
a critical edge in G remains critical in any induced subgraph of G con-
taining that edge. Hence every edge is checked only once for criticality.
Furthermore, once an edge (%, j) is removed, the degrees of 7 and j decrease
by exactly one, hence finding the next unobserved edge incident with the
vertex of smallest degree can be done in O(1). Thus Algorithm 4.1 is of
order O(mn?). Algorithm 4.4 has the same order.

171



We have applied the heuristic algorithms above to 100 random graphs
of orders ranging between 10 and 70 vertices, and with varying maximum
degrees. A random graph of diameter 2 was constructed by first generating
a random graph G (with a user defined edge probability p). If G has
diameter greater than 2, then we arbitrarily add edges to G joining non-
adjacent vertices, until a graph of diameter 2 is obtained.

Our computational analysis shows that if the maximum degree in the
graph is relatively large (say, between 3n and n — 2), then Algorithm 4.2
gives the best results. Furthermore, it is achieved for a vertex v of relatively
large degree. If the maximum degree in the graph is relatively small (say,
around %n), then Algorithm 4.3 gives the best results, which were achieved,
in this case, for a vertex of small degree. In both cases, Algorithm 4.1 was
the second best.

To be more precise, out of 60 random graphs with large maximum
degree, in 51 of them Algorithm 4.2 produced subgraphs which were 2-11%
smaller than the subgraphs produced by any of the other algorithms. In 5 of
them Algorithms 4.2 and 4.3 produced subgraphs of similar sizes and only
in a small portion of them (4 graphs) the results of other algorithms were
better than those of algorithm 4.2. When 40 random graphs with maximum
degrees around .i-,n were checked, Algorithm 4.3 produced subgraphs which
were 1-3% smaller than the subgraphs produced by other algorithms in 37
of them.

Finally, the first three heuristics gave better results than the ‘Greedy
Algorithm’ in almost all input graphs.

Algorithm 4.1 is more efficient than the other algorithms, except for
the ‘greedy algorithm’ which gives poor results. It also produces results
which are in general, within 4% of the best possible. Thus, we believe that
Algorithm 4.1 has an advantage over the others.

The intuition behind Algorithm 4.1 lies in Conjecture 3.1. If the conjec-
ture holds, then the largest critical graph of diameter two is the complete
bipartite graph K}, ran),» Where A — § is at most one. Thus, you would
expect that small critical graphs would have the property that A — 4§ would
be large. (the star K,,—,,; is an extreme example of a small critical graph).
Algorithm 4.1 attempts to widen the gap between A and & by removing
edges from vertices of small degree. By comparison, when we removed
edges from vertices of large degree on a sample of 60 random graphs, in 57
of them the resulting critical graphs were 3-20% larger than those produced
by Algorithm 4.1.
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