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ABSTRACT. In this paper we obtain some results on orthogonal
arrays (O-arrays) of strength six by considering balanced arrays
(B-arrays) of strength six with g’ = (u — 1,2, s, 2, s, ps, p2 — 1)
which we call Near O-arrays. As a consequence we demonstrate
that we obtain better bounds on the number of constraints for
some O-arrays as compared to those given by Rao (1947).

1 Introduction and Preliminaries

First we state some basic concepts and definitions.

Definition 1.1. An arrey T with s symbols (levels), m rows (constraints),
and N columns (runs, treatment-combinations) is a matrix T of size (m x
N) with s elements (say; 0,1,...,8 —1). T is denoted by T (m, N;s).
Imposing a combinatorial structure on T leads us to the following definition
of a balanced array (B-array).

Definition 1.2. A T(m,N;s) is called a balanced array (B-array) of
strength t if for every (¢ x N) submatrix T* of T, we have: A(a, T*) =
A(P(a), T*) where a is a (t x 1) vector of T*, A(a,T*) is the frequency
with which g appears in T*, and P(a) is any vector obtained by permuting
the elements of a.

Definition 1.3. A B-array T for which

Ma,T*) =p (uis a constant)
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is called an orthogonal array (O-array) where « is any (¢ x 1) vector in T™.

Clearly an O-array is a special case of a B-array and for an O-array
N = ust.

In this paper we restrict ourselves to arrays with £ = 6 and s = 2 (el-
ements 0 and 1). In this special case w(ea), the weight of the vector a,
is defined to be the number of non-zero elements in a@. Clearly for w(a)
= k(0 < k < 6), we have A\(a,T*) = ux for every submatrix T* of the
B-array T. The vector p/=(ug,p1,-.., us) is called the index set of the
array T, and T is sometimes denoted by T' (m, N; #'). Clearly

Ny
N = Z (i)m.
i=0
Definition 1.4. A B-array T with p'=(po, y1, ..., ue) satisfying p; = u(i =
1,2,.,5) and p; = p - 1(i=0,1,...,6) is called a near O-array.
Remark: Clearly, if we affix to an m-rowed near O-array with p'=(uo, p1,...,
ug) a vector of weight 0 and a vector of weight m, we obtain an m-rowed
O-array with index set .
Next we state the following results on O-arrays from C.R. Rao (1947):

Result: For O-arrays with t > 2, m must satisfy the following inequalities:

pust—1> (T')(s—l)-i- (7;)(3—1)2+---+(1:)(s—1)“ if t = 2u,

pst—13 (’;‘) (s=1)4-- -+ (’:) (s—1)%+ (’"; 1) (s—1)**lif t = u+1.
The first inequality for s = 2 and ¢ = 6 is reduced to
3844 — 6 > m(m? +5). (1.1)

We use (1.1) later to compare our bounds on m with those obtained from
Rao’s Inequalities.

B-arrays and O-arrays tend to unify various areas of combinatorial math-
ematics, and have been extensively used in constructing symmetrical as well
as asymmetrical fractional factorial designs. It is quite obvious that these
arrays for an arbitrary set of parameters may not exist. To construct such
arrays with the maximum possible number of constraints is very important
both in combinatorial mathematics and experimental designs. This prob-
lem for O-arrays has been studied, among others, by Bose and/or Bush
(1952, 1952), Rao (1946, 1947), Seiden and Zemach (1966), Yamamoto et
al. (1993), etc., while the corresponding problem for B-arrays has been
studied, among others, by Chopra and Dios (1997), Saha et al. (1988),
Yamamoto et al. (1985), etc. To gain further insight into the importance
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of O-arrays and B-arrays to statistical designs and combinatorics, the inter-
ested reader may consult the list of references (absolutely not an exhaustive
list) at the end of this paper, and also further references listed therein.

2 Main Results

In what follows we consider near O-arrays, i.e., B-arrays with p'=(u —
1,p, p, p, p, p, p— 1) which can be written as g Jy — (J1,0J5, J1) where
Ji is a (1 x k) vector with each element being unity. The following resuits
can be easily established.

Lemma 2.1. A near O-array T with index set y'= p Jy — (J1,0J5,J1)
is also of strength t' where t' is such that 0 < t’ < t = 6. Considered
as an array of strength t/, its index set (Ao A, A{ y ooy Aﬁ:) is given by
2= -t ® J¢'+1 - (J]_, 0Jy..1,J1). CIearIy A = 2‘_ p—1

Remark: It is quite obvious from the above lemma that the values of
AL(t' = 6,5,4,3,2,and 1) in terms of the index parameter p are A§ =
p=1, AB=2u-1, Aj =2%u-1, A} =28u—1, A2=2%~1,and

A1 —25p 1. Here AL (k 0,1,2,.,t and 0 < ¢’ < t = 6) is the number

of times (¢’ x 1) vector of weight k appears in every submatrix T™* (¢’ x N)

of T. Here N = 64 — 2.

Lemma 2.2. Let z; be the number of columns of weight j(0 < 7 < m) in
a near O-array of strength 6 with m rows. Then the following results hold:

m

=)
Y izj =m(32u—1) =m A}
> 72z = mg A3+m Al (2.1)

3" 73z; = m3 A3 + 3mg A% +m A}

Y jiz; = my Af +6mg A3+ Tmg A3 +m A}

Y 7%z = ms AE + 10my A} + 25mg A3 + 15mp AZ +m A}

3 78z = mg A§ + 15mg A + 65my4 A} + 90ms A3 + 31 my A% +m A}
where/ m, stands for/ m(m — 1)(m — 2)....(m — r + 1), and values of/ Ak
(a linear function of/ p) are as defined in the last lemma.

Remark: The above equalities can be easily derived by applying Lemma
2.1 and counting in two ways (through columns and through rows) the
number of vectors of different weights k (k = 1,2, ..,6). These equalities
clearly represent moments of order k of the weights of the column vectors
of T in terms of the parameters x and m.

Next we state some results, without proofs, from statistics involving cen-
tral moments which are used to study empirical and theoretical distribu-
tions (See Chakrabarti (1946), and Lakshmanamurti (1950)).
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Result Let Z;(i = 1,2, .., N) be reals satisfying 2 Z; =0and Z Z2=1.
i=1
Set o = + M ZF. Then the following result holds

ag > a2+ o (2.2)

Note: a4 and a3, called kurtosis and skewness, have been extensively used
in statistics to study ”Peakedness” and ”Symmetry”. We use (2.1) and
(2.2) to obtain some new results on the existence of near O-arrays and
O-arrays.

Theorem 2.1. Consider a near O-array T(m x N) with t = 6 and
¥'=p J7 — (J1,0J5, J1). Then the following inequality is true:

LoLg > L2+ Ly L% (2.3)

where

Ly = N} 2z — (3 jz;)?

L3 = N2y 3z; — 3N L 5%z, 3 jz; + 2T iz;)°

Ly = [N* T jz; — AN* T %2, 5 gy + 6N B 1%5(% )? — 3(S )]

Le = [ N° 3 3 — 6NT 5 30m; 3 gz; + 1SN° 5 5% (5 45)* ]
—20VE Y 73 z;(¥ 4z;3)% + 15N X 5%z;(T jzz)* — 5(T jz;)°

Proof: Set
iz _
N = M (2.4a)

and
% Z(J - M)%z; = 5% (2.4b)

Clearly, (J'TM) zj=0,and ) (%)2:1:,- =N.
Let ax =5 3 (-%M)k z;. Using (2.2), we obtain
55 (52 2 > e [£06 - MY'5;]? + b (56 — MY
This leads to
2 [0 - M)xy] 2 20 - M)y + 62 [S6 - M)s]”.

Next, we expand each term in the above inequality in terms of }_ j":z:,- as

follows:
= [NZ] z;— (Zg:c,)z]
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DG =MPa =) 5°z; -3M Y j%z;+ 2NM®

_ 1 [ N2y j3z; ]
= W2 | —3N 5% 5 z; + 2 53)°

DG -M) 'z =" % —aM Y Pz + 6M2 Y 2z — SN MA

_1 [ NSy iz~ aN*525%; 3 jzy ]
+6N Y 722;(% jz;)% - 3(X jz;)!

Z(_‘) - M)bz; = stxj —-6M stzj + 15M22j4z,-

—20M3) " 53z; + 15M* Y j%z; — 5NM®

_1 [ N8 Y jz; -6N"Z] :z:,ZJ:v,+15NSZJ z; (3 jz;)%— ]
N | ~20NTS fo,(5 2y + 16N 3 1%, (5 7ay)* - 5(2 gs)® |-

Substituting the value of 52 and after some simplification we obtain the
desired result. a

Next we give two illustrative examples to demonstrate that the maximum
number of constraints for O-arrays (obtained from near O-arrays) by using
(2.3) are better than those given by C.R. Rao. We also include a table
which compares, for various values of y, the number of constraints obtained
using Rao’s results with those obtained using the results of this paper. To
accomplish all this, a computer program was prepared to check (2.3) for
different values of p to make a comparison with Rao’s bounds.

Example 1. Consider an O-array with 2 = 1. Using Rao’s result (1.1), we
obtain m < 7. The near O-array (0,1,1,1,1,1,0) has /= (0, J5,0). It was
found that for m = 7, L.H.S. of (2.3) is 5.508313E+14, while the R.H.S.
= 3.053855E+15 which is a contradiction. Hence, according to our result,
m < 6. Thus the O-array obtained from the near O-array by adding a
(6 x 1) vector of weight 0 and a (6 x 1) vector of weight 6 has m < 6.
Clearly such an O-array exists for m = 6.

Example 2. Consider an O-array with 4 = 9. Using Rao’s inequality,
we obtain 3450 > m(m? 4 5) implying m < 15. For the near O-array
we have p'= (8,9,9,9,9,9,8). Using (2.3) with m = 13, we get L.H.S.
6.511871E+24, R.H.S. = 6.758249E+24 which is a contradiction. Thus
m < 12. The corresponding O-array obtained from the near O-array by
adding a vector of all zeros and a vector of all 1’s is such that m < 12.
Therefore, our bound is better.
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Value of p Raod’s Bound Bound from (2.3)

2 m<8 m<8
3 m<10 m<9
4 m<11 m<9
5 m <12 m <10
6 m<13 m<11
7 m<13 m<11
8 m<14 m<12
9 m<15 m <12
10 m<15 m<13
11 m <16 m<13
12 m <16 m<14
13 m <16 m<I14
14 m<17 m<14
15 m<17 m<15
16 m <18 m<15
17 m <18 m<15
18 m <18 m <16
19 m<19 m <16
20 m<19 m<16

The above Table shows that we have improvement on the number of
constraints in almost all cases.

Remark: For values of ;1 > 20 we conjecture that our bounds are likely
to be more precise than those of C. R. Rao. For example, for . = 80, our
bound is m < 25 and the Rao bound is m < 31.
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