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Abstract. Let G be a simple graph with n vertices, and let G denote
the complement of G. A well-known theorem of Nordhaus and Gaddum
[6] bounds the sum x(G) + x(G) and product x(G)x(G) of the chromatic
numbers of G and its complement in terms of n. The edge cost ec(G)
of a graph G is a parameter connected with node fault tolerance studies
in computer science. Here we obtain bounds for the sum and product of
the edge cost of a graph and its complement, analogous to the theorem of
Nordhaus and Gaddum.

1. Introduction.

In this paper we consider only simple graphs, that is finite, undirected
graphs having no loops or multiple edges. In general we follow the notation
of Bondy and Murty [2] except that the graph G = (V, E) has n vertices
(or nodes) and m edges. In 1956 Nordhaus and Gaddum [6] established
that the chromatic numbers of a graph G with n vertices (or nodes) and its
complement G satisfy the inequalities

(n+1)?

2vn < x(G) +x(G) < n+1andn < xX(G)X(G) €

Analogous results have since been obtained for many other graph-theoretic
parameters, see Chartrand and Mitchem [3]. Most recently Achuthan,
Achuthan and Simanihuruk [1] have obtained a result for the n-path-chromatic
number of a graph.

Graph theoretic models are frequently used for node fault tolerance
studies in computer networks, see for example [4,5]. Starting with an un-
directed graph G on n nodes we augment it by introducing an additional
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node w and extra edges to form an augmented graph Gt . We say that the
system is (one) node fault tolerant if after removing any node from G the
resulting graph contains a graph isomorphic to G. We take ec(G), the edge
cost of G, to be the minimum number of extra edges that must be added
in the augmented graph G+ in order to ensure node fault tolerance.

Clearly we can ensure node fault tolerance by joining every node of G to
w, so ec(G) < n. Let A denote the maximum node degree of G. Removing
a node of maximal degree removes A edges, and so

A L ec(G) < n. (1)

The upper bound is attained when G is the complete graph K,,. We
expect ec(G) to be large if G is ‘close’ to K, in the sense that it contains
many edges. Then the complementary graph G is sparse and so we expect
ec(G) to be small. Thus there are strong a priori reasons for expecting that
we might obtain a Nordhaus-Gaddum theorem for ec(G).

Theorem 1. Let G be an undirected graph on n nodes, then

n < ec(G) +ec(G) < 2n (2)
and

0 < ec(@).ec(G) < n?. 3)

Further all these bounds are attained. The lower bounds are attained
when G or G is the complete graph K,,. The upper bounds are attained by
the regular proper subgraphs of K,,.

The lower bound of the multiplicative inequality is trivial and the upper
bounds follow easily from (1) so it only remains to prove the lower bound
for the additive inequality, which we shall do in Section 2. First however
we note that when G = K, the complete graph, the lower bounds are at-
tained but when G = Cj,, the circuit graph, the upper bounds are attained.
Further, if G1 C G; then ec(G1) < ec(G2). This suggests that for most
graphs we might expect the values of the sum and product to attain the
upper bound.

2. Proof of Theorem 1.

Let d = 2m/n denote the average node degree of G. We have
2n > ec(G) +ec(G)
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> AG)+A(G)
> dG)+d(G)=n-1 (4)

since G and G combine to _give Ky,. Further A > d unless G is regular of
degree d. Since ec(G) + ec(G) is an integer we have the required inequality

ec(G) +ec(G) 2 n

unless G is regular of degree d. Theorem 1 now follows from the following
lemma.

Lemma 1. Let G be a graph regular of degree d > 0. Then
ec(G) = n. (5)

Proof. We may suppose that ec(G) < n, so there is a node z of G
which is not adjacent to the additional node w. Choose any neighbour y of
z, and remove y from G. In the resulting subgraph z has degree d — 1, so
we cannot obtain a subgraph isomorphic to G. Therefore ec(G) = n.

3. ‘r-node’ fault tolerance.

The idea of node fault tolerance has been extended to study fault tol-
erance when r nodes are removed. Starting with the graph G on n nodes
we augment it by adding r nodes wj,...,w, and extra edges to form an
augmented graph G*. We say that the system is r-node fault tolerant if,
after removing any r nodes from G*, the resulting graph contains a graph
isomorphic to G. We denote by ec(G; r) the minimum number of edges we
must include so that G* is r—node fault tolerant.

We obtain an upper bound for ec(G : r) by observing that we can always
obtain a subgraph isomorphic to G by connecting each of the n nodes of G to
each of wy,...,w, and constructing the complete graph K, on wy,..., w,.
Hence

ec(G:r) < rn+r(r—1)/2. (6)

Further, this bound is attained by the complete graph K,.

Similarly, let dy,...,d, be the node degree sequence of G, ordered so
that dy > d2 > ... > d,. Removing the r nodes of degrees dy,...,d, from
G removes at least

di+de+...+dp —r(r-1)/2
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edges from G, since at most r(r — 1)/2 of the edges have both ends in the
set of r nodes being removed. Thus

ec(Gir) >di+de+...+d. —r(r—1)/2.
The corresponding formula for G is
ec(Gir) 2 (n—1-dp)+(n—1—dy_1)+...+(n=1—dy_;)—r(r—1)/2
=rn—r(r+1)/2— (dn-r +...+d3).

Hence
ec(G:r)+ec(Gir)>r(n—r)+(di+...+dr) = (dner+...+ds). (7)
It is now straightforward to obtain a Nordhaus - Gaddum theorem for
ec(G;r).
Theorem 2. For all graphs G,
r(n—r) < ec(G: 1) +ec(Gir) < 2rn +r(r —1) (8)
and

0 < ec(G;r).ec(G;r) < (rn +r(r — 1)/2)2 )]

The upper bounds follow from (6). The additive lower bound follows
from (7) whilst the multiplicative lower bound is trivial (and attained by
K,).

Suppose now that r is fixed and we let n = co. Since K, attains the
upper bound in (6) the additive lower bound is asymptotically the best
possible, specifically

ran+r(r—1)/2 < ec(K,) + ec(K,).

In order to see that the upper bounds are also asymptotically best possible
we need to consider regular graphs in more detail.

4. Regular graphs.
We begin by extending Lemma 1 to the more general case.

Lemma 2. Let G be a graph regular of degree d > 0. Then
ec(G:r) 2 ra. : (10)
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Proof. We may suppose that ec(G) < rn, so there is a node z of G
which is not adjacent to each of the additional node wy,...,w,. Ifd > r
we can choose r neighbours y,...,yr of z, and remove y,...,y, from G.
If d < r we remove the neighbours yi,...,y4 of z from G and r — d of the
added nodes w;, choosing nodes that are neighbours of z where possible.
In the resulting subgraph z has degree at most d — 1, so we cannot obtain
a subgraph isomorphic to G. Therefore ec(G) > rn.

It is now easy to see that the upper bounds in Theorem 2 are asymp-
totically best possible, that is for fixed r and letting n — oo. For a graph
G regular of degree d > r we have

ec(G) + ec(G) > 2rn and ec(G) + ec(G) > (rn)?,

provided that neither G nor G is K,,. We can also sharpen Theorem 2 for
regular graphs, the improved lower bounds follow easily from Lemma 2.

Theorem 3. Let G be regular of degree d where 0 < d < n—1. Then

2rn < ec(G: 1) + ec(G;r) < 2rn+r(r—1) (11)
and
(rn)2 < ec(G;r).ec(Gir) < (rn+r(r - 1)/2)2. (12)
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