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Abstract

We consider an inner product of a special type in the
space of n—tuples over a finite field F; of characteris-
tic p. We prove that there is a very close relationship
between the self-dual g—ary additive codes under this
inner product and the self-dual p—ary codes under the
usual dot product. We prove the MacWilliams identi-
ties for complete weight enumerators of g—ary additive
codes with respect to the new inner product. We define
a two-tuple weight enumerator of a binary self-dual code
and prove that it is invariant of a group of order 384. We
compute the Molien series of this group and find a good
polynomial basis for the ring of its invariants.

1 MacWilliams identities for complete
weight enumerators of additive codes

We use the standard notations of coding theory [2].
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Let F; be a field of ¢ = p™ elements, p a prime. Any additive
subgroup C of F7 is called additive code over Fy. If C is an
additive code over Fj then C is a linear space over F,. We call
dimpg, C' dimension of the additive code C and refer to C as to
an [n, k] additive code over F,.

Let T'r : F; — F, be the trace function

Tr(z)=z+z°+2° +--+2° .

We define an inner product in F7' by

n
(u,v) =Y Tr(uiv;) = Tr(u.v) (1)
i=1
where u = (u1,ug,...,u%n), v = (v1,2,...,V,). Compare with
[4] where additive codes over GF(4) that are self- orthogonal
under an Hermitian type inner product are considered. It is
clear that if C' is an [n, k] additive code over F; then the dual
code under (1) , C*, is an [n, mn — k] additive code.

Let ¢ = cos 2™ + isin 2" be a complex p-th root of unity.
For any « in F, define x(a) = ¢Tr®). Then x is a nontrivial
additive character of Fy. For given vectors u and v in F}' we
define xu(v) = x(u.v) = ¢, It follows that x, is an additive
character of F7'. Let K be a commutative ring and f : F}' —» K

be a map. Define f(u) = Loerp Xu(v)f(v).

Lemma 1 If C'is an additive code over F? then Lyecr f(v) =
101 Zuec f(u) with respect to the inner product (1),

Proof. We have EuGC f(C) = ZuEC ZvEF; Xu(’l))f('U) = ZvGF;‘ f('U)
Yuec Xu(v) = Zung f(0) Tuec ¢ w If v € C* then (u,v) =0
and Luec (™™ =|C].

Let v not be in C+. Hence there exists v € C such that
{(u',v) # 0. Denote C» = {u € C: (u,v)=4,9=0,1,2,...,p—
1}. Hence C© is an additive subgroup of C and fori = 1,2,...,p—
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1 O is a coset of C(. Therefore T,ec (™" = [CO|(1 + ¢ +
¢?2+...+¢P1) = 0. Hence Tyec f(u) = |C| Tyecr f(v). The
lemma is proved.

Let Fy = {wo, w1, . ..,wy-1}. For a vector u € Fy denote s;(u)
the number of coordinates of u equal to w;, 2 =0,1,2,...,g— 1.
The polynomial

We(zo, 21, 2, - - - zq—l) — Z zgo(u)zi‘fl(u) . z;«l—lx(u)
ue€C

in indeterminates 2y, 21, . . . , 24—1 is called a complete weight enu-
merator of the additive code C.

From the above lemma we obtain immediately the MacWilliams
identities for complete weight enumerators of dual additive codes.

Theorem 1 Let C be an additive code over F,. Then with re-
spect to the inner product (1) we have

1 g—1 g-1
Wer (20,21, - - -y 2g-1) = l—C—ch(Z x(wows)zi, - . ., O x(wg—1wi) ).

1=0 =0

The proof is similar to the proof of the corresponding theorem
for linear codes, see [2] page 143.

Example. Let ¢ = 4. Hence p = 2, { = —1, and x(a) =
(=1)*+® Let Fy = {0,w,w?,1} where w+ w? = 1. Then we
have x(0) = x(1) = 1, x(w) = x(w?) = -1, and

VVC?-L (20; 21, 22, 23) =

1
—Wc(Zo+Z1+Z2+23, 20—21+22—23, 2+21—22—23,20—2) —z2+z3).

ICl

2 Binary images of additive codes
A basis 71,72, . .., Ym of Fy, ¢ = p™, is called self-complementary

([2] page 117) if Tr(vy;) = O-for ¢ # j and Tr(yiy;) = 1 for
i= .
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Example. Let Fy = {0,w,w?, 1} where w + w? = 1. Then
w,w? is a self-complementary basis of Fy. A self- complementary
basis of Fie is given in [3]. See also [1].

A p-ary image of a vector u = (u1,us,...,us) € F} with
respect to a given basis of F; over F, is the mn-tuple obtained
by replacinig each u; by the m—tuple of its coordinates. The
next lemma is straightforward.

Lemma 2 The inner product (1) of two vectors over Fy is equal
to the usual dot product of their p—ary images with respect to a
self-complementary basis of Fy.

The next theorem is an immediate generalization of a result
in [3].

Theorem 2 Let 1,72, -.,Ym be a self-complementary basis of
Fym. Any linear code, C, over F, of length a multiple of m is a
p—ary image of some additive code, C, over Fyn. Moreover C
is self-orthogonal (self-dual) under the usual dot product if and
only if C is self-orthogonal (self-dual) under the inner product

(1).

3 Two-tuples weight enumerators of
doubly-even self-dual codes

Let Fy = {0,w,w?,1} with w+w? = 1. We fix a trace orthogonal
basis w,w? of Fy. With respect to this basis the binary images of
0,w,w?, and 1 are 00,01, 10, and 11, respectively. For each vec-
tor u = (u1,us,...,us) in a binary code C of even block length
n denote @ = (a1, . . -, 0n/2) Where a; = Uw? + UnjppW, . . .,
Qnj2 = Unjaw® + unw. Then the set C = {t : v e C}isan
additive code over Fy and C is its binary image.

We call the complete weight enumerator, Wa(2o, 21, 22, 23),
of € a two-tuples weight enumerator of C. From theorem 1 and
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theorem 2 we know that if C is self-dual then
Wealzo, 21, 22, 23) =

2_"/2W(;(20+2’1+22+23, 20—21+22—23, Zo+21— 23— 23, Zo— 21— 22+ 23).

As Wg(20, 21, 22, 23) is a homogeneous polynomial of degree n/2
the above equality shows that the two-tuples weight enumerator
of C is invariant under the linear transform defined by the matrix

1 1 1 1

111 -1 1 =1
A"§11—1—1
1 =1 -1 1

In the following we will assume that C is a doubly-even self-
dual code containing the vector 1*/20"/2. The code C is invari-
ant under addition by this vector. Hence C is invariant un-
der the transformation 0 — w?,w — 1,w? — 0,1 — w. Thus
We (20, 21, 22, 23) is invariant under the linear transform zo — 22,
21 — 23, Zo — 2o, 23 — 23 which has as its matrix

B, =

[l == I o B en]

o OO
SO O
o O = O

It is clear that 1* € C. Therefore 0"/21"/2 is in C. We ob-
tain as above that Ws(z, 21, 22, 23) is invariant under the linear
transform defined by the matrix

B, =

0O O O

1 0
0 0
0 1
0 0

O O = O

Obviously We(x?, zy, zy,y*) = We(z,y) (the usual weight enu-
merator of C). If 221! 25% 2% is a monomial of Wy (2o, 21, 22, 23)
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then z?°(zy)!1 (zy)i2y?s = gotutizgfrtie+2is mygt be a mono-
mial in We(z, ). Since C is doubly-even we obtain 3, +i2+2i3 =
0(mod4). Therefore W (2o, 21, 22, 23) is invariant under a linear
transform with a matrix

1 00 0
0 ¢ 0 O
P=looi o |
000 -1
where i2 = —1. Thus we have obtained the following lemma.

Lemma 3 Let C be a double-even self-dual code containing the
vector 1720™2 and C be the corresponding additive code over
Fy. Then Wg(20, 21, 22, 23) is invariant of a group G generated
by the matrices A, By, Bs, and D

Using GAP and Mathematica we determined that the order of
G is 384 and its Molien series ([2], p.600) is

1 1 L EXE NS
2N =151 L G T3~ T M= )1 = V)

We write $¢(A) in the form

1+ )8 LAI8 1+ X8
(1= 2)2(1 = A8)(1 — A12) (1= X9)2(1 — A8)(1 — A12)

De(N) =

and use it to find a good polynomial basis of the ring of invariants
of G.

Leta=2+23,b=2—23,c=2+2, and d = 21 — 2.
The transformations defined by the matrices A, By, Bz, and D
act on a, b, ¢, and d, as follows:

A a—a b—oc c—b - d— —d;
B, a—a b— —b c—c d— —d;
B, a—C b—d c—a d— b

D a—b b—a c—ic d— id.
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It can be checked easily that the polynomials
= (a® - b — 2+ d?)?,

Og = —azb2 — a%c® + a®d? + b*? - b d? - d2,
( 2b2 2 2b2d2 _ a2c2d2 +b2c2d2)2
04 = a2b202d2

are invariants of G. As o1, 02, 03, and o4 are algebraically in-
dependent, 03, g9, 02, and o4 are also algebraically independent
with degrees 4, 4, 12, and 8, respectively. ‘

The polynomial gg = 103 = (a® — b — & + d*)(a®*? —

a*b?d? - a*Ad? +b’c2d?) is an inva.riant of degree 8 which is not in
the polynom1al ring C(0%, 02, 0%,04) but (0103)% = (01)%(03)? €
C(0?,09,02,0,4) where C is the complex number field.

The polynomial g6 = (a®+b%)(a? +c?) (%> — &) (a? — d2) (b +
d?)(c2+d?)abcd is an invariant of G of degree 16. Each monomial
of gi6 contains odd powers of a, b, ¢, and d while each mono-
mial of any polynomial in ¢?, g2, 02, 04, and gg contains even
powers of a, b, c, and d. Hence gy is not in C(a'f’,og,ag,m)@
QSC(01;021 03) 0'4) But 916 € 0(01,02, 037 04)@ QSC(01202) 03) 04)
since q16 = [—4010204+ 160204 + 010203 40302~ 6020304+
144040204 — 2T0%03+ 144020203 — 1280303 + 25605— 2703 +
¢3(18020204— 800i04 — 40203+ 18020% — 19202)]04. Thus we
have obtained the following theorem.

Theorem 3 Any self-dual doubly-even code of length n which
contains a vector of weight n/2 has a two tuples weight enumem-
tor from C(a3, 0'2, 03,04)® g8C(0%, 02,03, 04)® q16(C(0?, 02»‘73: 04)
©gsC (03, 02, 93, 04)).
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