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Abstract

The domination number v(G)) and the irredundance number ir(G)
of a graph G have been considered by many authors. It is well known
that #r(G) < ¥(G) holds for all graphs G. In this paper we determine
all pairs of connected graphs (X, Y) such that every graph G contain-
ing neither X nor Y as an induced subgraph satisfies ir(G) = v(G).

1 Introduction

The graphs G = (V(G) = V, E(G)) we consider here are simple and finite
of order |V(G)| = n(G). The degree, neighborhood, closed neighborhood
of a vertex = of G are respectively denoted by dg(z), Ng(z), Ng[z] (where
Nglz] = Ng(z) U {z}), or simply by d(z), N(z), N[z] if there is no am-
biguity. If X C V, then N(X) = U N(z), N[X] = N(X)U X and
TeX

N2[X] = N[N[X]] (N2[X] is the set of vertices of G at distance at most 2
from X). We denote by G[X] the subgraph induced by X in G and by Yx
(respectively Zx) the sets of nonisolated (respectively isolated) vertices of
G[X]. We say that X is an independent set is Yx = 0. If H is an induced
subgraph of G, we say that H < G.

The X-private neighborhood of a vertex z of X is the set N[z]\N[X\{z}]
and is denoted pn(z,X). Its elements are the X-private neighbors of z.
The X-private neighbors of z which are not contained in X are called
external and we denote by Bx (z)=epn(x, X) the set of external X-private
neighbors of z. We observe that the X-private neighborhood of z is Bx (z)
if z € Yx and {¢} U Bx(z) if z € Zx. We denote Bx = | J Bx(2),

T€X
Qx = N(X)\(XUBx), Ux =V \(XUBx UQx), A vertex z of a set
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X of vertices in redundant in X if pn(z, X) = 0, irredundant otherwise.
The set X is irredundant in G if all its vertices are irredundant. The
irredundant set X is maximal if X U{v} is redundant for all v € V\ X. The
characterization of maximal irredundant sets was explicitely expressed in
[1): the irredundant set X of G is maximal if and only if for each v € N[Ux]
there exists ¢ € X such that pn(z, X) C N[v]. In this case we say that v
annihilates . The set of the vertices of Ux annihilating a vertex z € Yx
is denoted by Ux(z). The minimum cardinality of a maximal irredundant
set is denoted by ir(G). The set X is dominating in G if every vertex of
V \ X has at least one vertex in X, that is if N[X] = V. The minimum
cardinality of a dominating set is denoted ¥(G). It is well known that
since every minimal dominating set of G is a maximal irredundant set,
ir(G) < 9(G). We say that a graph G is irredundance perfect if for every
induced subgraph H of G we have ir(H) = y(H) and we say that a graph is
(Hy, Ha, ..., Hg)-free if G contains no induced subgraph isomorphic to any
H; , i=1,2,...,k. As the property (Hi, Hz,..., Hy)-free is hereditary
among the induced subgraphs of a graph G, to prove that the property
for G to be (Hy, Ha, ..., Hi)-free implies its irredundance perfection, it is
sufficient to prove that this property implies ir(G) = v(G).

For a maximal irredundant set X, we recall the following well known
results concerning each vertex u of Ux:
- R;: there exists at least one vertex in Yx which is annihilated by u, that
isUx = |J Ux(=).

z€Yx

- R,: for every vertex v out of X, which is adjacent to no vertices of Zx

and which is adjacent to u, there exists at least one vertex of Yx which is
annihilated by v.

D, D2 w

Figure 1:

An induced path of length &, which contains exactly k edges and k + 1
vertices, is denoted by Px4y. A tripode T; ;x is constructed by connect-
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ing one endvertex of three induced paths which contain respectively i, j, k
vertices to a new vertex called the root. Thus T} ;x contains i +j + k + 1
vertices. We consider also the small graphs of Figure 1.

In [2], Faudree, Favaron and Li, studied the relation between a graph G
being (Hy, Hs, ..., Hi)-free and equalities between two of the six parame-
ters concerning domination. In this article, we characterize the pairs (X,Y)
for which the property G is (X,Y)-free implies that ir(G) = v(G). Indeed,
we prove the following:

Theorem 1.1 (See Figure 1)
Let (X,Y) be a pair of connected graphs and let ny be a given positive
integer.
Then, G is (X,Y)-free implies that G is irredundance perfect for any con-
nected graph G of order at least no, if and only if, one of the following
statements holds, even if it means exchanging X and Y:

e X <X Ps;,

e X<PsandY < W',

e X XDzzandY <XT1,,,

o X j D2 and Y '_< T1,1,3.

In Section 2, we consider some facts that will be useful in Sections
3 and 4, where we prove respectively that (Dj 2,7}, 2)-free graphs and
(D2,Th,1,3)-free graphs are irredundance perfect. Conversely, in Section 5,
we define a family of graphs that are not irredundance perfect that will be
used in the proof of Theorem 1.1. In Section 6, results of [2], [3], and of the
preceding sections will be used in order to prove Theorem 1.1.

2 Preliminaries

In this section, we consider G to be any (D3 ,Ti, 3)-free graph and X
any maximal irredundant set of G. Since a (D, 2,7} 1,2)-free graph and a
(D2,Th,1,3)-free graph are also a (Dg,2, T1,1,3)-free graph, we can apply the
following results to Sections 3 and 4.

Lemma 2.1 If y; and y, are two vertices of Yx which are not in the
same connected component of Yx, if yi and y, are respective X -private
neighbors of y1 and y3, and if y| is adjacent to some vertex u; of Ux, then
Y} and y, are not adjacent.

Proof. Suppose on the contrary that yjys € E. For i = 1,2 let z;
be a neighbor of y; in X. Then G(z2, y2, ¥5, ¥}, u1, 41] # T1,1,3 implies that
uyy € E. Hence G[z1,y1, ¥}, 41, ¥5, Y2, 2] = Dj 2, which gives a contradic-
tion. o
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Definition 2.2 In Sections 8 and 4, we will define a set of special com-
ponents of Yx such that every component C which is not special satisfies
the following Property P: Vy € C the set Ux(y) is a cliqgue. We denote
by A the set of all the vertices of special components.

We consider S a mazimal independent set of the subgraph of G induced
by the set {u € Ux | u does not annihilate some vertex of A} so that S

dominates Ux \ U Ux(y). Then, for every u in S we choose one verter

yeA
y(u) such that u € Ux (y(u)). That defines a function y from S to Yx \ A,
and we denote by y(S) the set {y(u) | u € S}.

Proposition 2.3 Every function y as in Definition 2.2 is injective, and
therefore we have |y(S)| = |S].

Proof. Suppose to the contrary that the function y is not injective.
Then, there exist u and v, two distinct vertices of the independent set
S, such that y(u) = y(v) = y. Note that since by definition any vertex
y of y(S) is not in A, the set Ux(y) is a clique. We obtain a contradic-
tion since both u and v of the independent set S belong to such a Ux (y). O

Definition 2.4 We say that a subset {y(u1),y(u2)} of y(S) induces

the structure T if for i = 1,2 there erists y; € Bx(y(ui)) which is not
adjacent to u; where j # 1.
Recall that ujus is not an edge since both uy and u, belong to the inde-
pendent set S and that u; annihilates y(u;) for i = 1,2. Note that the
extra edges of G[y(u1), ¥1, u1, y(u2), ¥5, u2] are possibly among y(u;)y(usz)
and Y5

Proposition 2.5
Every subset {y(u1), y(u2)} of y(S) induces the structure T.

Proof. Otherwise, without loss of generality we can say that u; domi-
nates Bx (y(u1)). That is both u; and uj are located in the clique Ux (y(u1)).
Thus, we obtain a contradiction since both u; and u; belong to the inde-
pendent set S. 0

3 The class (D32,T7112)

In this section we consider a (D2,2,T1,1,2)-free graph G and a maximal
irredundant set X. The aim is to prove that G is irredundance perfect.

Proposition 3.1 Vy € Yx, Ux(y) is a clique.
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Proof. Suppose on the contrary that there exist u and v two nonadja-
cent vertices of Ux (y) where y € Yx. Let 3 be any vertex in Bx(y), and
let = be any neighbor of y in X. Then G[z,y,y/, u,v] ~ T},1,2, which gives
a contradiction. o

Definition 3.2 A connected component C of Yx is said to be a special
component

o of type 1 if C is reduced to {y1,y2} and fori=1,2

there exists (b;, u;) € Bx (yi) x Ux () such that u; is adjacent to neither
u; nor b; where j #i;

and every vertex of Bx (yi) annihilates either y(u;) or y(uz).

o of type 2 if there exists y € C such that every b € Bx(y) dominates
UBx(z) uUx(2)].

z€C
Note that by Proposition 3.1, every component C which not special satisfies
Property P.

Proposition 3.3 The set y(S) is independent.

Proof. Otherwise there exist two vertices y(u;) and y(u2) in y(S) such
that y(u;)y(uz2) is not an edge. Observe that by Proposition 2.5, the subset
{y(u1), y(u2)} of y(S) induces the structure T. Moreover we have yjy, € E
since otherwise Gluy, ¥}, ¥5, u2,y(u1)] = T1,,2. Let C be the connected
component of Yx including both y(u;) and y(u2). We will show that C is
a special component of type 1, which gives a contradiction.

Claim 1 The component C is reduced to {y(u1), y(uz)}-

Otherwise let £ be another vertex of C. Without loss of generality we can
suppose that zy(u;) is an edge. Then Gluy, ¥}, y(u1),z,y(u2)] % Ti1,2
implies that zy(u2) is an edge. Therefore Glu,, ¥}, y(u1), =, y(uz), ¥, uz] ~
Dy 3, a contradiction.

Claim 2 Every vertex of Bx (y(u;)) annihilates either y(u;) or y(uz).
Let ¢t and w be two vertices of Bx (y(u1)). Since t is adjacent to the vertex
uy of Ux, by Result R», ¢t annihilates some vertex z of Yx. By Lemma 2.1,
z lies in the component C, and by Claim 1, z is either y(u;) or y(u2).

By Claims 1,2 and by‘the structure T, C is a special component of type 1,
where for i = 1,2 y; = y(u;) and b; = yi. ]

Theorem 3.4 Every (D3 2,T,1,2)-free graph is irredundance perfect.
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Proof.
Procedure: Let X be a maximal irredundant set of a (Da2, T} 1,2)-free
graph which is not dominating (otherwise ir = v). We will construct D,
a dominating set with the same cardinality as X. Then, take X such that
|X| = ir. Hence |D| = ir < . But by definition of v, |D| > v. Thus,
|D| = v and therefore ir = .

Construction of D: First we put Zx U[Yx \ (AUy(S))]US in D. Moreover
if C is a special component

of type 1 we put b; and b in D,

of type 2 we put b and C\ {y} in D.

Assume that there is a vertex ¢ undominated by D. By the construction of
D, we can say that t is neither in X since y(S) is an independent set included
in Yx (see Proposition 3.3) and therefore is dominated by at least one vertex

of Yx \ (AU y(S)), nor in Bx UUx since S dominates Ux \ U Ux (y) (for

yeA
special components it is clear by the definition of each type). Thust € Qx.

Claim 1 The vertex ¢ cannot dominate a special component of type 1.
We consider a special component C of type 1. First note that b1, ¢ E,
for otherwise G[ug, b2, by, u1, 1] ~ T1,1,2. Suppose on the contrary that ¢
dominates the component C. Since both the vertices b; and b, are in D,
Glu1, b1, v1,t, y2,b2,u2] % Doz implies that ¢ is adjacent to u; or to us.
Suppose for instance that ¢ is adjacent to u;. Then ¢ is not adjacent to us
for otherwise G[bs, ua, ¢, y1, u1] ~ T1,1,2. By Result Ry, since ¢ is adjacent to
the vertex u; of Ux, the vertex ¢ annihilates some vertex z of Yx. Moreover
since ¢ is undominated by D, the vertex z is in Yx \ C. Then tz ¢ F, since
otherwise G[by,y2,t,z,u1] =~ Ty,1,2. If ' € Bx(z), then z'us € E, for
otherwise by Lemma 2.1 we have G[z, 2’,1, y1, y2, b2, 2] = D3 2. We obtain
a contradiction, since then Gly1,t,z',uz,z) ~ T 1 2.

Claim 2 The vertex ¢ is adjacent to only one component C; of Yx.
Note that if ¢ is adjacent to l; in the component C;, then by Claim 1 if
C; is special and since y(S) is an independent set otherwise, there exists a
neighbor k; of I; located in the component C; such that k; is not adjacent
to t. Then suppose that ¢ is adjacent to two components C; and C;. Let
l{ be any vertex in Bx(l;). Then Glks,12,t,11, k1,1]] % T1,1,2 implies that
it € E. Hence t dominates Bx (I;). Therefore by the construction of D and
since t is undominated by D, we assert that C; is not a special component.
Let y be l;, and let b be any vertex in Bx(y). Recall that ¢ dominates
Bx (y). First we prove that every vertex of C; \ {y} is adjacent to y. Indeed,
otherwise there exists an induced path yzz in C,. Note that tz & E since
¥(S) is an independent set and therefore £ € D. Observe that tz ¢ E
for otherwise Glkz,l2,t,y,2] ~ T1,1,2. Then Glks,l2,t,b,y,2,2] = D32, a
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contradiction.

In the following let ¢ € C;1\{y} and 2’ € Bx(z). Recall that z is adjacent
to y and note that since z & y(S) (y(S) is an independent set) we have
tz ¢ E. Then G[z',z,y,b,t,12, k2] #£ D2,z implies that bz’ € E. Moreover,
if ¥/ is any vertex of Bx(y) \ {b}, G[b,¥/,t,12,k3) # Ti,,2 implies that
by € E (recall that ty’ € E since t dominates Bx (y)). Thus b dominates

U Bx (x). If furthermore z satisfies Ux # 0, let u be any vertex in Ux (z).
T€C,

Then G[u,2’,b,y,t,l2,ks] % Dj 2 implies that ub € E, and therefore b
dominates U Ux(z).

Z‘Ec‘
Thus C; is a special component of type 2, which gives a contradiction.

Sincet € Qx, the vertex t is adjacent to at least two vertices of the com-
ponent C;. By Claim 1, clearly C; is not a special component. Therefore
the vertex ¢ is adjacent to at least two vertices y(u;) and y(uz) of C; Ny(S).
Note that for i = 1,2 we have fu; & E since u; € D. Let wywy---w;
where k& > 1 be a path in C; of minimal length linking y(u;) to y(uz).
Without loss of generality we can suppose that Vi € {1,2,---,k} tw; € E.
Note that by Proposition 2.5, the subset {y(u;), y(u2)} of y(S) induces the
structure T. Then Gluy, ¥}, y(u1), w1,t] % T1,1,2 implies that ty; € E, and
that yjy5 € E for otherwise Glu1, ¥}, 5, u2, y(uz2)] ~ T1,1,2. By symmetry
we also have ty, € E. If k > 2 then Glua, ¥5,t, ¥, y(u1), w1, w2] =~ Da s,
a contradiction. Hence £ = 1. Let w = w; and w' € Bx(w). Then
Glyy, y(u1), w, w', y(uz)] # T1,1,2 implies that yjw’ € E, and by symmetry,
yow' € E. Then Gluy, y(u1),¥], w', ¥5] # T1,1,2 implies that w'u; € E. We
obtain a contradiction since then G[u1,¥5, w',w,y(u1)] ~ T1,1,2. Thus ¢
cannot exist, D is a dominating set, and the theorem holds. ]

4 The class (DQ,T1,1,3)

In this section we consider a (D3, T1,1,3)-free graph G and a maximal irre-
dundant set X. The aim is to prove that G is irredundance perfect.

Definition 4.1 A connected component C of Yx is said to be a special
component
o of type 1 if there exists y € C such that Ux (y) is not a clique.

o of type 2 if C is an induced path y1zy, of length 2, and if for i = 1,2
there exists (b;, u;) € Bx(yi) x Ux(y:) such that byb, € E, uyus € E, and
usb; € E when j # i.
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o of type 3 if for i = 1,2 there exist z; € C and (pi, w;) € Bx(z;) x Ux (;)
such that 1z, € E, wyws € E, and wip; € E when j # i.

Note that every component C which is not special (of type 1) satisfies Prop-
erty P.

Proposition 4.2 If C is a special component
e of type 1, then C is a star centered at y.

o of type 3 such that |C| > 3, then every vertex of C\ {z1,z2} is adjacent
to exactly one vertex among z, and z2, and moreover p1p; € E.

Proof. Let C be a special component of type 1, let u and v be two
nonadjacent vertices of Ux(y), and let 3 be any vertex in Bx(y). First,
there is no induced path zzy of length 2 where z and x are in C, for otherwise
Glz,z,y,¥,u,v] ~ T1,1,3. Thus every vertex of C \ {y} is adjacent to y.
Now, suppose to the contrary that there exist two adjacent vertices  and
z of C\ {y}. Then Glz,z,y,y,u] ~ D, a contradiction. Thus C is a star
centered at y.

Let C be a special component of type 3 such that |C| > 3. First, note that
there is no vertex y of C\ {z1, z2} which is adjacent to both z, and zj, for
otherwise Gly, 1, 2, p2, w2] =~ D,. Since |C| > 3, without loss of generality,
we can suppose that there exists ¢y € C\{z1, z2} which is adjacent to =, but
not to z2. Then pyp; € E, for otherwise G[wz, p2, 22,1, ¥1,71) =~ T1,1,3.
Finaly, there is no induced path z,y 2, of length 2 where z; and y; are
in C\ {z1, z2}, for otherwise G[z1, y1, 21, p1, P2, w1] ~ T1,1,3. By symmetry
the result holds. o

Proposition 4.3
1. The set y(S) is independent.
2. Every subset {y(u1),y(u2)} of y(S), such that y(u,) and y(uz2) are in the
same connected component of Yx, induces the structure T with y iy, € E.

Proof.

1. Otherwise there exist y(u;) and y(u2) in y(S) such that y(u,)y(u2) € E.
Note that by Proposition 2.5, the subset {y(u1), y(uz2)} of ¥(S) induces the
structure T. Then the connected component of Yx including both y(u;)
and y(uz) is a special component of type 3, which gives a contradiction.

2. By Proposition 2.5, the subset {y(u1),y(u2)} of y(S) induces the struc-
ture T. Suppose to the contrary that {3, € E. By 1. we have y(u;)y(u2) ¢
E. Let z be a neighbor of y(u;) in X. Then zy(uz) € E for otherwise
Glz, y(u1), ¥1, ¥, y(u2), u2] ~ T1,1,3. We will show that the connected com-
ponent C including both y(u;) and y(uz) is reduced to {y(u1),z,y(u2)} so



that C is a special component of type 2, which gives a contradiction. Indeed
suppose otherwise that z is a vertex of C\ {y(u1), z, y(u2)}. Note that z can-
not be adjacent to both z and y(u;) since otherwise G|z, z, y(u1), ¥1, u1] ~
D,. By symmetry, without loss of generality, we can suppose that, either z
is adjacent to = but neither to y(u;) nor to y(uz), or z is adjacent to y(u;)
but not to z. In the first case, Glu1, ¥}, ¥(v1), z, z, y(u2)] ~ T1,1,3 gives a
contradiction. In the second case, Gu2, ¥5, ¥}, ¥(v1), z,z] ~ Ti,1,3 gives a
contradiction. ]

Definition 4.4
Let C be a connected component of Yx and let F be a family {(yi, bi, ui) }ier
where y; € C such that Ux(yi) # 0, b; € Bx(vi), and u; € Ux(yi). We
suppose henceforth that every vertex  of C* = C\ {yi }ier is adjacent to at
least one of the y;’s. We choose one of them, say y;_, which is called the
mate of z. Then we choose one vertez ' of Bx(z) such that if possible

1. 2’ is not adjacent to the set Ux

2. ' is not adjacent to b;_.

The set C' = {b;}ier U {z'}zec+ is a collection of X -private neighbors of
vertices of C, and is said to be a private sample of C induced by the family
F.

Proposition 4.5
Let C' be a private sample of C induced by the family {(y;, b;, ui) }ier. Then:
1. The X-private neighborhood of vertices of C is dominated by the set C'.
2. Ift € Qx s adjacent to at least one vertex of C and to no vertices of
C’, then t cannot be adjacent to the set Ux.

Proof.

1. Let z be a vertex in € and z’ be the unique vertex of Bx(z) which is
in C’. Suppose to the contrary that there exists b € Bx(z) which is not
dominated by C’. Then b is not adjacent to Uy, for otherwise, by Result
R the vertex b annihilates some vertex s of Yx, and by Lemma 2.1 the
vertex s is in C, which gives a contradiction with the hypothesis b is not
dominated by C’. Then by restriction 1 completed in order to make the
choice of z’, we assert that z’ is not adjacent to Ux and therefore z is not
an y; for some i € I. Let y;_ be the mate of . Then b is adjacent neither
to =’ nor to b;_, since both z’ and b;_ belong to C’. Therefore by restriction
2 completed in order to make the choice of z’, we assert that 2'b; ¢ E.
We obtain a contradiction since G[u;,, bi,, ¥i_, z,2’,8] ~ T1 13

2. Suppose to the contrary that ¢ is adjacent to Ux. By Result R,, the
vertex ¢ annihilates some vertex s in Yx. Since ¢ is adjacent to no vertices
of C’, the vertex s is located in a different component from C. Let s’ be any
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vertex in Bx (s), y be any neighbor of z in C, and 2’ be the unique vertex of
Bx (z) which is in C'. Note that by Lemma 2.1 we have s'z’ € E, and since
z' € (' we have tz' ¢ E. Then G[s',s,t,z,2] £ D, implies that ts ¢ E,
and Gly,z,t,s,s] #£ D, implies that ty ¢ E. We obtain a contradiction
since Gfs,s',t,z,2',y] = T1,1,3. o

Theorem 4.6 Every (D2,T\,1,3)-free graph is irredundance perfect.

Proof.
Procedure: This procedure is similar to Theorem 3.4.

Construction of D: First we put Zx U[Yx \(AUy(S))]JUS in D. Moreover
if C is a special component

of type 1 we put in D a private sample C’ of C induced by the family
{(y, b, u)} where (b, u) is any couple in Bx (y) x Ux(y).

of type 2 we put in D a private sample C’ of C induced by the family
{(wi) b5, ui) iz 2

of type 3 we put in D a private sample C’ of C induced by the family

{(zi, pi, wi)}iz1,2-

Assume that there is a vertex ¢ undominated by D. By construction of D,
we can say that ¢ is not in X since y(S) is an independent set included in
Yx (see Proposition 4.3;) and therefore is dominated by at least one vertex
of Yx \ (AU y(S)). The vertex t is not in Bx U Ux since S dominates

Ux \ U Ux (y) (for special components it is clear by the definition of each

yEA
. type and by Proposition 4.5;). Thus ¢t € Qx.

Claim 1 The vertex t is adjacent to only one connected component C; of
Yx.

If t is adjacent to the vertex l; in the connected component C;, let k; be
any neighbor of I; in C;, and let I} be the unique vertex of Bx (l;) which is
in C if C; is special, and any vertex of Bx (I;) otherwise. Suppose that ¢
is adjacent to two components C; and C;. Either C; is special or not. In
the first case, since I} € D we have tl{ ¢ E. Then tk, ¢ E for otherwise
Glko,l2,t,11,1]] ~ D, and tky & E for otherwise G[ky,!1,t,1s,ks] = Do. In
the second case, since y(S) is an independent set and by the construction
of D, we have tk; & E. Then tk, ¢ E for otherwise G[kz,l2,t,11, k1] = Do,
and tl] ¢ E for otherwise G[I{,l1,t,13, k2] ~ D,. Therefore in either cases
we obtain a contradiction since Glko,l2,t,11, k1,1] ~ T1,1,3.

For the following claims, note that since ¢ € Qx, we have N(t)NC, > 2.
Remark also that by the construction of D and by Proposition 4.5, if C; is
a special component, then ¢ cannot be adjacent to the set Ux (see Claims
2, 3 and 4).
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Claim 2 The component C; is not a special component of type 1.
Suppose the contrary. Let u and v be two nonadjacent vertices of Bx(y),
and let 3 be the unique vertex of Bx(y) which is in C;. Note that since
Y € D we have ty ¢ E, and recall that by Proposition 4.2, C; is a star
centered at y. Since N(t) N C; > 2, we can suppose that there exists a
neighbor z of y in C; which is adjacent to t. We assert that ¢ is not adjacent
to y for otherwise G[t,z,y,y,u] ~ Dz. Then G[t,z,y,¥/,u,v) > Th13 a
contradiction.

Claim 3 The component C; is not a special component of type 2.
Suppose the contrary. Recall that C is an induced path y;zy» of length 2.
Since N(t)NC; > 2, we can suppose that ¢ is adjacent to y;. Then, tz ¢ E
for otherwise G[t,z, y1, b1, u1] ~ D, (tby & E, because b; € D). We obtain
a contradiction since then G[uz, b2, b1,y1,%, 2] >~ T11 3.

Claim 4 The component C; is not a special component of type 3.

Suppose the contrary. Recall that every vertex of C; \ {z1,z2} is adja-
cent to exactly one vertex among z; and z,. Note that for i = 1,2,
we have tp; € E since p; € D and since t is undominated by D. Since
N(t) N C; > 2, we can suppose that either ¢ is adjacent to both z; and
T2, or without loss of generality we can suppose that there exists a neigh-
bor y; of z; in C; which is adjacent to . The first case cannot happen
for otherwise G[t,z2,21,p1,w1] =~ D2. In the second case, tz; ¢ E for
otherwise G[t,y1,z1,p1,w1] =~ D;. We obtain a contradiction since then

Glt,y1, 21, 91,2, w1) = T1,1,3.

Claim 5 The component C; must be special.

Suppose the contrary. Since t € Qx and by the definition of D, the vertex
t is adjacent to at least two vertices y(u1) and y(us2) of C;Ny(S). Note that
by Proposition 4.3, the subset {y(u1),y(u2)} of y(S) induces the structure
T with y(u1)y(uz) € E and yiy5 ¢ E. Moreover since u; and u; are in D,
they are not adjacent to ¢. We assert that ¢ is adjacent neither to y] nor to
v5. Indeed if for instance ty; € E then G[¥},y(w1),t, y(u2), ¥5] # D2 implies
that ty5 € E. Therefore Gy}, y(u1),t, ¥5, u2] ~ D2, which gives a contra-
diction. Let z be a neighbor of y(u1) in C:. By construction of D and since
y(S) is an independent set, we have tz € E. Then ty(us) € E for otherwise
Glvh, y(u2),t, y(v1),¥,, 2] =~ T1,1,3. Let &’ be any vertex in Bx(z). Note
that both G[ul:yllay("l)’ z,z’, y(uZ)] # T1,,,3 and G[ul’ yisxlyxxy(z“?)] #
D, imply that 2’ is adjacent to exactly one vertex among ¥} and u;. By
symmetry z’ is adjacent to exactly one vertex among y5 and up. If 2’ is
adjacent to ¥} and to v} then Gluy, ¥i, 2, v5, uz, y(u2)] ~ T 1,3 If 2’ is
adjacent to ¥ and to u, then G[ys, u2, ', 97, u1,y(u1)] =~ T1,1,3. Thus z’ is
adjacent to both u; and u; where 2’ is any vertex in Bx(z). Therefore u;
and u3 are two nonadjacent vertices of Ux (z) and C; is a special component
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of type 1, which gives a contradiction.

Thus, we obtain a contradiction since the component C; cannot exist. O

5 A family of graphs

Proposition 5.1
Let k be an integer such that k > 2 and Gy, be the graph of order 3k + 6 in
Figure 2.
Then we have ir(Gx) < ¥(Gk), and Ta 21 & G for every integerl > 1.

tl ‘ t2

m2

Rl RZ

where O is an independent set with k vertices

Figure 2: the family of graphs G

Proof. Note that Gy is such that Ry, Rz, S are all independent sets
with k vertices, for ¢ = 1, 2, the vertex {; dominates the set R;, the vertex
m; dominates the set S, and for every r; € R;, we have ryr; € E.

First we assert that ir(Gx) < 3. Indeed the set X = {zy,z2,m;}
is irredundant since the X-private neighborhoods of z;, z2, m; are re-
spectively {t,}, {t2}, S and therefore are nonempty. Now it is sufficient
to prove that X is maximal irredundant and we use the characterization
mentionned in the introduction. We have Ux = R; U Ry and therefore
N[R1UR;] = RiUR2U{t1,t2}. But, for i = 1,2, t; annihilates z; and any
r; € R; also annihilates z;. Hence the assertion holds.

On the other hand we have ¥(Gx) > 4. Indeed, we consider any dom-
inating set D and we will show that |D| > 4. Without loss of generality,
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since D must dominate R; U Ry, we can suppose that either |RyND| > 1 or
both ¢; and t5 are in D. In the first case, since D dominates R;, we must
have Ry C D, t; € D, or |Ra N D| > 1. In either cases we obtain that the
set [R1UR2U{t1}]N D contains at least two vertices and does not dominate
the set SU{m;,my}. In the second case, t; and tz of D does not dominate
the set S U {my,mz}. Thus, in both cases, since S U {m,, m2} does not
contain any dominating vertex, we have |D| > 4. Hence ir(Gk) < 7(Gk)-
Suppose that there exist an integer { (! > 1) and an induced subgraph
H of Gy isomorphic to T52;. Therefore H contains no induced cycles.
We denote by a the root of H, by b;c; for ¢ = 1,2 the two induced paths
isomorphic to P,, and by d the neighbor of a which is included in the in-
duced path isomorphic to P;. First note that two of by, bz,d cannot be
in the same independent set Ry, Ra or S, for otherwise, without loss of
generality we can suppose that one is by and the other, denoted by v, is
either b, or d, and then the graph Hl[a, b1, ¢;,] is an induced cycle, a con-
tradiction. Since dg,(a) = 3 and by symmetry, the root a is among the
vertices my, 1, t1. If the root is my, then {by,b2,d} = {z1, 22,5} where
s is any vertex of S. Note that for ¢ = 1,2 the vertex ¢; cannot be ma,
for otherwise the graph H[m;, 2, m2, %3] is an induced cycle. Hence we
can suppose that for i = 1,2 we have b; = z; and ¢; = ¢;. Then the graph
Hla, by, c1,c2,b2) is an induced cycle, a contradiction. If the root is z1, then
{b1,52,d} = {my,m2,1;}. Without loss of generality we can suppose that
b; = m; and therefore ¢, is z2 or any vertex of S. Then we obtain a con-
tradiction since H|[z;, my, c1, my) is an induced cycle. If the root is ¢y, then
{b1,b2,d} = {z1,t2,71} where r; is any vertex of R;. Note that for i =1,2
the vertex ¢; cannot be any vertex of Rz, for otherwise H([ry,72,%2,%1] is an
induced cycle, and therefore d = r;. We can suppose that b, = z1, b3 = t2,
so that ¢s = 22. Then we obtain a contradiction, since ¢; can only be m;
or my and therefore H[t),%2, 22, ¢1,21] is an induced cycle, a contradiction.
Thus the graph H cannot exist. 0

6 The proof of the theorem

First, recall that we proved in Sections 3 and 4 that respectively (Da,2,T1,1,2)-
free graphs and (D2, T1,1,3)-free graphs are irredundance perfect. Moreover
note that in [3], it is proved that Ps-free graphs and (Ps, W')-free graphs
are irredundance perfect.

Conversely, let (X,Y) be a pair of connected graphs, neither of which is
a subgraph of Ps or a subgraph of each other, and let ng be a given inte-
ger. Suppose that the condition G is (X,Y)-free implies G is irredundance
perfect for any graph G of order at least no. Then, by the Theorem 5.4 of
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